JP3421014B2 - TIG arc welding method for aluminum alloy - Google Patents

TIG arc welding method for aluminum alloy

Info

Publication number
JP3421014B2
JP3421014B2 JP2001091875A JP2001091875A JP3421014B2 JP 3421014 B2 JP3421014 B2 JP 3421014B2 JP 2001091875 A JP2001091875 A JP 2001091875A JP 2001091875 A JP2001091875 A JP 2001091875A JP 3421014 B2 JP3421014 B2 JP 3421014B2
Authority
JP
Japan
Prior art keywords
current
welding
positive
ratio
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001091875A
Other languages
Japanese (ja)
Other versions
JP2001314966A (en
Inventor
智之 上山
俊一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2001091875A priority Critical patent/JP3421014B2/en
Publication of JP2001314966A publication Critical patent/JP2001314966A/en
Application granted granted Critical
Publication of JP3421014B2 publication Critical patent/JP3421014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、非消耗性電極と被
溶接物との間に供給する電圧の極性を周期的に切り換え
て、非消耗性電極を不活性ガスでシ−ルドして溶接する
TIGア−ク溶接方法に関するものである。 【0002】 【従来の技術】従来から航空機の構造材料として使用さ
れるアルミニウム合金の接合部は、特に高度の品質が要
求されるので、安定した品質が得られるTIGア−ク溶
接方法によって溶接が行われている。通常のTIGパル
スア−ク溶接方法で水平隅肉溶接すると、溶け込み深さ
Pと溶接ビ−ド幅Wとの比の溶け込み比率P/Wは、図
1に示すように、1以下である。 【0003】最近では、板厚が厚くなっても、又水平隅
肉溶接であっても、図2に示すように、6[mm]以下の
狭い溶接ビ−ド幅であって、その溶接ビ−ド幅と同等以
上の深さの溶け込み、すなわち溶け込み深さPと溶接ビ
−ド幅Wとの比の溶け込み比率P/Wを1以上にするこ
とによって、余盛りを小さくして軽量化するとともに高
強度の溶接をすることが要求されている。 【0004】上記の要求に対応する溶接方法としては、
従来、つぎのTIGア−ク溶接方法又はプラズマア−ク
溶接方法が採用されている。第1の方法は、直流正極性
のTIGア−ク溶接方法が深い溶け込みが得られる(た
だし、アルミニウム合金の酸化皮膜をア−クによって除
去するクリ−ニング作用がない)ことに着目して、溶接
ア−ク発生前に、アルミニウムの酸化皮膜を機械的又は
化学的に除去しておいて、非消耗性電極をマイナスの極
性とする正極性の直流電流を通電してTIGア−ク溶接
する方法が採用されている。この第1の方法は、ある程
度の深い溶け込みを得ることはできるが、ア−クによる
クリ−ニング作用がないために、溶接ア−ク発生前に酸
化皮膜を除去する余分の工程が必要となり、さらに酸化
皮膜を除去しても時間が経過すると再発生した酸化皮膜
が溶接金属中に巻き込まれて溶接欠陥を発生することが
多い。 【0005】また、第2の方法は、矩形波の低周波の交
流パルス電流を通電して非消耗性電極の極性がマイナス
となる正極性期間とその極性がプラスとなる逆極性期間
との通電時間比率又は各期間における通電電流値比率又
はこれらの両者を調整した交流パルス電流を通電してT
IGア−ク溶接する方法が採用されている。この第2の
方法においては、例えば図2に示すように、板厚が16
[mm]で、水平隅肉溶接を行って上記の溶け込み深さP
が深い溶け込みを得ようとすれば、300[A]以上の
溶接電流を必要とし、電流値をできるだけ小さくしよう
とすれば予熱も必要となる。 【0006】航空機構造物は、多種複雑な形状の内外
面、曲線、曲面などの溶接が多いために、手溶接が多く
使用されている。この手溶接をするときに、上記の第1
図の溶接のように300[A]もの高電流を使用する
と、ア−クの輻射熱のために作業者の身体に負担がかか
り、短時間しか作業が継続できない。さらに、このよう
な高電流になると、フィラワイヤの溶融量も多くなり、
溶着量が大きくなり、構造物の軽量化を図ることができ
ない。 【0007】さらに第3の方法は、交流プラズマア−ク
溶接方法が採用されているが、この方法は、上記の深い
溶け込みを得ようとすれば、大電流となるために、溶接
ト−チにシリ−ズア−クが発生し易くなり、電極、ノズ
ル等が焼損することがあるので、実用上板厚8[mm]以
下の中厚板までしか適切な溶接をすることができない。 【0008】(未公開先願技術)そこで、本出願人は、
特願平3−169316(以下、先願という)において
下記の手段を備えた溶接方法を提案した。 電極と被溶接物との間に供給する電圧の極性を周期的
に切り換えてフィラワイヤを添加してアルミニウム合金
を溶接するTIGア−ク溶接方法である。 電極がマイナスのときの通電時間Tsで波高値Isの
正極性電流と電極がプラスのときの通電時間Trで波高
値Irの逆極性電流との正極性比率SP/(SP+R
P)=Is・Ts/(Is・Ts+Ir・Tr)が0.
6を越え0.9未満となる非平衡矩形波交流電流を通電
する。 上記非平衡矩形波交流電流を通電期間Ta通電した後
に、正極性直流電流を通電期間Td通電し、この非平衡
矩形波交流電流と正極性直流電流とを通電比率Ta/T
d=2/3で切換周波数F=1[Hz]以下の低周波で
切り換える。 電極を略同流量比率のアルゴンガスとヘリウムガスと
の混合ガスでシ−ルドする。 非平衡矩形波交流電流の通電期間中にフィラワイヤを
添加する。 溶け込み深さPと溶接ビ−ド幅Wとの溶け込み比率P
/Wが1以上の溶接金属を得る溶接電流を通電する。 【0009】先願の溶接方法によって下記のようなすぐ
れた効果が得られている。先願は、板厚が厚くなって
も、又水平隅肉溶接であっても、6[mm]以下の狭い溶
接ビ−ド幅であって、その溶接ビ−ド幅と同等以上の深
い溶け込みにすることによって、余盛りを小さくして軽
量化するとともに高強度のアルミニウム合金の溶接を行
うことができ、また、溶接電流の低電流化によるア−ク
熱の減少によって作業者の疲労を軽減し、また、電極の
消耗が少ないので長時間継続して使用することができる
ので、長尺物を継続して溶接することもでき、さらに、
予め定めた交流電流通電期間中に確実にフィラワイヤの
添加をすることができるなどによって高信頼度の溶接結
果を得ることができるので、安全性を重視しなければな
らない航空機構造物、原子力構造物などには欠くことが
できない。 【0010】 【発明が解決しようとする課題】前述したように、本出
願人の先願は、多くの問題点を解決することができた。
しかし、先願の溶接方法においては、電極を略同流量比
率のアルゴンガスとヘリウムガスとの混合ガスでシ−ル
ドするために、混合ガスを購入する必要があるが、ヘリ
ウムガスはアルゴンガスに比べて高価であり、さらにア
ルゴンガスとヘリウムガスの混合ガスは、純粋なアルゴ
ンガスとヘリウムガスとをそれぞれ購入する場合よりも
一層高価である。よって、先願の溶接方法を実施するに
は、シ−ルドガスのコストが大になるという欠点があっ
た。 【0011】 【課題を解決するための手段】本発明は、下記の手段を
備えた溶接方法である。 電極と被溶接物との間に供給する電圧の極性を周期的
に切り換えてアルミニウム合金を溶接するTIGア−ク
溶接方法である。 電極がマイナスの時の通電時間Tsで波高値Isの正
極性電流と電極がプラスのときの通電時間Trで波高値
Irの逆極性電流との正極性比率SP/(SP+RP)
=Is・Ts/(Is・Ts+Ir・Tr)が0.6を
越え0.9未満となる非平衡矩形波交流電流を通電す
る。 上記非平衡矩形波交流電流を期間Ta通電した後に、
前記非消耗性電極がマイナスのみとなる正極性パルス電
流を期間Td通電し、前記非平衡矩形波交流電流と正極
性パルス電流とを通電比率Ta/Td=2/3以上で切
り換える。 溶け込み深さPと溶接ビ−ド幅Wとの溶け込み比率P
/Wが1以上の溶接金属を得る溶接電流を通電する。 【0012】 【実施の形態】以下、図3乃至図5を参照して本発明の
アルミニウム合金のTIGア−ク溶接方法の実施の形態
について説明する。 (図3の説明)図3は、本発明のTIGア−ク溶接方法
において通電する溶接電流の波形を示す図である。同図
において、電極がマイナスの時の通電時間Tsで波高値
Isの正極性電流と電極がプラスの時の通電時間Trで
波高値Irの逆極性電流との正極性比率 SP/(SP+RP)=Is・Ts/(Is・Ts+Ir・Tr)…(1) が0.5を越える非平衡矩形波交流電流Iaを通電期間
Ta通電した後に、正極性パルス電流Idを通電期間T
d通電している。 【0013】(図4及び図5の説明)図5は、上記
(1)式の正極性比率SP/(SP+RP)(横軸)と
溶け込み比率P/W(縦軸)との関係を示す図である。
同図において、溶け込み比率P/Wは、板厚10[mm]
の材質A5083のアルミニウム合金の平板上に、溶接
電流の全波整流の平均値250[A]で溶接速度20
[cm/min]で、正極性比率SP/(SP+RP)を変化
させて、アルゴンガスをシ−ルドガスとしてTIGア−
ク溶接したときの図4に示す溶け込み深さPと溶接ビ−
ド幅Wとの溶け込み比率P/Wとの関係を示している。
図5に示すように、正極性比率SP/(SP+RP)が
0.6を越えると、溶け込み比率P/Wが大となってい
る。しかし、他方、アルミニウム合金のTIGア−ク溶
接においては、正極性比率SP/(SP+RP)が0.
9以上になると、溶接ビ−ド幅Wを得るためのクリ−ニ
ング幅の確保が困難となり、溶接ビ−ドに酸化皮膜を形
成してしまうので、正極性比率SP/(SP+RP)
は、0.6を越え0.9未満の範囲が適切である。 【0014】純粋なアルゴンガスを使用して正極性比率
SP/(SP+RP)=0.7の非平衡矩形波交流電流
Iaを通電しても、本発明のTIGア−ク溶接方法に使
用する図3に示す溶接電流の正極性パルス電流Idの通
電期間Tdが非平衡矩形波交流電流Iaの通電期間Ta
にくらべて、所定の比率を越えると、通電期間Tdの間
にクリ−ニング作用された領域がなくなってしまう。そ
こで、実験によって求めた結果、このTaとTdとの通
電比率Ta/Tdを2/3以上にすれば、正極性パルス
電流Idの通電期間Td中であっても、クリ−ニング作
用が残存している。また、フィラワイヤを添加する時期
としては、添加するフィラワイヤのクリ−ニング作用を
行わせるために、非平衡矩形波交流電流Iaの通電期間
Ta中にする必要があり、さらに、フィラワイヤを添加
するための時間を確保するために、非平衡矩形波交流電
流Iaの通電期間Taと正極性パルス電流Idの通電期
間Tdとを切換周波数Fが1[Hz]以下の低周波で切
り換える必要がある。また、フィラワイヤを添加しない
場合には、切換周波数Fが1[Hz]以上の低周波でも
切り換えることができる。 【0015】アルミニウム・マグネシウム合金A508
3をTIGア−ク溶接した場合に得られる溶接金属の溶
接ビ−ド中央部において、しばしば羽毛状の結晶粒すな
わち羽毛状晶が発生することがある。この羽毛状晶は溶
接ビ−ドのほぼ全域に広がる場合があり、特異な柱状結
晶であって、この結晶が存在すると、溶接金属の延性が
著しく低下することになる。従来の交流TIGア−ク溶
接方法においても、また、先願の非平衡矩形波交流電流
と正極性直流電流とを切り換えるTIGア−ク溶接方法
においても、設定条件により羽毛状晶が発生し易くなる
が、本発明のTIGア−ク溶接方法においては、羽毛状
晶が発生することはない。 【0016】 【実施例】(図6及び図7の説明)図6は、本発明のT
IGア−ク溶接方法を実施する溶接装置のブロック図を
示す。同図において、1及び2は被溶接物、4は被消耗
性電極、10は例えば商用交流電源を整流した直流電源
回路、L1 は直流リアクトル、C1 は整流用コンデン
サ、TR1及びTR2は逆極性電流通電用トランジス
タ、TS1及びTS2は正極性電流通電用トランジスタ
である。PC1はこれらのトランジスタの導通及び遮断
を制御する極性切換回路であり、図7(A)に示す極性
切換信号Pc1を出力する。NT2派極性切換信号Pc
1を反転して図7(B)に示す反転信号Nt2 を出力す
るNOT回路であり、AM1は無安定マルチバイブレ−
タ回路であって、非平衡矩形波交流電流Iaの通電期間
Taと正極性パルス電流Idの通電期間Tdとの通電比
率Ta/Tdを切換周波数F[Hz]によって定める図
7(C)に示す低周波信号Am1を出力する。ND1
は、反転信号Nt2 及び低周波信号Am1を入力とし
て、両信号又はいずれかの信号が低レベルLのときに、
図7(D)に示す正極性通電信号Ssを出力するNAN
D回路である。NT1は正極性通電信号Ssを入力とし
て反転した図7(E)に示す逆極性通電信号Srを出力
する。正極性通電信号SsはトランジスタTS1及びT
S2を導通及び遮断し、逆極性通電信号Srはトランジ
スタTR1及びTR2を導通及び遮断し、これらのトラ
ンジスタの導通及び遮断によって図7(K)に示す非平
衡矩形波交流電流Iaと正極性パルス電流Idとを切り
換える。 【0017】IPはパルス電流設定回路で、図7(F)
に示すパルス電流設定信号Ipを出力し、IBはベ−ス
電流設定回路で、図7(G)に示すベ−ス電流設定信号
Ibを出力する。AM2は無安定マルチバイブレ−タ回
路で、図7(H)に示すパルス信号Am2 を出力し、パ
ルスベ−ス電流切換回路SW1は、パルス電流設定信号
Ipとベ−ス電流設定信号Ibとを、パルス信号Am2
の切換周波数Fdで切り換える図7(I)に示すパルス
制御信号S1 を出力し、この切換周波数Fdにより、正
極性パルス電流におけるパルス電流通電期間Tpとベ−
ス電流通電期間Tbの通電比率Tp/Tbが定められ
る。IMは非平衡矩形波交流電流設定回路で、図7
(J)に示す非平衡矩形波交流電流設定信号Imを出力
する。非平衡矩形波交流電流設定信号・パルス制御信号
切換回路SW2は、非平衡矩形波交流電流設定信号Im
とパルス制御信号S1 とを、低周波信号Am1の切換周
波数Fで切り換え、パルス制御信号S2 を出力し、この
切換周波数Fにより、非平衡矩形波交流電流通電時間T
aと正極性パルス電流通電時間Tdの通電比率Ta/T
dが定められる。CM1は比較回路で、パルス制御信号
S2 と溶接電流検出回路CTの溶接電流検出信号Ctと
を比較して、溶接電流信号Cm1 を出力し、直流電源回
路10に入力する。従って、図6に示す溶接装置によ
り、図7(K)に示す非平衡矩形波交流電流Iaと正極
性パルス電流Idとを繰り返す溶接電流Iを被溶接物
1,2と電極4間に通電する。 【0018】 【発明の効果】先願のTIGア−ク溶接方法が、シ−ル
ドガスとして略同流量比率のアルゴンガスとヘリウムガ
スとの混合ガスを使用するために、シ−ルドガスのコス
トが大になるのに対して、本発明の溶接方法は、非平衡
矩形波交流電流と正極性パルス電流とを切り換えて通電
することにより、純粋なアルゴンガスをシ−ルドガスと
して使用した場合において、板厚が厚くなっても、又水
平隅肉溶接であっても、6[mm]以下の狭い溶接ビ−ド
幅であって、その溶接ビ−ド幅と同等以上の深い溶け込
みにすることによって、余盛りを小さくして軽量化する
とともに高強度のアルミニウム合金の溶接を行うことが
できる。さらに、本発明の溶接方法を実施することによ
って、溶接金属の延性を低下させる羽毛状晶の発生を防
ぐことができ、高品質の溶接ビ−ド形状を得ることがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for periodically switching the polarity of a voltage supplied between a non-consumable electrode and an object to be welded, thereby forming the non-consumable electrode. The present invention relates to a TIG arc welding method for welding by shielding with an inert gas. [0002] Aluminum alloy joints conventionally used as aircraft structural materials are required to have particularly high quality. Therefore, welding is performed by a TIG arc welding method capable of obtaining stable quality. Is being done. When horizontal fillet welding is performed by a normal TIG pulse arc welding method, the penetration ratio P / W of the ratio of the penetration depth P to the weld bead width W is 1 or less as shown in FIG. [0003] Recently, even if the thickness of the plate is increased or horizontal fillet welding is performed, as shown in FIG. 2, the width of the weld bead is as narrow as 6 mm or less. -The penetration of the depth equal to or greater than the bead width, that is, the penetration ratio P / W of the ratio of the penetration depth P to the weld bead width W is set to 1 or more, thereby reducing the excess and reducing the weight. In addition, high strength welding is required. [0004] As a welding method to meet the above requirements,
Conventionally, the following TIG arc welding method or plasma arc welding method has been adopted. The first method focuses on the fact that a TIG arc welding method of DC positive polarity can obtain deep penetration (however, there is no cleaning action for removing an oxide film of an aluminum alloy by arc). Before the occurrence of welding arc, the aluminum oxide film is mechanically or chemically removed, and a non-consumable electrode is supplied with a positive direct current having a negative polarity to perform TIG arc welding. The method has been adopted. In the first method, although a certain deep penetration can be obtained, an extra step of removing the oxide film before the occurrence of welding arc is required because there is no cleaning action due to the arc. Furthermore, even if the oxide film is removed, after a lapse of time, the regenerated oxide film is often caught in the weld metal to generate welding defects. The second method energizes a non-consumable electrode during a positive polarity period when the polarity of the non-consumable electrode is negative and a reverse polarity period when the polarity is positive by applying a low-frequency rectangular AC pulse current. By applying an AC pulse current in which the time ratio or the energizing current value ratio in each period or both are adjusted, T
An IG arc welding method is employed. In the second method, for example, as shown in FIG.
In [mm], horizontal fillet welding is performed and the above penetration depth P
In order to obtain deep penetration, a welding current of 300 [A] or more is required, and in order to reduce the current value as much as possible, preheating is also required. [0006] Aircraft structures are often used for manual welding because of the large number of welds, such as inner and outer surfaces, curves, and curved surfaces, of various and complex shapes. When performing this manual welding, the first
When a current as high as 300 [A] is used as in the welding shown in the figure, a load is applied to the worker's body due to the radiant heat of the arc, and the work can be continued only for a short time. Furthermore, at such a high current, the amount of melting of the filler wire also increases,
The amount of welding increases, and the structure cannot be reduced in weight. Further, the third method employs an AC plasma arc welding method. However, in this method, a large current is required in order to obtain the above-described deep penetration. In this case, a series arc easily occurs, and the electrodes, nozzles, etc. may be burned out. Therefore, in practice, appropriate welding can be performed only up to a medium thickness of 8 mm or less. [0008] (Unpublished prior application technology)
Japanese Patent Application No. 3-169316 (hereinafter referred to as a prior application) has proposed a welding method provided with the following means. This is a TIG arc welding method in which the polarity of a voltage supplied between an electrode and a workpiece is periodically switched to add a filler wire and weld an aluminum alloy. The positive polarity ratio SP / (SP + R) of the positive polarity current of the peak value Is at the current flowing time Ts when the electrode is negative and the reverse polarity current of the peak value Ir at the current flowing time Tr when the electrode is positive.
P) = Is · Ts / (Is · Ts + Ir · Tr) is 0.
An unbalanced rectangular wave alternating current exceeding 6 and less than 0.9 is applied. After the non-equilibrium rectangular wave AC current is supplied for the conduction period Ta, the positive DC current is supplied for the conduction period Td, and the unbalanced rectangular wave AC current and the positive DC current are supplied with the conduction ratio Ta / T.
Switching is performed at a low frequency equal to or less than the switching frequency F = 1 [Hz] with d = 2. The electrodes are shielded with a mixed gas of argon gas and helium gas at substantially the same flow rate ratio. The filler wire is added during the period of non-equilibrium square wave alternating current. Penetration ratio P between penetration depth P and weld bead width W
A welding current for obtaining a weld metal having / W of 1 or more is applied. The following excellent effects are obtained by the welding method of the prior application. The prior application requires a narrow weld bead width of 6 mm or less and a deep penetration equal to or greater than the weld bead width, even if the plate thickness is increased or horizontal fillet welding is performed. By reducing the amount of excess, it is possible to reduce the weight and to weld a high-strength aluminum alloy, and to reduce the fatigue of the operator by reducing the arc heat due to the lower welding current. In addition, since the electrode is less consumed, it can be used continuously for a long time, so that a long object can be continuously welded.
Aircraft structures, nuclear structures, etc., for which safety must be emphasized, because high reliability welding results can be obtained by ensuring that filler wire is added during the predetermined AC current conduction period. Is indispensable. [0010] As described above, the earlier application filed by the present applicant has solved many problems.
However, in the welding method of the prior application, it is necessary to purchase a mixed gas in order to shield the electrodes with a mixed gas of argon gas and helium gas having substantially the same flow ratio, but helium gas is replaced with argon gas. It is more expensive, and the mixed gas of argon gas and helium gas is more expensive than the case of purchasing pure argon gas and helium gas, respectively. Therefore, there is a disadvantage that the cost of the shield gas becomes large in order to carry out the welding method of the prior application. The present invention is a welding method provided with the following means. This is a TIG arc welding method in which the polarity of a voltage supplied between an electrode and a workpiece is periodically switched to weld an aluminum alloy. Positive polarity ratio SP / (SP + RP) of the positive polarity current of the peak value Is at the conduction time Ts when the electrode is negative and the reverse polarity current of the peak value Ir at the conduction time Tr when the electrode is positive.
A non-equilibrium rectangular wave alternating current in which = Is.Ts / (Is.Ts + Ir.Tr) is more than 0.6 and less than 0.9 is applied. After the non-equilibrium rectangular wave AC current is supplied for a period Ta,
A positive pulse current in which the non-consumable electrode is only negative is supplied for a period Td, and the non-equilibrium rectangular wave AC current and the positive pulse current are switched at a conduction ratio Ta / Td = 2/3 or more. Penetration ratio P between penetration depth P and weld bead width W
A welding current for obtaining a weld metal having / W of 1 or more is applied. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a TIG arc welding method for an aluminum alloy according to the present invention will be described with reference to FIGS. (Explanation of FIG. 3) FIG. 3 is a diagram showing a waveform of a welding current applied in the TIG arc welding method of the present invention. In the figure, a positive polarity ratio SP / (SP + RP) = a positive polarity current having a peak value Is at an energizing time Ts when the electrode is negative and a reverse polarity current having a peak value Ir at an energizing time Tr when the electrode is positive. Is · Ts / (Is · Ts + Ir · Tr) (1) After the non-equilibrium rectangular wave AC current Ia exceeding 0.5 exceeds the conduction period Ta, the positive pulse current Id is supplied to the conduction period T.
d is energized. (Explanation of FIGS. 4 and 5) FIG. 5 is a diagram showing the relationship between the positive polarity ratio SP / (SP + RP) (horizontal axis) and the penetration ratio P / W (vertical axis) in the above equation (1). It is.
In the figure, the penetration ratio P / W is 10 [mm]
The welding speed was set to 20 [A] at an average value of 250 [A] of full-wave rectification of the welding current on a flat plate of aluminum alloy of material A5083.
[Cm / min], the positive polarity ratio SP / (SP + RP) was changed, and argon gas was used as a shield gas to obtain a TIG electrode.
Depth P and welding bead shown in FIG.
4 shows the relationship between the gate width W and the penetration ratio P / W.
As shown in FIG. 5, when the positive polarity ratio SP / (SP + RP) exceeds 0.6, the penetration ratio P / W becomes large. However, on the other hand, in TIG arc welding of an aluminum alloy, the positive polarity ratio SP / (SP + RP) is 0.1%.
If it is 9 or more, it is difficult to secure a cleaning width for obtaining the weld bead width W, and an oxide film is formed on the weld bead. Therefore, the positive polarity ratio SP / (SP + RP)
Is suitably in the range of more than 0.6 and less than 0.9. Even if a non-equilibrium rectangular wave alternating current Ia having a positive polarity ratio of SP / (SP + RP) = 0.7 is applied using pure argon gas, the TIG arc welding method of the present invention is used. The energizing period Td of the positive polarity pulse current Id of the welding current shown in FIG.
If the ratio exceeds the predetermined ratio, there is no longer any area subjected to the cleaning action during the energization period Td. Therefore, as a result of an experiment, if the conduction ratio Ta / Td between Ta and Td is set to 2/3 or more, the cleaning effect remains even during the conduction period Td of the positive pulse current Id. ing. Further, the filler wire should be added during the energization period Ta of the non-equilibrium rectangular wave alternating current Ia in order to perform the cleaning action of the filler wire to be added. In order to secure time, it is necessary to switch the energizing period Ta of the non-equilibrium rectangular wave AC current Ia and the energizing period Td of the positive pulse current Id at a low frequency whose switching frequency F is 1 [Hz] or less. When no filler wire is added, switching can be performed even at a switching frequency F of 1 [Hz] or more. Aluminum / magnesium alloy A508
Feather-like crystal grains, that is, feather-like crystals, are often generated in the center of the weld bead of the weld metal obtained when TIG arc welding of No. 3 is performed. These feathered crystals may spread over almost the entire area of the weld bead, and are peculiar columnar crystals. The presence of these crystals significantly reduces the ductility of the weld metal. In the conventional AC TIG arc welding method, and in the TIG arc welding method of switching between the non-equilibrium rectangular wave AC current and the positive DC current of the prior application, feather-like crystals are easily generated depending on the set conditions. However, in the TIG arc welding method of the present invention, feathered crystals do not occur. (Explanation of FIG. 6 and FIG. 7) FIG.
FIG. 1 is a block diagram of a welding apparatus for performing an IG arc welding method. In the figure, reference numerals 1 and 2 denote an object to be welded, 4 denotes a consumable electrode, 10 denotes a DC power supply circuit obtained by rectifying a commercial AC power supply, L1 denotes a DC reactor, C1 denotes a rectifying capacitor, and TR1 and TR2 denote reverse polarity currents. The energizing transistors, TS1 and TS2, are transistors for energizing positive current. PC1 is a polarity switching circuit that controls conduction and cutoff of these transistors, and outputs a polarity switching signal Pc1 shown in FIG. NT2 polarity switching signal Pc
1 is a NOT circuit which outputs an inverted signal Nt2 shown in FIG. 7B, and AM1 is an astable multivibrator.
FIG. 7 (C) which shows an energizing ratio Ta / Td of an energizing period Ta of an unbalanced rectangular wave AC current Ia and an energizing period Td of a positive pulse current Id by a switching frequency F [Hz]. The low-frequency signal Am1 is output. ND1
Is input with the inverted signal Nt2 and the low frequency signal Am1 and when both signals or one of the signals is at the low level L,
NAN that outputs positive conduction signal Ss shown in FIG.
This is a D circuit. NT1 receives the positive polarity conduction signal Ss as input and outputs an inverted polarity conduction signal Sr as shown in FIG. 7 (E). The positive polarity conduction signal Ss is generated by transistors TS1 and T1.
S2 is turned on and off, and the reverse polarity conduction signal Sr turns on and off the transistors TR1 and TR2. By turning on and off these transistors, the unbalanced rectangular wave AC current Ia and the positive pulse current shown in FIG. And Id. IP is a pulse current setting circuit, as shown in FIG.
IB is a base current setting circuit which outputs a base current setting signal Ib shown in FIG. 7 (G). AM2 is an astable multivibrator circuit which outputs a pulse signal Am2 shown in FIG. 7 (H), and a pulse base current switching circuit SW1 outputs a pulse current setting signal Ip and a base current setting signal Ib. Pulse signal Am2
A pulse control signal S1 shown in FIG. 7 (I), which switches at the switching frequency Fd, is output.
The current supply ratio Tp / Tb of the current supply period Tb is determined. IM is an unbalanced square-wave AC current setting circuit.
An unbalanced rectangular wave AC current setting signal Im shown in (J) is output. The unbalanced rectangular wave AC current setting signal / pulse control signal switching circuit SW2 outputs the unbalanced rectangular wave AC current setting signal Im.
And the pulse control signal S1 are switched at the switching frequency F of the low frequency signal Am1, and the pulse control signal S2 is output.
a and the energization ratio Ta / T between the positive polarity pulse current energization time Td
d is determined. A comparison circuit CM1 compares the pulse control signal S2 with the welding current detection signal Ct of the welding current detection circuit CT, outputs a welding current signal Cm1, and inputs it to the DC power supply circuit 10. Therefore, the welding device shown in FIG. 6 applies a welding current I between the workpieces 1 and 2 and the electrode 4 in which the non-equilibrium rectangular wave alternating current Ia and the positive pulse current Id shown in FIG. . The TIG arc welding method of the prior application uses a mixed gas of argon gas and helium gas having substantially the same flow rate ratio as the shield gas, so that the cost of the shield gas is large. On the other hand, the welding method of the present invention switches the current between the non-equilibrium rectangular wave AC current and the positive pulse current, and applies a pure argon gas as a shield gas. Even if the thickness is large or horizontal fillet welding is performed, a narrow weld bead width of 6 mm or less and a deep penetration equal to or greater than the weld bead width can be used. It is possible to reduce the weight by reducing the height and to weld a high-strength aluminum alloy. Furthermore, by implementing the welding method of the present invention, it is possible to prevent the generation of feathers which lower the ductility of the weld metal, and to obtain a high quality weld bead shape.

【図面の簡単な説明】 【図1】通常のTIGパルスア−ク溶接方法による水平
隅肉溶接の溶け込み深さPと溶接ビ−ド幅Wとの関係を
示す図。 【図2】最近の航空機構造物に要求される水平隅肉溶接
の溶け込み深さPと溶接ビ−ド幅Wとの関係を示す図。 【図3】本発明のTIGア−ク溶接方法において通電す
る溶接電流の波形を示す図。 【図4】溶け込み深さPと溶接ビ−ド幅Wとの関係を示
す図。 【図5】正極性比率SP/(SP+RP)(横軸)と溶
け込み比率P/W(縦軸)との関係を示す図。 【図6】本発明のTIGア−ク溶接方法を実施する溶接
装置のブロック図。 【図7】図6のブロック図の各回路の出力信号の波形を
示す図。 【符号の説明】 1,2 被溶接物 4 被消耗性電極 Ts 電極がマイナスのときの通電時間 Tr 電極がプラスのときの通電時間 I 溶接電流(全波整流の平均値) Is 電極がマイナスのときの溶接電流(正極性電
流)の波高値 Ir 電極がプラスのときの溶接電流(逆極性電
流)の波高値 Ia 非平衡矩形波交流電流 Id 正極性パルス電流 Ta 非平衡矩形波交流電流Iaの通電期間 Td 正極性パルス電流Idの通電期間 Ta/Td 通電比率 SP/(SP+RP) 正極性比率=Is・Ts/
(Is・Ts+Ir・Tr) F 非平衡矩形波交流電流Iaと正極性パルス電
流Idとの切換周波数 Fd 正極性パルス電流Idのパルス周波数 P 溶け込み深さ W 溶接ビ−ド幅 P/W 溶け込み比率
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a relationship between a penetration depth P and a weld bead width W of horizontal fillet welding by a normal TIG pulse arc welding method. FIG. 2 is a view showing a relationship between a penetration depth P of horizontal fillet welding and a weld bead width W required for recent aircraft structures. FIG. 3 is a view showing a waveform of a welding current applied in the TIG arc welding method of the present invention. FIG. 4 is a diagram showing a relationship between a penetration depth P and a weld bead width W. FIG. 5 is a diagram showing a relationship between a positive polarity ratio SP / (SP + RP) (horizontal axis) and a penetration ratio P / W (vertical axis). FIG. 6 is a block diagram of a welding apparatus for implementing the TIG arc welding method of the present invention. FIG. 7 is a diagram showing a waveform of an output signal of each circuit in the block diagram of FIG. 6; [Description of Signs] 1, 2 Welded object 4 Consumable electrode Ts Energizing time when electrode is negative Tr Energizing time when electrode is positive I Welding current (average value of full-wave rectification) Is electrode is negative The peak value Ir of the welding current (positive current) at the time The peak value Ia of the welding current (reverse polarity current) when the electrode is positive Non-balanced rectangular wave AC current Id Positive pulse current Ta of the non-balanced rectangular wave AC current Ia Energizing period Td Energizing period Ta / Td of the positive pulse current Id Energizing ratio SP / (SP + RP) Positive ratio = Is · Ts /
(Is · Ts + Ir · Tr) F Switching frequency Fd between non-equilibrium rectangular wave alternating current Ia and positive pulse current Id Pulse frequency P of positive pulse current Id Penetration depth W Weld bead width P / W Penetration ratio

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B23K 103:10 B23K 103:10 (58)調査した分野(Int.Cl.7,DB名) B23K 9/073 B23K 9/09 B23K 9/167 B23K 9/23 H02M 9/00 B23K 103:10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification symbol FI // B23K 103: 10 B23K 103: 10 (58) Investigated field (Int.Cl. 7 , DB name) B23K 9/073 B23K 9 / 09 B23K 9/167 B23K 9/23 H02M 9/00 B23K 103: 10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 非消耗性電極と被溶接物との間に供給す
る電圧の極性を周期的に切り換えて前記非消耗性電極を
不活性ガスでシ−ルドし、アルミニウム合金を溶接する
TIGア−ク溶接方法において、前記非消耗性電極がマ
イナスのときの通電時間Tsの溶接電流の波高値Isの
正極性電流と非消耗性電極がプラスのときの通電時間T
rの溶接電流の波高値Irの逆極性電流との正極性比率
SP/(SP+RP)=Is・Ts/(Is・Ts+I
r・Tr)が0.6を越え0.9未満となる非平衡矩形
波交流電流を期間Ta通電した後に、前記非消耗性電極
がマイナスのみとなる正極性パルス電流を期間Td通電
し、前期非平衡矩形波交流電流と正極性パルス電流とを
通電比率Ta/Td=2/3以上で切り換え、溶け込み
深さPと溶接ビ−ド幅Wとの溶け込み比率P/Wが1以
上の溶接金属を得る溶接電流を通電してアルミニウム合
金を溶接するアルミニウム合金のTIGア−ク溶接方
法。
(57) Claims 1. The polarity of the voltage supplied between the non-consumable electrode and the workpiece is periodically switched to shield the non-consumable electrode with an inert gas. In the TIG arc welding method for welding an aluminum alloy, the positive current of the peak value Is of the welding current during the conduction time Ts when the non-consumable electrode is negative and the current when the non-consumable electrode is positive are used. Time T
The positive polarity ratio SP / (SP + RP) = Is · Ts / (Is · Ts + I) of the peak value Ir of the welding current r with the reverse polarity current
(r · Tr) is greater than 0.6 and less than 0.9, and a non-equilibrium rectangular wave alternating current is supplied for a period Ta, and then a positive pulse current for which the non-consumable electrode is only negative is supplied for a period Td. A non-equilibrium rectangular wave alternating current and a positive pulse current are switched at an energization ratio Ta / Td = 2/3 or more, and a weld metal having a penetration ratio P / W of 1 or more between a penetration depth P and a weld bead width W. A TIG arc welding method for aluminum alloys, in which a welding current is applied to weld aluminum alloy.
JP2001091875A 2001-03-28 2001-03-28 TIG arc welding method for aluminum alloy Expired - Lifetime JP3421014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091875A JP3421014B2 (en) 2001-03-28 2001-03-28 TIG arc welding method for aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091875A JP3421014B2 (en) 2001-03-28 2001-03-28 TIG arc welding method for aluminum alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10033992A Division JP3191396B2 (en) 1992-03-25 1992-03-25 TIG arc welding method for aluminum alloy

Publications (2)

Publication Number Publication Date
JP2001314966A JP2001314966A (en) 2001-11-13
JP3421014B2 true JP3421014B2 (en) 2003-06-30

Family

ID=18946428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091875A Expired - Lifetime JP3421014B2 (en) 2001-03-28 2001-03-28 TIG arc welding method for aluminum alloy

Country Status (1)

Country Link
JP (1) JP3421014B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099775B2 (en) * 2008-06-25 2012-12-19 株式会社ダイヘン AC plasma welding method
DE102016102884B4 (en) 2016-02-18 2022-06-02 Rehm GmbH & Co. KG Schweißtechnik welding process

Also Published As

Publication number Publication date
JP2001314966A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JP3284930B2 (en) High-frequency pulse arc welding method and its equipment and applications
EP2010353B1 (en) Metal cored electrode for open root pass welding
US9259796B2 (en) Synergic TIG welding system
DeRuntz Assessing the benefits of surface tension transfer® welding to industry
WO2007102540A1 (en) Welding method
JPH0366066B2 (en)
JP2007301633A (en) Gas-less process and system for girth welding in high strength application
JP2003211270A (en) Method for joining aluminum and steel
Street Pulsed arc welding: an introduction
JP3421014B2 (en) TIG arc welding method for aluminum alloy
JP3191396B2 (en) TIG arc welding method for aluminum alloy
JP3088782B2 (en) TIG arc welding method for aluminum alloy
JP3537465B2 (en) Welding method of aluminum alloy plate
JP3158545B2 (en) TIG arc welding method for aluminum alloy
JP2711137B2 (en) AC TIG welding equipment
JP4676094B2 (en) Method for controlling output voltage of welding power source
JP2819607B2 (en) MIG and MAG pulse arc welding method
JP2711138B2 (en) AC TIG welding method and apparatus
JP3948767B2 (en) High frequency AC TIG welding machine
JPH04182071A (en) Consumable electrode arc welding equipment
JP2000254779A (en) Method and machine for ac pulse arc welding
JPH0241394B2 (en)
JP2573055B2 (en) Aluminum or aluminum alloy overlay welding method
JPH06328253A (en) Gas shielded arc welding method and welding machine for galvanized steel sheet and galvanized steel product welded by welding machine
JPH0740050A (en) Tig welding method for galvanized steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

EXPY Cancellation because of completion of term