JP3088782B2 - TIG arc welding method for aluminum alloy - Google Patents
TIG arc welding method for aluminum alloyInfo
- Publication number
- JP3088782B2 JP3088782B2 JP16931691A JP16931691A JP3088782B2 JP 3088782 B2 JP3088782 B2 JP 3088782B2 JP 16931691 A JP16931691 A JP 16931691A JP 16931691 A JP16931691 A JP 16931691A JP 3088782 B2 JP3088782 B2 JP 3088782B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- welding
- ratio
- positive
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
- Generation Of Surge Voltage And Current (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非消耗性電極と被溶接
物との間に供給する電圧の極性を周期的に切り換えて、
非消耗性電極を不活性ガスでシ−ルドし、フィラワイヤ
を添加して溶接するTIGア−ク溶接方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for periodically switching the polarity of a voltage supplied between a non-consumable electrode and a workpiece.
The present invention relates to a TIG arc welding method in which a non-consumable electrode is shielded with an inert gas, and a filler wire is added and welded.
【0002】[0002]
【従来の技術】従来から航空機の構造材料として使用さ
れるアルミニウム合金の接合部は、特に高度の品質が要
求されるので、安定した品質が得られるTIGアーク溶
接方法によって溶接が行われている。通常のTIGパル
スアーク溶接方法で水平隅肉溶接すると、溶け込み深さ
Pと溶接ビード幅Wとの溶け込み比率P/Wは、図1に
示すように、1以下である。最近では、板厚が厚くなっ
ても、又水平隅肉溶接であっても、図2に示すように、
6[mm]以下の狭い溶接ビード幅であって、その溶接
ビード幅と同等以上の深さの溶け込み、すなわち溶け込
み深さPと溶接ビード幅Wとの比の溶け込み比率P/W
を1以上にすることによって、余盛りを小さくして軽量
化するとともに高強度の溶接をすることが要求されてい
る。2. Description of the Related Art Conventionally, aluminum alloy joints used as structural materials for aircraft are required to have a particularly high quality. Therefore, welding is performed by a TIG arc welding method capable of obtaining stable quality. When horizontal fillet welding is performed by a normal TIG pulse arc welding method, the penetration ratio P / W between the penetration depth P and the weld bead width W is 1 or less as shown in FIG. Recently, even if the plate thickness is increased or horizontal fillet welding is performed, as shown in FIG.
A penetration depth P / W, which is a narrow weld bead width of 6 mm or less and has a depth equal to or greater than the weld bead width, that is, the ratio of the penetration depth P to the weld bead width W.
It is required to reduce the weight by reducing the excess as well as to perform high-strength welding by setting at least one.
【0003】上記の要求に対応する溶接方法としては、
従来、つぎのTIGアーク溶接方法又はプラズマアーク
溶接方法が採用されている。第1の方法は、直流正極性
のTIGアーク溶接方法が深い溶け込みが得られる(た
だし、アルミニウム合金の酸化皮膜をアークによって除
去するクリーニング作用がない)ことに着目して、溶接
アーク発生前に、アルミニウムの酸化皮膜を機械的又は
化学的に除去しておいて、非消耗性電極をマイナスの極
性とする正極性の直流電流を通電してTIGアーク溶接
する方法が採用されている。この第1の方法は、ある程
度の深い溶け込みを得ることはできるが、アークによる
クリーニング作用がないために、溶接アーク発生前に酸
化皮膜を除去する余分の工程が必要となり、さらに酸化
皮膜を除去しても時間が経過すると再発生した酸化皮膜
が溶接金属中に巻き込まれて溶接欠陥を発生することが
多い。[0003] As a welding method corresponding to the above requirements,
Conventionally, the following TIG arc welding method or plasma arc welding method has been adopted. The first method focuses on the fact that a TIG arc welding method of DC positive polarity can obtain deep penetration (however, there is no cleaning action for removing an oxide film of an aluminum alloy by an arc). A method of mechanically or chemically removing an aluminum oxide film and conducting TIG arc welding by applying a positive DC current having a non-consumable electrode with a negative polarity is applied. In the first method, although a certain degree of deep penetration can be obtained, since there is no cleaning action by an arc, an extra step of removing an oxide film before the occurrence of a welding arc is required. Even after a lapse of time, however, the regenerated oxide film often gets caught in the weld metal and causes welding defects.
【0004】また、第2の方法は、矩形波の低周波の交
流パルス電流を通電して非消耗性電極の極性がマイナス
となる正極性期間とその極性がプラスとなる逆極性期間
との通電時間比率又は各期間における通電電流値比率又
はこれらの両者を調整した交流パルス電流を通電してT
IGア−ク溶接する方法が採用されている。この第2の
方法においては、例えば図2に示すように、板厚が16
[mm]で、水平隅肉溶接を行って上記の溶け込み深さP
が深い溶け込みを得ようとすれば、300[A]以上の
溶接電流を必要とし、電流値をできるだけ小さくしよう
とすれば予熱も必要となる。航空機構造物は、多種複雑
な形状の内外面、曲線、曲面などの溶接が多いために、
手溶接が多く使用されている。この手溶接をするとき
に、上記の第1図の溶接のように300[A]もの高電
流を使用すると、ア−クの輻射熱のために作業者の身体
に負担がかかり、短時間しか作業が継続できない。さら
に、このような高電流になると、フィラワイヤの溶融量
も多くなり、溶着量が大きくなり、構造物の軽量化を図
ることができない。さらに第3の方法は、交流プラズマ
ア−ク溶接方法が採用されているが、この方法は、上記
の深い溶け込みを得ようとすれば、大電流となるため
に、溶接ト−チにシリ−ズア−クが発生し易くなり、電
極、ノズル等が焼損することがあるので、実用上板厚8
[mm]以下の中厚板までしか適切な溶接をすることがで
きない。In a second method, a non-consumable electrode is supplied with a low-frequency AC pulse current of a rectangular wave to supply a positive polarity period in which the polarity of the non-consumable electrode is negative and a reverse polarity period in which the polarity is positive. By applying an AC pulse current in which the time ratio or the energizing current value ratio in each period or both are adjusted, T
An IG arc welding method is employed. In the second method, for example, as shown in FIG.
In [mm], horizontal fillet welding is performed and the above penetration depth P
In order to obtain deep penetration, a welding current of 300 [A] or more is required, and in order to reduce the current value as much as possible, preheating is also required. Aircraft structures are often welded with variously complex inner and outer surfaces, curves, curved surfaces, etc.,
Hand welding is often used. If a current as high as 300 [A] is used during the manual welding as in the case of the welding in FIG. 1 described above, the operator's body is burdened by the radiant heat of the arc, and the work is performed only for a short time. Cannot continue. Further, when such a high current is applied, the amount of melting of the filler wire increases, the amount of welding increases, and the weight of the structure cannot be reduced. Further, the third method employs an AC plasma arc welding method. However, in this method, if the above-mentioned deep penetration is to be obtained, a large current is required. Zurk is likely to occur, and electrodes and nozzles may be burned.
Appropriate welding can be performed only up to the middle thickness plate of [mm] or less.
【0010】[0010]
【発明が解決しようとする課題】本発明は、アルミニウ
ム合金を最も安定した品質で効率的に接合することので
きるTIGアーク溶接方法において、適正なクリーニ
ング幅を確保すること、溶接ビード幅を狭くして余盛
り量を減少させること、溶け込み深さを大きくして接
合強度を確保すること、非消耗電極(以下、電極とい
う)の消耗を少なくして溶接結果を一定に保持するこ
と、低電流を使用して作業者の負担を軽減するととも
に、長い溶接長を中断することなく継続して溶接するこ
とによって品質の安定を図ることなどにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a TIG arc welding method capable of efficiently joining an aluminum alloy with the most stable quality, to secure a proper cleaning width and to reduce a welding bead width. To reduce the excess volume, increase the penetration depth to secure the bonding strength, reduce the consumption of non-consumable electrodes (hereinafter referred to as electrodes), keep the welding result constant, and reduce the low current. It is intended to reduce the burden on the operator by using it and to stabilize the quality by continuously welding a long welding length without interruption.
【0020】[0020]
【課題を解決するための手段】本発明は、下記の手段を
備えた溶接方法である。電極と被溶接物との間に供給
する電圧の極性を周期的に切り換えてフィラワイヤを添
加してアルミニウム合金を溶接するTIGアーク溶接方
法である。電極がマイナスのときの通電時間Tsで波
高値Isの正極性電流と電極がプラスのときの通電時間
Trで波高値Irの逆極性電流との正極性比率SP/
(SP+RP)=Is・Ts/(Is・Ts+Ir・T
r)が0.6を越え0.9未満となる非平衡矩形波交流
電流を通電する。上記非平衡矩形波交流電流を通電期
間Ta通電した後は、正極性直流電流を通電期間Td通
電し、この非平衡矩形波交流電流と正極性直流電流とを
通電比率Ta/Td=2/3で切換周波数F=0.4
[Hz]以上から1[Hz]以下となる低周波で切り換
える。電極を略同流量比率のアルゴンガスとヘリウム
ガスとの混合ガスでシールドする。非平衡矩形波交流
電流の通電期間中にフィラワイヤを添加する。溶け込
み深さPと溶接ビード幅Wとの溶け込み比率P/Wが1
以上の溶接金属を得る溶接電流を通電する。SUMMARY OF THE INVENTION The present invention is a welding method provided with the following means. This is a TIG arc welding method in which the polarity of a voltage supplied between an electrode and a workpiece is periodically switched to add a filler wire and weld an aluminum alloy. The positive polarity ratio SP / of the positive polarity current of the peak value Is at the energizing time Ts when the electrode is negative and the reverse polarity current of the peak value Ir at the energizing time Tr when the electrode is positive.
(SP + RP) = Is · Ts / (Is · Ts + Ir · T
A non-equilibrium rectangular wave alternating current in which r) is more than 0.6 and less than 0.9 is applied. After the non-equilibrium rectangular wave AC current is supplied for the conduction period Ta, the positive DC current is supplied for the conduction period Td, and the unbalanced rectangular wave AC current and the positive DC current are supplied with the conduction ratio Ta / Td = 2/3. And switching frequency F = 0.4
Switching is performed at a low frequency from 1 Hz to 1 Hz . The electrodes are shielded with a mixed gas of argon gas and helium gas at substantially the same flow rate ratio. The filler wire is added during the period of non-equilibrium square wave alternating current. The penetration ratio P / W between the penetration depth P and the weld bead width W is 1
A welding current for obtaining the above weld metal is applied.
【0030】[0030]
【作用】以下、本発明の作用について説明する。 (表1の説明)The operation of the present invention will be described below. (Description of Table 1)
【表1】 は、アルミニウム合金のTIGア−ク溶接を、交流矩形
波電流で溶接したときの B. 電極がマイナスのときの溶接電流(正極性電流)
の波高値 Is C. 電極がマイナスのときの通電時間 Ts D. 電極がプラスのときの溶接電流(逆極性電流)の
波高値 Ir E. 電極がプラスのときの通電時間 Tr の4つのパラメ−タが、 クリ−ニング幅の広狭 溶接ビ−ド幅の広狭 溶け込み深さの深い、浅い 電極消耗の大小 に及ぼす影響を記載している。[Table 1] B. when TIG arc welding of an aluminum alloy was welded with an AC square wave current. Welding current when the electrode is negative (positive current)
Peak value Is C. Energization time when the electrode is negative Ts D. The peak value of the welding current (reverse polarity current) when the electrode is positive IrE. It describes the effect of the four parameters of the energization time Tr when the electrode is positive on the width of the cleaning width, the width of the welding bead, the width of the welding bead, the penetration depth, and the shallowness of the electrode.
【0031】この表1から、電極がマイナスのときの溶
接電流の波高値Isが大で通電時間Tsが大である程、
溶け込み深さが大で電極の消耗を少なくすることができ
るが、適正又は必要最小限度のクリ−ニング幅を得るた
めには、電極がプラスのときの逆極性電流の通電が必要
である。この逆極性電流の波高値Ir及び通電時間Tr
が大になると、電極の消耗が大になるので、適正又は必
要最小限度のクリ−ニング幅及び溶接ビ−ド幅を得るこ
とができる低い値を選定する。From Table 1, as the peak value Is of the welding current when the electrode is negative and the conduction time Ts are longer,
Although the penetration depth is large and the consumption of the electrode can be reduced, it is necessary to supply a reverse polarity current when the electrode is positive in order to obtain an appropriate or minimum required cleaning width. The peak value Ir of the reverse polarity current and the conduction time Tr
When the value is large, the consumption of the electrode becomes large. Therefore, a low value that can obtain a proper or necessary minimum cleaning width and a welding bead width is selected.
【0032】(図3の説明) 図3は、本発明の溶接方法において通電する溶接電流の
波形を示す図である。同図において、電極がマイナスの
ときの通電時間Tsで波高値Isの正極性電流と電極が
プラスのときの通電時間Trで波高値Irの逆極性電流
との正極性比率 SP/(SP+RP)=Is・Ts/(Is・Ts+Ir・Tr) …(1) が0.5をこえる非平衡矩形波交流電流を通電期間Ta
通電した後に、正極性直流電流を通電期間Td通電して
いる。(Explanation of FIG. 3) FIG. 3 is a diagram showing a waveform of a welding current applied in the welding method of the present invention. In the same figure, the positive polarity ratio SP / (SP + RP) of the positive polarity current of the peak value Is at the conduction time Ts when the electrode is negative and the reverse polarity current of the peak value Ir at the conduction time Tr when the electrode is positive. Is · Ts / (Is · Ts + Ir · Tr) (1) A non-equilibrium rectangular wave AC current exceeding 0.5 is applied to the conduction period Ta.
After the energization, a positive DC current is applied for an energization period Td.
【0033】(図4の説明) 図4は、上記(1)式の正極性比率SP/(SP+R)
(横軸)と溶け込み比率P/W(縦軸)との関係を示す
図である。同図において、溶け込み比率P/Wは、図5
に示すように、板厚10[mm]の材質A5083のアル
ミニウム合金の平板上に、溶接電流の全波整流の平均値
250[A]で溶接速度20[cm/min]で、正極性比率
SP/(SP+RP)を変化させて、アルゴンガスをシ
ールドガスとしてTIGアーク溶接したときの図5に示
す溶け込み深さPと溶接ビード幅Wとの関係を示してい
る。同図に示すように、正極性比率SP/(SP+R)
が0.6を越えると、溶け込み比率P/Wが大となって
いる。しかし、他方、アルミニウム合金のTIGアーク
溶接においては、正極性比率SP/(SP+RP)が
0.9以上になると、溶接ビード幅Wを得るためのクリ
ーニング幅の確保が困難となり、溶接ビードに酸化皮膜
を形成してしまうので、正極性比率SP/(SP+R
P)は、0.6を越え0.9未満の範囲が適切である。(Description of FIG. 4) FIG. 4 shows the positive polarity ratio SP / (SP + R) in the above equation (1 ).
It is a figure which shows the relationship between (horizontal axis) and the penetration ratio P / W (vertical axis). In FIG. 5, the penetration ratio P / W is shown in FIG.
As shown in, on a flat plate of aluminum alloy material A5083 having a thickness of 10 [mm], at a welding speed 20 [cm / min] in the average value 250 of the full-wave rectification of the welding current [A], the positive polarity ratio
FIG. 6 shows the relationship between the penetration depth P and the weld bead width W shown in FIG. 5 when TIG arc welding is performed using argon gas as a shielding gas while changing SP / (SP + RP) . As shown in the figure, the positive polarity ratio SP / (SP + R)
Exceeds 0.6, the penetration ratio P / W becomes large. However, in the TIG arc welding of an aluminum alloy, when the positive polarity ratio SP / (SP + RP) is 0.9 or more, it becomes difficult to secure a cleaning width for obtaining the welding bead width W, and an oxide film is formed on the welding bead. Is formed, the positive polarity ratio SP / (SP + R
P) is suitably in the range of more than 0.6 and less than 0.9.
【0034】(図6の説明) 前述した図4においては、アルゴンガスをシールドガス
としている限り、正極性比率SP/(SP+RP)は、
本発明の溶接方法が目標とする1を越えることができな
い。そこで、電位傾度の高いヘリウムガスをアルゴンガ
スに混合したシールドガスを使用する必要がある。図6
は、アルゴンガスとヘリウムガスとの流量混合比率
[%](横軸)を変化させてTIGアーク溶接したとき
の溶け込み比率P/W(横軸)の変化を示す図である。
同図において、溶け込み比率P/Wは、前述した図5と
同じ溶接条件で、さらに正極性比率SP/(SP+R
P)を0.7に固定する代りにアルゴンガスとヘリウム
ガスとの混合比率を変化させている。同図に示すよう
に、ヘリウムガスの混合比率が45[%]以上になる
と、溶け込み比率P/Wを1以上にすることができる。(Explanation of FIG. 6) In FIG. 4 described above, as long as argon gas is used as the shielding gas, the positive polarity ratio SP / (SP + RP) becomes
The welding method of the present invention cannot exceed the target value of 1. Therefore, it is necessary to use a shielding gas in which helium gas having a high potential gradient is mixed with argon gas. FIG.
FIG. 3 is a diagram showing a change in penetration ratio P / W (horizontal axis) when TIG arc welding is performed while changing a flow rate mixing ratio [%] (horizontal axis) of argon gas and helium gas.
In the same figure, the penetration ratio P / W is the same as that of FIG. 5 described above, and the positive polarity ratio SP / (SP + R
Instead of fixing P) to 0.7, the mixing ratio of argon gas and helium gas is changed. As shown in the figure, when the mixing ratio of the helium gas becomes 45% or more, the penetration ratio P / W can be made 1 or more.
【0035】(図7及び図8の説明)しかし、ヘリウム
ガスの混合比率が60[%]以上になると、図7(A)
に示すように、溶接ビ−ド表面に黒いアルミニウム合金
元素の酸化物(MgO 、SiO 、Al2O3 )が付着し、さら
に図7(B)に示すように、溶接金属中に、これらの酸
化物が巻き込まれたりする。したがって、アルゴンガス
とヘリウムガスとの流量混合比率は45乃至55[%]
の略同流量比率の混合ガスを使用すると、図8(A)に
示すように、溶接ビ−ド表面に黒い酸化物が発生しない
し、また図8(B)に示すように、溶接金属中に酸化物
が巻き込まれることもない。なお、図8(A)に示すよ
うに、溶接ビ−ド幅Wよりも若干広いクリ−ニング幅Y
が得られている。(Description of FIGS. 7 and 8) However, when the mixing ratio of helium gas becomes 60% or more, FIG.
As shown in FIG. 7, oxides (MgO, SiO, Al2 O3) of black aluminum alloy elements adhere to the surface of the weld bead, and as shown in FIG. 7B, these oxides are contained in the weld metal. Or get caught. Therefore, the mixing ratio of the flow rates of the argon gas and the helium gas is 45 to 55 [%].
When a mixed gas having approximately the same flow rate ratio is used, no black oxide is generated on the surface of the weld bead as shown in FIG. 8 (A), and as shown in FIG. Oxide is not entrained in the material. As shown in FIG. 8A, the cleaning width Y is slightly larger than the welding bead width W.
Has been obtained.
【0036】前述したように、アルゴンガスとヘリウム
ガスとの略同流量比率の混合ガスを使用して正極性比率
SP/(SP+RP)=0.7の非平衡矩形波交流電流
を通電しても、本発明のTIGアーク溶接方法に使用す
る図3に示す溶接電流の正極性直流電流の通電期間Td
が非平衡矩形波交流電流の通電期間Taにくらべて、所
定の比率を越えると、通電期間Tdの間にクリーニング
作用された領域がなくなってしまう。したがって、この
TaとTdとの通電比率Ta/Tdを2/3にすれば、
正極性直流通電期間Td中であっても、クリーニング作
用が残存している。また、フィラワイヤを添加する時期
としては、添加するフィラワイヤのクリーニング作用を
行わせるために、交流電流通電期間Ta中にする必要が
あり、さらに、フィラワイヤを添加するための時間を確
保するために、交流電流の通電期間Taと正極性直流電
流の通電期間Tdとの切換周波数1[Hz]以下の低周
波で切り換える必要がある。また、交流の通電期間Ta
によって得られたクリーニング領域が正極性直流通電期
間Td中に残存している時間はどんなに長くとも1.5
秒以下であり、それ以上正極性直流通電期間Tdが長く
なると、酸化皮膜を巻込み、健全な溶接部が得られなく
なる。従って、1/(1+1.5)=0.4Hz以上
(Td=1.5秒ならTa/Td=2/3よりTa=1
秒)の切換周波数が必要となる。As described above, the positive polarity ratio is determined using a mixed gas of argon gas and helium gas at substantially the same flow ratio.
Even when a non-equilibrium rectangular wave AC current of SP / (SP + RP) = 0.7 is applied, the current application period Td of the positive DC current of the welding current shown in FIG. 3 used in the TIG arc welding method of the present invention.
Exceeds a predetermined ratio as compared with the energizing period Ta of the non-equilibrium rectangular wave AC current, there is no longer any area that has been cleaned during the energizing period Td. Therefore, if the conduction ratio Ta / Td between Ta and Td is set to 2/3,
The cleaning action remains even during the positive direct current energizing period Td. In addition, it is necessary to add the filler wire during the AC current supply period Ta in order to perform the cleaning action of the filler wire to be added. Further, in order to secure time for adding the filler wire, It is necessary to switch at a low frequency of 1 [Hz] or less, which is the switching frequency between the current supply period Ta and the positive polarity DC current supply period Td. Also, the AC energization period Ta
No matter how long the cleaning region obtained during the period of the positive polarity DC conduction period Td remains, the cleaning region is 1.5 times or less.
When the positive direct current conduction period Td is longer than 2 seconds, an oxide film is involved, and a sound weld cannot be obtained. Therefore, 1 / (1 + 1.5) = 0.4 Hz or more (If Td = 1.5 seconds, Ta / Td = 2/3 and Ta = 1
Second) switching frequency.
【0040】[0040]
(図9の説明)図9(A)及び(B)は、それぞれ、本
発明のTIGア−ク溶接方法によって水平隅肉溶接をし
たときの溶接ビ−ドの外観及び断面を示す図である。こ
の本発明の実施例の溶接条件は次のとおりである。板厚
20[mm]のアルミニウム・マグネシウム合金A508
3を図3に示す波形の溶接電流(Is=170[A]、
Ts=10[ms]、Ir=500[A]、Tr=1[m
s]、Ta/Td=2/3、切換周波数F=1[H
z]、平均値200[A])で、アルゴンガスとヘリウ
ムガスとの略同一混合比率の混合ガスを使用し、溶接速
度15[cm/min]で、水平隅肉溶接をしている。この溶
接条件でTIGア−ク溶接すると本発明が目的とする通
常のTIGパルスア−ク溶接方法の溶接電流の平均値よ
りも低い電流値で、図9(A)及び(B)に示すよう
に、溶け込み比率P/W=1.1のウエブ1とフランジ
2との溶融橋絡部3を得ることができる。(Description of FIG. 9) FIGS. 9A and 9B are views showing the appearance and cross section of a weld bead when horizontal fillet welding is performed by the TIG arc welding method of the present invention. . The welding conditions of the embodiment of the present invention are as follows. Aluminum / magnesium alloy A508 with a plate thickness of 20 [mm]
3 is a welding current (Is = 170 [A]) having a waveform shown in FIG.
Ts = 10 [ms], Ir = 500 [A], Tr = 1 [m]
s], Ta / Td = 2, switching frequency F = 1 [H
z], an average value of 200 [A]), and horizontal fillet welding is performed at a welding speed of 15 [cm / min] using a mixed gas of argon gas and helium gas at substantially the same mixing ratio. When TIG arc welding is performed under these welding conditions, the current value is lower than the average value of the welding current of the ordinary TIG pulse arc welding method aimed at by the present invention, as shown in FIGS. 9A and 9B. Thus, a molten bridge portion 3 between the web 1 and the flange 2 having a penetration ratio P / W = 1.1 can be obtained.
【0041】なお、図1に示す通常のTIGパルスア−
ク溶接方法によって水平隅肉溶接をすると、溶接ビ−ド
幅Wが広く、溶け込み深さPの浅い溶け込み比率P/W
=0.5しか得られない。この通常のTIGパルスア−
ク溶接条件は、正極性比率0.7の矩形波交流電流で、
溶接電流の全波整流の平均値は300[A]で、アルゴ
ンガスを使用し、溶接速度は10[cm/min]である。The normal TIG pulse pulse shown in FIG.
When horizontal fillet welding is performed by the welding method, the weld bead width W is wide and the penetration depth P is shallow, and the penetration ratio P / W is small.
= 0.5 only. This normal TIG pulse alarm
The welding conditions were a square wave alternating current with a positive polarity ratio of 0.7,
The average value of the full-wave rectification of the welding current is 300 [A], argon gas is used, and the welding speed is 10 [cm / min].
【0043】(図10の説明) 図10(A)乃至(C)は、本発明のTIGアーク溶接
方法によって、電極4とウエブ1及びフランジ2から成
る被溶接物との間にアーク5を発生させて、電極先端4
aと被溶接物との距離Ltを変化させたときの距離Lt
の適正値を判断する説明図である。距離Ltが3[m
m]になると、同図(A)に示すように、ウエブ1に片
溶け部分1aが生じ、距離Ltが1[mm]末満になる
と、同図(B)に示すように、手振れによって電極先端
4aと被溶接物2とが接触することがあるので、同図
(C)に示すように、距離Ltを1乃至2[mm]にす
ることが必要である。(Explanation of FIG. 10) FIGS. 10A to 10C show an arc 5 generated between the electrode 4 and the workpiece consisting of the web 1 and the flange 2 by the TIG arc welding method of the present invention. Let the electrode tip 4
distance Lt when the distance Lt between a and the workpiece is changed
FIG. 9 is an explanatory diagram for determining an appropriate value of. Distance Lt is 3 [m
m], as shown in FIG. 3A, a one-sided melted portion 1a is formed in the web 1, and when the distance Lt becomes less than 1 [mm], the electrode is caused by camera shake as shown in FIG. Since the tip 4a and the workpiece 2 may come into contact with each other,
As shown in (C) , the distance Lt needs to be 1 to 2 [mm].
【0044】(図11の説明) 図11は、溶接電流の全波整流の平均値I[A](横
軸)と図5に示す平板の板厚t[mm](縦軸)とを変化
させてフィラワイヤを添加しないでTIGアーク溶接し
たときの溶け込み比率P/Wを示す図である。同図に示
す点線ZZは、通常のTIGパルスアーク溶接方法によ
って溶接したときのP/Wを示し、また実線AAは、本
発明のTIGアーク溶接方法によって溶接したときのP
/Wを示す。点線ZZの通常のTIGパルスアーク溶接
方法の溶接条件は、正極性比率SP/(SP+RP)=
0.7の非平衡矩形波交流電流で、アルゴンガスを使用
し、溶接速度は20[cm/min]である。また、実線AA
の本発明はTIGアーク溶接方法の溶接条件は、正極性
比率SP/(SP+RP)=0.7で通電比率Ta/T
d=2/3でアルゴンガスとヘリウムガスとの略同一混
合比率の混合ガスを使用し、溶接速度20[cm/min]で
ある。(Description of FIG. 11) FIG. 11 shows changes in the average value I [A] (horizontal axis) of the full-wave rectification of the welding current and the thickness t [mm] (vertical axis) of the flat plate shown in FIG. It is a figure which shows the penetration ratio P / W at the time of performing TIG arc welding without adding a filler wire. The dotted line ZZ shown in the figure shows P / W when welding is performed by the ordinary TIG pulse arc welding method, and the solid line AA shows P / W when welding is performed by the TIG arc welding method of the present invention.
/ W. The welding conditions of the normal TIG pulse arc welding method indicated by the dotted line ZZ are as follows: the positive polarity ratio SP / (SP + RP) =
A non-equilibrium square wave alternating current of 0.7 , argon gas is used, and the welding speed is 20 [cm / min]. Also, the solid line AA
According to the present invention, the welding conditions of the TIG arc welding method are positive polarity.
When the ratio SP / (SP + RP) = 0.7 , the energization ratio Ta / T
A mixed gas of argon gas and helium gas having substantially the same mixing ratio at d = is used, and the welding speed is 20 [cm / min].
【0045】同図において、( )内の数値は、溶け込
み比率P/Wを示し、溶接電流の全波整流の平均値が2
00[A]のとき、点線ZZに示す通常のTIGパルス
ア−ク溶接方法においては、板厚10[mm]までしか溶
融させることができないで、また溶け込み比率が0.7
であるのに対して、実線AAに示す本発明のTIGア−
ク溶接方法においては、板厚20[mm]まで溶融させる
ことができ、また溶け込み比率が1.3にすることがで
きる。In the figure, the numerical value in parentheses indicates the penetration ratio P / W, and the average value of the full-wave rectification of the welding current is 2
In the case of 00 [A], in the ordinary TIG pulse arc welding method indicated by the dotted line ZZ, it is possible to melt only up to a plate thickness of 10 [mm], and the penetration ratio is 0.7.
In contrast, the TIG arc of the present invention shown by the solid line AA
In the welding method, it can be melted to a plate thickness of 20 [mm] and the penetration ratio can be 1.3.
【0050】(図12及び図13の説明)図12は、通
常のTIGパルスア−ク溶接方法を実施する溶接装置の
ブロック図を示す。同図において、1及び2は被溶接物
で、4は電極で、10は例えば商用交流電源を整流した
直流電源回路であり、L1 は直流リアクトル、C1 は整
流用コンデンサ、TR1及びTR2は逆極性電流通電用
トランジスタ、TS1及びTS2は正極性電流通電用ト
ランジスタである。PC1はこれらのトランジスタの導
通及び遮断を制御する極性切換回路であり、NT1は極
性切換信号Pc1 を入力として反転した逆極性通電信号
Srを出力する。図13(A)乃至(C)は、それぞ
れ、図12に示す極性切換信号Pc1 (=正極性通電信
号Ss)の波形を示す図、逆極性通電信号Srの波形を
示す図及び被溶接物から電極方向の溶接電流Iの波形を
示す図である。同図(A)に示す正極性通電信号Ssと
同図(B)に示す逆極性通電信号Srとによってトラン
ジスタTS1とTS2及びトランジスタTR1とTR2
とをそれぞれ導通及び遮断して同図(C)に示す矩形波
交流電流を通電する。(Description of FIGS. 12 and 13) FIG. 12 is a block diagram of a welding apparatus for carrying out a normal TIG pulse arc welding method. In the figure, 1 and 2 are workpieces, 4 is an electrode, 10 is a DC power supply circuit obtained by rectifying a commercial AC power supply, for example, L1 is a DC reactor, C1 is a rectifying capacitor, and TR1 and TR2 are reverse polarities. The current conducting transistors, TS1 and TS2, are positive polarity current conducting transistors. PC1 is a polarity switching circuit for controlling conduction and cutoff of these transistors, and NT1 receives the polarity switching signal Pc1 as input and outputs an inverted reverse polarity energizing signal Sr. 13 (A) to 13 (C) show the waveform of the polarity switching signal Pc1 (= positive polarity energizing signal Ss), the waveform of the reverse polarity energizing signal Sr, and the work to be welded shown in FIG. 12, respectively. It is a figure showing the waveform of welding current I of the direction of an electrode. Transistors TS1 and TS2 and transistors TR1 and TR2 are generated by a positive polarity conduction signal Ss shown in FIG. 4A and a reverse polarity conduction signal Sr shown in FIG.
Are turned on and off, respectively, and a rectangular wave alternating current shown in FIG.
【0060】(図14及び図15の説明)図14は、本
発明のTIGア−ク溶接方法を実施する溶接装置のブロ
ック図であり、同図において、図12と同一の符号は図
12の説明と同じであるので省略し、相違個所について
説明する。図14において、NT2は図15(A)に示
す極性切換信号Pc1 を反転して図15(B)に示す反
転信号Nt2 を出力するNOT回路であり、MM1はモ
ノマルチバイブレ−タ回路であって、矩形波交流電流の
通電期間Taと正極性直流電流の通電期間Tdとの通電
比率Ta/Tdを切換周波数F[Hz]によって定める
図15(C)に示す低周波信号Mm1 を出力する。ND
1は、NOT回路NT2の反転信号Nt2 及び低周波信
号Mm1 を入力として、両信号が低レベルLのときに、
図15(D)に示す正極性通電信号Ssを出力するNA
ND回路である。図15(D)は、図13(A)と同様
の正極性通電信号Ssであって、トランジスタTS1及
びTS2を導通及び遮断し、図15(E)は、図13
(B)と同様に逆極性電流通電信号Srであって、トラ
ンジスタTR1及びTR2を導通及び遮断し、これらの
トランジスタの導通及び遮断によって図15(F)に示
す矩形波交流電流及び正極性直流電流を通電する。(Explanation of FIGS. 14 and 15) FIG. 14 is a block diagram of a welding apparatus for carrying out the TIG arc welding method of the present invention. In FIG. The description is omitted because it is the same as the description, and only the differences will be described. In FIG. 14, NT2 is a NOT circuit for inverting the polarity switching signal Pc1 shown in FIG. 15A and outputting an inverted signal Nt2 shown in FIG. 15B, and MM1 is a monomultivibrator circuit. A low-frequency signal Mm1 shown in FIG. 15 (C), which determines the energization ratio Ta / Td between the energization period Ta of the rectangular wave AC current and the energization period Td of the positive DC current by the switching frequency F [Hz]. ND
1, when the inverted signal Nt2 of the NOT circuit NT2 and the low frequency signal Mm1 are input and both signals are at the low level L,
NA for outputting positive conduction signal Ss shown in FIG.
This is an ND circuit. FIG. 15D shows the same positive conduction signal Ss as in FIG. 13A, which turns on and off the transistors TS1 and TS2, and FIG.
Similarly to (B), it is a reverse polarity current supply signal Sr, which turns on and off the transistors TR1 and TR2. By turning on and off these transistors, the square wave AC current and the positive DC current shown in FIG. Is turned on.
【0070】[0070]
【発明の効果】本発明は、板厚が厚くなっても、又水平
隅肉溶接であっても、6[mm]以下の狭い溶接ビ−ド幅
であって、その溶接ビ−ド幅と同等以上の深い溶け込み
にすることによって、余盛りを小さくして軽量化すると
ともに高強度のアルミニウム合金の溶接を行うことがで
き、また、溶接電流の低電流化によるア−ク熱の減少に
よって作業者の疲労を軽減し、また、電極の消耗が少な
いので長時間継続して使用することができるので、長尺
物を継続して溶接することもでき、さらに、予め定めた
交流電流通電期間中に確実にフィラワイヤの添加をする
ことができるなどによって高信頼度の溶接結果を得るこ
とができるので、安全性を重視しなければならない航空
機構造物、原子力構造物などには欠くことができない。According to the present invention, even if the plate thickness is increased or horizontal fillet welding is performed, the weld bead width is as small as 6 mm or less. By making the penetration equal to or greater than that, it is possible to reduce the weight by reducing the excess, and to weld a high-strength aluminum alloy, and to reduce the arc heat due to the lower welding current. Since the electrode can be used continuously for a long time because the electrode is less worn, it is possible to continuously weld a long object, and furthermore, during a predetermined AC current conduction period. Since a reliable welding result can be obtained by reliably adding the filler wire, it is indispensable for an aircraft structure, a nuclear structure and the like where safety is important.
【図1】図1は、通常のTIGパルスア−ク溶接方法に
よる水平隅肉溶接の溶け込み深さPと溶接ビ−ド幅Wと
の関係を示す図である。FIG. 1 is a diagram showing a relationship between a penetration depth P and a weld bead width W in horizontal fillet welding by a normal TIG pulse arc welding method.
【図2】図2は、最近の航空機構造物に要求される水平
隅肉溶接の溶け込み深さPと溶接ビ−ド幅Wとの関係を
示す図である。FIG. 2 is a diagram showing a relationship between a penetration depth P of horizontal fillet welding and a weld bead width W required for recent aircraft structures.
【図3】図3は、本発明の溶接方法において通電する溶
接電流の波形を示す図である。FIG. 3 is a diagram showing a waveform of a welding current applied in the welding method of the present invention.
【図4】図4は、アルゴンガスを使用したときの正極性
比率SP/(SP+RP)(横軸)と溶け込み比率P/
W(縦軸)との関係を示す図である。FIG. 4 shows the positive polarity when using argon gas.
Ratio SP / (SP + RP) (horizontal axis) and penetration ratio P /
It is a figure showing relation with W (vertical axis).
【図5】図5は、平板上に溶接をしたときの溶け込み深
さPと溶接ビ−ド幅Wとの関係を示す図である。FIG. 5 is a diagram showing a relationship between a penetration depth P and a weld bead width W when welding is performed on a flat plate.
【図6】図6は、アルゴンガスとヘリウムガスとの流量
比率[%](横軸)を変化させてTIGア−ク溶接した
ときの溶け込み比率P/W(縦軸)の変化を示す図であ
る。FIG. 6 is a diagram showing a change in a penetration ratio P / W (vertical axis) when performing TIG arc welding while changing a flow rate ratio [%] (horizontal axis) between argon gas and helium gas. It is.
【図7】図7(A)及び(B)は、それぞれ、アルゴン
ガス40[%]とヘリウムガス60[%]の混合ガスを
使用してTIGア−ク溶接したときの溶接ビ−ド表面の
外観及び溶接ビ−ド断面の外観を示す図である。FIGS. 7A and 7B show the weld bead surface when performing TIG arc welding using a mixed gas of argon gas 40% and helium gas 60%, respectively. FIG. 3 is a view showing the appearance of a weld bead and the appearance of a cross section of a weld bead.
【図8】図8(A)及び(B)は、それぞれ、アルゴン
ガス50[%]とヘリウムガス50[%]の混合ガスを
使用してTIGア−ク溶接したときの溶接ビ−ド表面の
外観及び溶接ビ−ド断面の外観を示す図である。FIGS. 8A and 8B show the weld bead surface when performing TIG arc welding using a mixed gas of argon gas 50% and helium gas 50%, respectively. FIG. 3 is a view showing the appearance of a weld bead and the appearance of a cross section of a weld bead.
【図9】図9(A)及び(B)は、それぞれ、本発明の
TIGア−ク溶接方法によって水平隅肉溶接をしたとき
の溶接ビ−ドの外観及び断面を示す図である。FIGS. 9A and 9B are views showing the appearance and cross section of a weld bead when horizontal fillet welding is performed by the TIG arc welding method of the present invention.
【図10】図10(A)乃至(C)は、本発明のTIG
ア−ク溶接方法によって電極先端と被溶接物との距離L
tを変化させたときの距離Ltの適正値を判断する説明
図である。FIGS. 10A to 10C show TIG of the present invention.
The distance L between the electrode tip and the work to be welded is determined by the arc welding method.
FIG. 9 is an explanatory diagram for determining an appropriate value of a distance Lt when t is changed.
【図11】図11は、溶接電流の全波整流の平均値I
[A](横軸)と板厚t[mm](縦軸)とを変化させた
ときの溶け込み比率P/Wを示す図である。FIG. 11 shows an average value I of full-wave rectification of a welding current.
It is a figure which shows the penetration ratio P / W when changing [A] (horizontal axis) and plate thickness t [mm] (vertical axis).
【図12】図12は、通常のTIGパルスア−ク溶接方
法を実施する溶接装置のブロック図である。FIG. 12 is a block diagram of a welding apparatus for performing a normal TIG pulse arc welding method.
【図13】図13(A)乃至(C)は、それぞれ図12
のブロック図の各回路の出力信号の波形を示す図であ
る。FIGS. 13A to 13C respectively show FIGS.
FIG. 4 is a diagram showing waveforms of output signals of respective circuits in the block diagram of FIG.
【図14】図14は、本発明のTIGア−ク溶接方法を
実施する溶接装置のブロック図である。FIG. 14 is a block diagram of a welding apparatus for performing the TIG arc welding method of the present invention.
【図15】図15(A)乃至(F)は、それぞれ図14
のブロック図の各回路の出力信号の波形を示す図であ
る。FIGS. 15A to 15F are FIGS.
FIG. 4 is a diagram showing waveforms of output signals of respective circuits in the block diagram of FIG.
P…溶け込み深さ W…溶接ビード幅 P/W…溶け込み比率 I…溶接電流(全波整流の平均値) Is…電極がマイナスのときの溶接電流(正極性電流)
の波高値 Ts…電極がマイナスのときの通電期間 Ir…電極がプラスのときの溶接電流(逆極性電流)の
波高値 Tr…電極がプラスのときの通電期間SP/(SP+RP) …正極性比率=Is・Ts/(I
s・Ts+Ir・Tr) Ta…非平衡矩形波交流電流の通電期間 Td…正極性直流電流の通電期間 Ta/Td…通電比率 F…切換周波数 Y…クリーニング幅 t…板厚P: penetration depth W: weld bead width P / W: penetration ratio I: welding current (average value of full-wave rectification) Is: welding current when the electrode is negative (positive current)
Ts: energizing period when electrode is negative Ir: peak value of welding current (reverse polarity current) when electrode is positive Tr: energizing period SP / (SP + RP) when electrode is positive Positive ratio = Is · Ts / (I
s · Ts + Ir · Tr) Ta: energizing period of non-equilibrium rectangular wave AC current Td: energizing period of positive DC current Ta / Td: energizing ratio F: switching frequency Y: cleaning width t: plate thickness
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−361873(JP,A) 特開 昭63−13677(JP,A) 特開 平3−473(JP,A) 特開 昭52−28442(JP,A) 特開 昭56−109172(JP,A) 実開 平2−97966(JP,U) (58)調査した分野(Int.Cl.7,DB名) B23K 9/167 B23K 9/09 B23K 9/23 H02M 9/00 B23K 103:10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-361873 (JP, A) JP-A-63-13677 (JP, A) JP-A-3-473 (JP, A) JP-A 52-361 28442 (JP, A) JP-A-56-109172 (JP, A) JP-A-2-97966 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 9/167 B23K 9 / 09 B23K 9/23 H02M 9/00 B23K 103: 10
Claims (1)
る電圧の極性を周期的に切り換えて前記非消耗性電極を
不活性ガスでシールドし、フィラワイヤを添加してアル
ミニウム合金を溶接するTIGアーク溶接方法におい
て、前記非消耗性電極がマイナスのときの通電時間Ts
の溶接電流の波高値Isの正極性電流と非消耗性電極が
プラスのときの通電時間Trの溶接電流の波高値Irの
逆極性電流との正極性比率SP/(SP+RP)=Is
・Ts/(Is・Ts+Ir・Tr)が0.6を越え
0.9未満となる非平衡矩形波交流電流を期間Ta通電
した後に、正極性直流電流を期間Td通電し、前記非平
衡矩形波交流電流と正極性直流電流とを通電比率Ta/
Td=2/3で切換周波数が0.4[Hz]以上から1
[Hz]以下となる低周波で切り換え、前記非消耗性電
極を略同流量比率のアルゴンガスとヘリウムガスとの混
合ガスでシールドをし、かつ、前記非平衡矩形波交流電
流の通電期間中にフィラワイヤを添加して、溶け込み深
さPと溶接ビード幅Wとの溶け込み比率P/Wが1以上
の溶接金属を得る溶接電流を通電してアルミニウム合金
を溶接するアルミニウム合金のTIGアーク溶接方法。1. A method of periodically switching the polarity of a voltage supplied between a non-consumable electrode and a workpiece to shield the non-consumable electrode with an inert gas, adding a filler wire and welding an aluminum alloy. Time Ts when the non-consumable electrode is negative.
Ratio SP / (SP + RP) = Is of the positive polarity current of the peak value Is of the welding current and the reverse polarity current of the peak value Ir of the welding current during the energization time Tr when the non-consumable electrode is positive.
After applying a non-equilibrium rectangular wave alternating current in which Ts / (Is · Ts + Ir · Tr) is more than 0.6 and less than 0.9 for a period Ta, a positive DC current is applied for a period Td, and the non-equilibrium rectangular wave is applied. The alternating current and the positive direct current are supplied with a conduction ratio Ta /
When Td = 2/3 and switching frequency is 0.4 [Hz] or more, 1
[Hz] or less , the non-consumable electrode is shielded with a mixed gas of argon gas and helium gas at substantially the same flow rate ratio, and during the energizing period of the non-equilibrium rectangular wave alternating current. A TIG arc welding method for an aluminum alloy, in which a filler wire is added and an aluminum alloy is welded by applying a welding current to obtain a weld metal having a penetration ratio P / W of 1 or more between a penetration depth P and a weld bead width W.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16931691A JP3088782B2 (en) | 1991-06-13 | 1991-06-13 | TIG arc welding method for aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16931691A JP3088782B2 (en) | 1991-06-13 | 1991-06-13 | TIG arc welding method for aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05131272A JPH05131272A (en) | 1993-05-28 |
JP3088782B2 true JP3088782B2 (en) | 2000-09-18 |
Family
ID=15884281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16931691A Expired - Lifetime JP3088782B2 (en) | 1991-06-13 | 1991-06-13 | TIG arc welding method for aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3088782B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4643113B2 (en) * | 2002-08-27 | 2011-03-02 | 株式会社三社電機製作所 | Welding method and power supply device for welding |
CN114227137A (en) * | 2021-11-24 | 2022-03-25 | 上海航天精密机械研究所 | Defect repairing method for Mg-Gd-Y-Zr heat-resistant magnesium alloy casting |
-
1991
- 1991-06-13 JP JP16931691A patent/JP3088782B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05131272A (en) | 1993-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5225660A (en) | Consumable-electrode ac gas shield arc welding method and apparatus therefor | |
JP3163519B2 (en) | Gas shielded arc welding method for galvanized steel sheet and its welding machine | |
JP3088782B2 (en) | TIG arc welding method for aluminum alloy | |
JPH01299768A (en) | Consumable electrode type rectangular wave ac arc welding method | |
JP3421014B2 (en) | TIG arc welding method for aluminum alloy | |
JP3158545B2 (en) | TIG arc welding method for aluminum alloy | |
JP3191396B2 (en) | TIG arc welding method for aluminum alloy | |
JPH01299769A (en) | Output control method for gas shielded arc welding power source | |
JP2873716B2 (en) | Starting AC arc | |
JP3162137B2 (en) | Consumable electrode type gas shielded arc welding method and apparatus | |
JP2711138B2 (en) | AC TIG welding method and apparatus | |
JP3547776B2 (en) | TIG welding method for galvanized steel sheet | |
JP2854613B2 (en) | AC arc welding method and apparatus for consumable electrode type gas shielded arc welding | |
JP2819607B2 (en) | MIG and MAG pulse arc welding method | |
JP3079625B2 (en) | MAG welding arc start control method | |
JPS62252677A (en) | Plasma arc welding method using ac rectangular wave | |
JPS62114772A (en) | Mig welding method | |
JP3043017B2 (en) | Tig welding method | |
SU1266687A1 (en) | Method of a.c. arc welding of aluminium alloys with nonconsumable electrode | |
JPH0241394B2 (en) | ||
JP2711137B2 (en) | AC TIG welding equipment | |
JPH03234365A (en) | Device for supplying ac square wave welding power source for arc welding | |
JP3232645B2 (en) | Grain refinement welding method for aluminum alloy | |
JPH03106567A (en) | Consumable electrode ac square wave welding method | |
JPH11291042A (en) | Method for gas shielded ac arc welding of consumable electrode type and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070714 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090714 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |