JPS6254560B2 - - Google Patents

Info

Publication number
JPS6254560B2
JPS6254560B2 JP2306879A JP2306879A JPS6254560B2 JP S6254560 B2 JPS6254560 B2 JP S6254560B2 JP 2306879 A JP2306879 A JP 2306879A JP 2306879 A JP2306879 A JP 2306879A JP S6254560 B2 JPS6254560 B2 JP S6254560B2
Authority
JP
Japan
Prior art keywords
firing
aggregate
drying
asphalt
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2306879A
Other languages
Japanese (ja)
Other versions
JPS55116498A (en
Inventor
Tatsuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEISHITSU JOKA KYOKAI
Original Assignee
TEISHITSU JOKA KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEISHITSU JOKA KYOKAI filed Critical TEISHITSU JOKA KYOKAI
Priority to JP2306879A priority Critical patent/JPS55116498A/en
Publication of JPS55116498A publication Critical patent/JPS55116498A/en
Publication of JPS6254560B2 publication Critical patent/JPS6254560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0436Dredged harbour or river sludge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、河川、湖沼、海域などの水底に堆積
する底泥を乾燥、造粒、焼成して無害化された強
度のある粒状固化物を得ることを特徴とする底泥
の処理方法に関するものである。 一般にヘドロと称されている河川、湖沼、海域
などの水底に堆積する底泥(以下単に底泥と称す
る)は、水質汚油、水産物植物の死滅などの環境
破壊の原因となり、特に重金属などの有害物質を
含有する場合には地域住民の健康を害する公害問
題にまで発展することもある。そのため底泥の除
去が切望されている。 底泥の除去処分の方法として従来一般に実施さ
れているのは、底泥を浚渫し、これを海洋投棄や
海面・陸上埋立等により処分する方法である。し
かし海洋投棄も水質汚染のおそれがあり、最近で
は埋立処分が主体となつている。底泥を埋立処分
する場合、底泥が高含水比の軟泥物質(液状を呈
している)であるため、底泥をそのまゝ埋立処分
すると埋立地はいつまでも軟弱で地盤が固まりに
くいという問題があり土地利用に支障を来す。そ
のため土地利用のためにサンドドレーン工法など
で埋立地の排水をはかり圧密させ地盤を固まるよ
うにし、さらに表層部分を適当な深さまでセメン
ト、石灰などの固化材を混入し土の強度上昇をは
かり、さらにその上に礫や山土などを厚い層で被
覆するなどの方法がとられてきた。しかしこの様
な方法も埋立地の地盤に固まる迄に長期間を要す
るので近年では、浚渫底泥にセメント、石灰など
を混合して土質の強度の向上をはかりながら埋立
したり、機械的に脱水処理して埋立処分する方法
も検討されている。底泥にセメント、石灰などの
固化材を混合して土質安定をはかり埋立処分する
ことは、また底泥に重金属などの有害物を含有す
るときはそれらの溶出防止にも有効である。この
ように従来の底泥の処理方法は底泥を単に廃棄す
るか、底泥を固化材を用いて土質安定をはかる処
理方法、あるいは同時に底泥内の有害物を水に不
溶の安定した形態にかえる方法など埋立を対象と
する処理方法に関するものであつた。 いづれにせよ大量の底泥を除去処分するにはそ
れを受入れる処分地が必要である。底泥を埋立処
分するとしても、底泥以外に固化材、新規な山土
などが加るので底泥を受入れる以上に広く埋立地
を確保する必要がある。すなわち底泥の除去が切
望されていても、その処分地が確保できなければ
底泥は除去出来ず、したがつて環境浄化も中々進
行しないというのが現状である。 本発明は上記する従来の底泥処理、目的に鑑
み、底泥の有効なる固化処理、特にセメント等の
固化を必要とすることなく底泥自体の含有成分に
より固化を可能としさらに底泥の体積を極端に縮
少する処理法を提供することを目的とする。 また、本発明の他の目的は、固化処理物の再生
利用、資源化を図ることである。 本発明は、河川、湖沼、海域等の水底に堆積す
る底泥を乾燥後、球状などの形状に造粒し、該造
粒物を950℃から1250℃の温度下で焼成し粒状の
固化物を得ることを特徴とする底泥の処理方法を
要旨とするものである。 本発明の底泥の処理方法は、乾燥→造粒→焼成
の工程より成るもので、これらについて以下説明
する。 (1) 乾燥工程 浚渫した底泥は浚渫時に粗大ゴミなどの夾酸
物が除去され微粉末可能なまで乾燥される。こ
の乾燥は天日(自然)乾燥のほか、電気乾燥
炉、流動乾燥機(キルンの廃棄を利用した)な
どの機械的強制乾燥のいづれによつてもよい。
また、乾燥工程をより効率よくするために浚渫
底泥を乾燥するまえに機械的脱水装置などを用
いて脱水し含水比を低くすることもできる。 (2) 造粒工程 粉末化した底泥原料は、次で、球状、豆炭
状、棒状その他の粒状物に成型される。造粒方
法は、皿型造粒、押出造粒、ブリケツト型造粒
その他いろいろの方法を用いることができる。
2、3の例をあげると例えば皿型造粒の場合に
は皿型造粒機により粉末原料に水を噴霧しつゝ
造粒し、また押出造粒の場合には押圧成型機に
より水分を約30%まで加湿した原料で押出して
造粒する。棒状のものを球状にするときは更に
皿型造粒機にかけて整形する。 乾燥粉末化した底泥は粘土分、シルト分など
の微粒子が殆んどであり、また有機物を含んで
いるために結合材を使用することなく水分の調
節だけで容易に造粒できる。このようにして成
型された粒状物は、焼成工程で粒状物同志が融
着したり、粒状物がくづれたりしない程度まで
に自然乾燥或は乾燥機により乾燥し含水率を調
節する。通常含水率が15%以下になるように乾
燥される。 (3) 焼成工程 次で粒状物は、ロータリーキルンなどの焼成
炉で最高温度950℃〜1250℃の温度下で焼成さ
れる。この焼成により粒状物は融結(焼結)さ
れ粒状の固化物を得ることができる。底泥は有
機物を含有するため焼結された粒状の固化物の
表面は発泡により多孔質となる傾向がある。し
かし焼結は良好である。焼成が最高温度950℃
を下まるときは得られる粒状固化物は焼結して
いるが底泥の有機物は炭化して内部にやゝ残つ
ている。また骨材として使用するにはやゝ強度
が不足する。最高温度1250℃を上まわるときは
得られる粒状の固化物の焼結が進み粒状固化物
同志が融着したり、部分的にくずれたりする。 焼成工程は、焼結時の極端な発泡を防止する
ために多段に焼成することができる。例えば、
第1段の焼成を最高950℃ぐらいの温度でしか
も空気を送つて焼成することにより粒状物内の
有機物の焼成、ガス化を促進し、また急激な発
泡を防止し、次で第2段の焼成で1100℃〜1250
℃で焼成する。この方法は焼結後の粒状固化物
の空隙を少くし比重の大きい強度のあるものを
造ることができる。かくして本発明の方法によ
つて得られた粒状の固化物は、十分に焼結され
ていて水に不溶でまた有害物の溶出が全くな
く、砂利、碎石などの天然骨材の強度にはやゝ
及ばないまでもそれらの骨材に代用できる程の
安定した強度を有するものである。 本発明の方法において、底泥のみを原料として
このような人工骨材が造り得ることは底泥の土質
の微粒子とその鉱物的、化学的組成に基因する。 次に本発明を理解するため、本発明方法による
霞が浦湖沼の底泥処理実験結果並びに骨材の応用
試験結果について説明する。 処理実験に使用した霞が浦底泥は、浚渫したの
ち水をきつたもので含水比150〜300%、塑性脂数
41〜63%のもので、その化学組成および鉱物組成
は表−1の通りである。
The present invention relates to a method for treating bottom sludge, which is characterized by drying, granulating, and firing bottom sludge deposited on the bottom of water such as rivers, lakes, and sea areas to obtain a strong granular solidified product that is rendered harmless. It is. Bottom sludge, commonly referred to as sludge, that accumulates on the bottom of rivers, lakes, oceans, etc. (hereinafter simply referred to as bottom sludge) causes environmental damage such as polluted water quality and the death of aquatic plants. If it contains harmful substances, it may develop into a pollution problem that harms the health of local residents. Therefore, there is a strong need to remove the bottom mud. The conventional method for removing and disposing of bottom sludge is to dredge the bottom sludge and dispose of it by dumping it into the ocean, reclamation on the sea surface or on land, or the like. However, ocean dumping also poses the risk of water pollution, and recently landfills have become the main method of disposal. When disposing of bottom sludge in a landfill, since the bottom sludge is a soft mud material with a high water content (in liquid form), if the bottom sludge is disposed of in a landfill as it is, there is a problem that the landfill will remain soft and the ground will be difficult to solidify. There is a problem with land use. Therefore, in order to use the land, we drain the reclaimed land using the sand drain method and consolidate it to harden the ground, and then mix cement, lime, and other solidifying agents into the surface layer to an appropriate depth to increase the strength of the soil. Furthermore, methods such as covering it with a thick layer of gravel or mountain soil have been used. However, this method also requires a long period of time for it to solidify on the ground at the reclaimed site, so in recent years, methods have been adopted such as mixing cement, lime, etc. with the dredged bottom mud to improve the strength of the soil before reclamation, or mechanically dewatering. Methods of processing and disposing of it in a landfill are also being considered. Mixing solidification agents such as cement and lime with the bottom mud to stabilize the soil before disposing of it in a landfill is also effective in preventing the elution of heavy metals and other harmful substances when the bottom mud contains them. In this way, conventional methods for treating bottom mud include simply discarding the bottom mud, using a solidifying agent to stabilize the soil quality, or at the same time removing harmful substances from the bottom mud in a stable form that is insoluble in water. It concerned disposal methods for landfilling, such as methods for converting the materials into solid waste. In any case, in order to remove and dispose of a large amount of bottom sludge, a disposal site is required to receive it. Even if bottom sludge is to be disposed of in a landfill, it is necessary to secure a larger area of landfill space than can accommodate the bottom sludge, as solidification materials and new mountain soil are added to the bottom sludge. In other words, even if the removal of bottom sludge is desperately desired, the current situation is that unless a disposal site can be secured, the bottom sludge cannot be removed, and therefore environmental purification is slow to progress. In view of the above-mentioned conventional bottom mud treatment, the present invention provides an effective solidification treatment of bottom mud, in particular, enables solidification by the components contained in the bottom mud itself without requiring solidification of cement, etc. The purpose is to provide a processing method that drastically reduces the Another object of the present invention is to recycle and recycle solidified materials. The present invention involves drying the bottom mud deposited on the bottom of rivers, lakes, marshes, sea areas, etc., granulating it into a spherical shape, etc., and firing the granulated product at a temperature of 950°C to 1250°C to form a granular solidified product. The gist of this paper is a method for treating bottom sludge, which is characterized by obtaining sludge. The bottom sludge treatment method of the present invention consists of the steps of drying, granulation, and firing, which will be explained below. (1) Drying process During dredging, the dredged bottom mud is dried until it can be turned into a fine powder after removal of bulky debris and other contaminants. This drying may be done by either solar (natural) drying or forced mechanical drying such as an electric drying oven or a fluidized fluid dryer (utilizing kiln waste).
Furthermore, in order to make the drying process more efficient, the dredged bottom mud can be dehydrated using a mechanical dehydrator or the like to lower the water content before drying. (2) Granulation process The powdered bottom mud material is then molded into spheres, charcoal, rods, and other granules. As the granulation method, various methods such as dish granulation, extrusion granulation, briquette granulation and others can be used.
To give an example of 2 and 3, for example, in the case of dish-type granulation, water is sprayed onto the powder raw material using a dish-type granulator, and in the case of extrusion granulation, water is removed by a press molding machine. Extrude and granulate the raw material moistened to about 30%. When making a rod-shaped product into a spherical shape, it is further shaped using a dish-type granulator. Dry and powdered bottom mud is mostly fine particles such as clay and silt, and since it also contains organic matter, it can be easily granulated simply by adjusting the moisture content without using a binder. The thus formed granules are dried naturally or in a dryer to adjust the moisture content to such an extent that the granules do not fuse together or collapse during the firing process. It is usually dried to a moisture content of 15% or less. (3) Firing process Next, the granules are fired in a firing furnace such as a rotary kiln at a maximum temperature of 950°C to 1250°C. By this firing, the granules are fused (sintered) and a granular solidified product can be obtained. Since the bottom mud contains organic matter, the surface of the sintered granular solidified material tends to become porous due to foaming. However, sintering is good. Maximum firing temperature is 950℃
When it descends, the granular solidified material obtained is sintered, but the organic matter in the bottom mud is carbonized and remains inside for a while. Also, it is insufficient in strength to be used as aggregate. When the maximum temperature exceeds 1250°C, sintering of the resulting solidified particles progresses, causing the solidified particles to fuse together or partially collapse. The firing process can be performed in multiple stages to prevent excessive foaming during sintering. for example,
The first stage of firing is performed at a maximum temperature of about 950°C and by blowing air to promote the firing and gasification of organic matter in the granules and prevent rapid foaming. Baking at 1100℃~1250
Bake at ℃. This method can reduce voids in the granular solidified product after sintering and produce a product with high specific gravity and strength. Thus, the granular solidified material obtained by the method of the present invention is sufficiently sintered, insoluble in water, and does not elute harmful substances at all, and has a strength superior to that of natural aggregates such as gravel and slag. Although it is not as strong as these aggregates, it has a stable strength that can be used as a substitute for those aggregates. In the method of the present invention, the ability to produce such artificial aggregate using only bottom mud as a raw material is due to the soil fine particles of bottom mud and its mineral and chemical composition. Next, in order to understand the present invention, the results of experiments on bottom sludge treatment of Lake Kasumigaura and the results of aggregate application tests using the method of the present invention will be explained. The Kasumigaura mud used in the treatment experiment was dredged and then drained, with a water content of 150 to 300% and a plasticity content of 150 to 300%.
It has a content of 41 to 63%, and its chemical and mineral compositions are shown in Table 1.

【表】 表−1より明らかなように灼熱減量が約17%と
多く有機物等の燃焼、分解成分が多い試料である
と断定できる。また、鉱物組成は石英、長石類、
粘土類に大別され、粘土類はカリオンを主成分と
し量的にも比較的多く含まれていると推定でき
る。 実験例 1 底泥を天日乾燥した後、粉末状態になるまで粉
碎し、次で皿型造粒と押出造粒の2方法で造粒し
た。 皿型造粒は皿型造粒機で微粉碎した原料に水を
噴霧しながら径が約10mmとなるように造粒した。
一方押出造粒は水分を30%加湿した原料を押出機
で直径5mm長さ約10mmとなるように造粒し、さら
に皿型造粒機で整形して造粒した。次で造粒物を
室内で水分約10%以下となるまで自然乾燥した。
次で造粒物をロータリーキルン(直径40cm、長さ
700cm)を用いて焼成した。焼成は予備実験の結
果原料が著しく発泡性を示す原料であることが判
明したため、発泡を抑制する手段としてロータリ
ーキルンの焼成条件を2段方式とし、第1段焼成
は炉内最高温度を950℃(炉尻で約600℃)に設定
し、空気を吹込みながら焼成後一旦冷却し、第2
段焼成空気の送風なしに炉内最高温度を1130℃お
よび1170℃(炉尻で600℃)の2条件下で造粒物
を焼成した。第一段焼成でかなり強度のある粒状
の固化物が得られた。しかし、粒状固化物を割つ
てみると有機物の炭化された部分がやや残存して
おり、碎石、砂利などの骨材に比べてやゝ強度が
劣る。第二段焼成では炭化物を含まず十分に焼成
されていて碎石、砂利に代表できる程度の強度を
有する粒状の固化物を得ることができた。 焼成で得られた粒状の固化物の粒度試験および
骨材試験結果を表−2および表−3に示す。比較
のためにほゞ同粒度の川砂利(相模川産)につい
て同様に試験した結果を表−2および表−3に併
記した。
[Table] As is clear from Table 1, the loss on ignition was approximately 17%, and it can be concluded that this sample contains a large amount of combustion and decomposition components such as organic substances. In addition, the mineral composition is quartz, feldspar,
It is broadly classified into clays, and it can be assumed that clays contain carrion as a main component and are relatively large in quantity. Experimental Example 1 After drying the bottom mud in the sun, it was pulverized to a powder state, and then granulated using two methods: dish granulation and extrusion granulation. Dish-type granulation was performed by spraying water on the finely powdered raw material using a dish-type granulator to granulate the material to a diameter of about 10 mm.
On the other hand, in extrusion granulation, raw materials with 30% moisture content were granulated using an extruder to a diameter of 5 mm and a length of about 10 mm, and then shaped and granulated using a dish-type granulator. Next, the granules were naturally dried indoors until the moisture content was about 10% or less.
Next, transfer the granules to a rotary kiln (diameter 40cm, length
700cm). As a result of preliminary experiments, it was found that the raw material for firing was extremely foamable, so as a means of suppressing foaming, the rotary kiln was set to a two-stage firing condition, and the maximum temperature inside the furnace was set at 950°C ( 600℃) at the bottom of the furnace, and cooled once after firing while blowing air.
The granules were fired under two conditions with a maximum temperature in the furnace of 1130°C and 1170°C (600°C at the bottom of the furnace) without blowing stage firing air. In the first stage firing, a granular solidified product with considerable strength was obtained. However, when the granular solidified material is broken down, some carbonized portions of organic matter remain, and its strength is much lower than that of aggregates such as stone and gravel. In the second stage firing, it was possible to obtain a granular solidified material that was sufficiently fired without containing carbides and had a strength comparable to that of slagstone or gravel. Tables 2 and 3 show the results of the particle size test and aggregate test of the granular solidified material obtained by firing. For comparison, the results of a similar test on river gravel (from Sagami River) with approximately the same particle size are also shown in Tables 2 and 3.

【表】 * 川砂利の粗粒率は、人工骨材に合致させ
るためにふるい分けしたものである。
[Table] * The coarse particle ratio of river gravel is determined by sieving to match the artificial aggregate.

【表】 これにより、同じ焼成温度でも造粒方法を異に
することにより比重、吸水率、圧縮破碎値等の諸
物性に大きな影響を及ぼすことが分かつた。これ
は、底泥原料が前記の如く発泡性を有するため、
造粒時に生ずる原料の内・外部の諸条件の違い
が、焼成後の原料の諸物性を大きく左右したもの
と考えられる。 すなわち、押出造粒は加圧しながら造粒するた
め原料表面の密度が大きくなり、含有される有機
物は焼成温度を上げてもCO2ガスとして原料固化
物の外部に散逸しにくくなり、発泡傾向が増大す
るためと思われる。 これに対し、皿型造粒は該となる微粒子に粉末
原料と水を噴霧しながら原料を生長造粒するため
造粒物表面に多数の気孔が発生し、焼成時造粒物
表面が粘性を示す温度に達する前に、含有炭素分
の多くはCO2ガスとなつて散逸し、比重が大き
く、吸収率が小さく、しかも圧縮破碎値の大きい
固化物となつたものと考えられる。 次に上記焼成で得られた粒状の固化物について
有害量金属の溶出試験を行つた結果を表−4に示
す。その結果粒状固化物は焼成により無害物とな
ることが確認された。
[Table] This shows that even at the same firing temperature, different granulation methods have a significant effect on physical properties such as specific gravity, water absorption, and compression strength. This is because the bottom mud raw material has foaming properties as mentioned above.
It is thought that the differences in internal and external conditions of the raw material during granulation greatly influenced the physical properties of the raw material after firing. In other words, since extrusion granulation is granulated under pressure, the density of the surface of the raw material increases, and even if the firing temperature is increased, the organic matter contained is less likely to dissipate to the outside of the solidified raw material as CO 2 gas, which reduces the tendency for foaming. This seems to be because it increases. On the other hand, in dish-type granulation, the raw material is grown and granulated while spraying the powder raw material and water onto the fine particles, so many pores are generated on the surface of the granule, and the surface of the granule becomes viscous during firing. It is thought that before reaching the indicated temperature, much of the carbon content dissipated as CO 2 gas and became a solidified product with high specific gravity, low absorption rate, and high compression strength value. Next, Table 4 shows the results of a toxic metal elution test performed on the granular solidified product obtained by the above firing. As a result, it was confirmed that the granular solidified material becomes harmless after firing.

【表】 上記粒状の固化物は、セメントコンクリート、
アスフアルトコンクリート等に混入、道路舗装、
建築物などの人工骨材として利用できる。次にセ
メントコンクリートおよびアスフアルトコンクリ
ートへの骨材応用試験について説明する。 (1) セメントコンクリートへの応用試験 (1) 使用材料及び使用機器 (イ) セメント:普通ポルトランドセメント (ロ) 細砂:相模川産 比重2.63 FM3.33 (ハ) 比較用川砂利:相模川産 (ニ) ミキサー:強制練りミキサー (2) 供試体寸法 (イ) 強度試験用供試体寸法 圧縮、引張強度試験共φ10×20cm (ロ) 乾燥圧縮 寸法:10×10×50cm 測定方法:ダイヤルゲージ法 (3) 養生及び試験方法 (イ) 強度試験 コンクリート打設後20℃の室温中に放置
し、2日後に脱型後、2±1℃の水槽にて
各材令まで養生した。 (ロ) 乾燥収縮及び重量減少試験 コンクリート打設後の翌日脱型し、第1
回の測定を行い、21±1℃の水中で養生
し、供試体の材令が7日に達した共試体
は、測定後速やかに温度20±1℃、湿度60
±3%の室中に各材令まで保存して長さ変
化及び重量変化を測定した。 (ハ) コンクリートの配合 コンクリートの配合は、表−5に示すよ
うに、骨材の違いがフレツシユコンクリー
ト及び硬化後のコンクリートに及ぼす影響
を確認する意味で、単位セメント量、単位
水量及びs/aを一定とする配合とした。
[Table] The above granular solidified material is cement concrete,
Mixed with asphalt concrete, etc., road paving,
It can be used as an artificial aggregate for buildings, etc. Next, we will explain the aggregate application test for cement concrete and asphalt concrete. (1) Application test to cement concrete (1) Materials and equipment used (a) Cement: Ordinary Portland cement (b) Fine sand: Made from Sagami River, specific gravity 2.63 FM3.33 (c) River gravel for comparison: Made from Sagami River (d) Mixer: Forced kneading mixer (2) Specimen dimensions (a) Specimen dimensions for strength testing Both compression and tensile strength tests φ10 x 20 cm (b) Dry compression dimensions: 10 x 10 x 50 cm Measurement method: Dial gauge method (3) Curing and test methods (a) Strength test After concrete was placed, it was left at room temperature at 20℃, and after being removed from the mold two days later, it was cured in a water tank at 2±1℃ to the age of each material. (b) Drying shrinkage and weight loss test The next day after concrete was poured, the mold was removed and the first
After measurement was carried out twice, the joint specimen was cured in water at 21 ± 1 °C and the age of the specimen reached 7 days.
The pieces were stored in a room with a temperature of ±3% until each age, and changes in length and weight were measured. (c) Mixing of concrete As shown in Table 5, the mixing of concrete is based on the unit cement amount, unit water amount, and s/ The formulation was such that a was kept constant.

【表】 フレツシユコンクリート及び硬化コンク
リートの一般性状結果は表−6となる。
[Table] Table 6 shows the general properties of fresh concrete and hardened concrete.

【表】 この結果によると、試験No.−1の皿型造
粒骨材が8.8cmと最も小さいスランプとな
り、試験No.−2の押出造粒が最もスランプ
が大きいことが分かる。これは、皿型造粒
で焼成温度を1170℃として骨材は表面ひび
われが多く、混練中にコンクリート中のセ
メントペーストがひびわれ部分を埋める従
用のためにスランプが小さくなつたものと
思われる。 また、圧縮強度に関しては長期材令とな
つても川砂利コンクリートと同様な強度発
現率を示すが、引張強度に関しては材令間
の変動が認められるものの川砂利コンクリ
ートより体少強度低下を示している。 乾燥収縮および重量減少率については表
−7に示す通りであり、特に乾燥収縮に関
しては川砂利コンクリートより一様に小さ
い結果となつているが、これは骨材の吸収
率が川砂利より大きいため、乾燥状態では
水分の放出が徐々に起り、収縮を小さくし
ているためである。
[Table] According to the results, it can be seen that the dish-shaped granulated aggregate of Test No.-1 had the smallest slump of 8.8 cm, and the extrusion granulation of Test No.-2 had the largest slump. This is thought to be due to the fact that the aggregate had many surface cracks when it was granulated in a dish type at a firing temperature of 1170°C, and the cement paste in the concrete was used to fill in the cracks during mixing, resulting in smaller slump. In addition, in terms of compressive strength, it shows the same strength development rate as river gravel concrete even after a long period of age, but in terms of tensile strength, it shows a lower strength than river gravel concrete, although there are fluctuations between ages. There is. The drying shrinkage and weight loss rate are shown in Table 7. In particular, the drying shrinkage is uniformly smaller than river gravel concrete, but this is because the aggregate absorption rate is higher than river gravel. This is because, in a dry state, water is gradually released, reducing shrinkage.

【表】 (2) アスフアルトコンクリートへの応用試験 焼成して得られた粒状固化物を加熱アスフア
ルト混合物の主骨材として利用するための配合
試験の1例を報告する。 使用材料 (イ) 焼成骨材を粉碎しふるい分けし10〜5
mm、5〜2.5mmおよび2.5〜0.074mmの粒度に
分類し使用した。 (ロ) 粗砂、細砂はそれぞれ栃木産、千葉砂、
石粉は秩父産を使用した。 (ハ) アスフアルトは三菱石油のストレートア
スフアルト60〜80を使用した。 加熱アスフアルト混合物の配合 (イ) 加熱アスフアルト混合物の種類 密粒度アスフアルトコンクリートの粒度 (ロ) 配合比 焼成骨材10〜5mm 35重量比 〃 5〜2.5mm 22 〃 〃 2.5〜0.074mm 20 〃 粗 砂 8 〃 細 砂 9重量比 石 粉 6 〃 (ハ) アスフアルトの添加量(骨材に対する) 5.5、6.0、6.5、7.0、7.5および10.0重量
% 試験方法 アスフアルト舗装要綱(社団法人日本道路
協会発行)のマーシヤル安定度試験方法に準
ずる。 結果 (イ) 焼成骨材の性状と一般的アスフアルト混
合物に使用される骨材との比較
[Table] (2) Application test to asphalt concrete We report an example of a mixing test for using the granular solidified product obtained by firing as the main aggregate of a heated asphalt mixture. Materials used (a) Powder and sieve fired aggregate 10 to 5
The particles were classified into particle sizes of mm, 5 to 2.5 mm, and 2.5 to 0.074 mm. (b) Coarse sand and fine sand are from Tochigi, Chiba sand, and
The stone powder used was from Chichibu. (c) Asphalt used was Mitsubishi Oil Straight Asphalt 60-80. Composition of heated asphalt mixture (a) Type of heated asphalt mixture Particle size of dense asphalt concrete (b) Mixing ratio Burnt aggregate 10-5 mm 35 Weight ratio 〃 5-2.5 mm 22 〃 〃 2.5-0.074 mm 20 〃 Coarse sand 8 〃 Fine sand 9 weight ratio stone powder 6 〃 (c) Amount of asphalt added (relative to aggregate) 5.5, 6.0, 6.5, 7.0, 7.5 and 10.0% by weight Test method Marshall of Asphalt Paving Guidelines (published by Japan Road Association) According to the stability test method. Results (a) Comparison of properties of calcined aggregate with aggregates used in general asphalt mixtures

【表】【table】

【表】 表−8からみられるように、焼成骨材は
一般碎石類と比べて a 比重が小さい。 b 吸水量が大きい。特に粉碎した焼成骨
材の吸収量が大きい。 (ロ) マーシヤル安定度試験結果 表−9の通りである、尚比較のために一
般的アスフアルト混合物物に使用する骨材
を使用した密粒度アスフアルトコンクリー
トの試験結果およびアスフアルト舗装要綱
に規定される規格値を併記した。
[Table] As seen from Table 8, calcined aggregate has a lower specific gravity than general slag. b High water absorption. In particular, the amount of absorption of pulverized calcined aggregate is large. (b) Marshall stability test results Table 9 shows the test results of dense-grained asphalt concrete using aggregate used in general asphalt mixtures and the standards stipulated in the asphalt pavement guidelines for comparison. Values are also listed.

【表】 a 焼成骨材を使用したアスコンは一般骨
材を使用したアスコンに比べて密度が小
さく安定度も低いが安定度は規格値をこ
えるのであまり問題がないが空隙率が大
きくアスフアルトの飽和度は規格値より
小さい。 b 通常の配合設計では焼成骨材の吸収率
が大きいために混合物作製後時間の経過
と共に骨材中にアスフアルトが吸収され
るため最適アスフアルト量の決定に問題
があつた。これは焼成骨材が球状の粒状
のものを粉碎しているために表面がより
多孔質となりそれだけアスフアルトを吸
収するためで、したがつてアスフアルト
量も余分に必要とする。そのため、混合
物の舗設は、混合物を製造してから出来
る丈け早く例えば混合後2〜3時間位の
うちに施工する必要がある。アスフアル
トコンクリートに対しては焼成時に稜角
に富む碎石状の骨材を造るとこれらは解
決できよう。試験の結果は技術的要請の
きびしくない簡易舗装以下の舗装に十分
利用できることを示している。 上記の応用試験から明らかなように本発明底泥
の処理法によれば、底泥を有効に処理して無害化
とするとともに造粒、焼成により得られる粒状固
化物は人工骨材として、従来の天然骨材、人工骨
材に劣ることなく再生利用、資源化を図ることが
できるものである。
[Table] a Asphalt using calcined aggregate has a lower density and lower stability than asphalt using general aggregate, but the stability exceeds the standard value so there is no problem, but the porosity is large and the asphalt is saturated. The degree is smaller than the standard value. b In the conventional mix design, asphalt was absorbed into the aggregate over time after the mixture was prepared due to the high absorption rate of the fired aggregate, which caused problems in determining the optimum amount of asphalt. This is because the fired aggregate is pulverized into spherical particles, making the surface more porous and absorbing more asphalt, thus requiring an extra amount of asphalt. Therefore, it is necessary to pave the mixture as soon as possible after producing the mixture, for example, within about 2 to 3 hours after mixing. For asphalt concrete, these problems can be solved by creating aggregate with rich ridges during firing. The test results show that it can be fully used for pavements below simple pavements that do not have severe technical requirements. As is clear from the above applied tests, according to the bottom mud treatment method of the present invention, the bottom mud can be effectively treated to render it harmless, and the granular solidified product obtained by granulation and firing can be used as an artificial aggregate. It can be recycled and recycled as well as natural and artificial aggregates.

Claims (1)

【特許請求の範囲】[Claims] 1 河川、湖沼、海域の水底に堆積する底泥を乾
燥後、球状などの形状に造粒する工程と、この造
粒物を15%以下の含水率に乾燥する工程と、この
乾燥した造粒物を焼成炉内において空気を吹き込
みつつ炉内最高温度を950℃に設定して焼成する
第一の焼成工程と、この第一焼成工程後の造粒物
を空気の送風なしに炉内最高温度を1100℃〜1250
℃に設定して焼成する第二の焼成工程により粒状
の固化物を得ることを特徴とする底泥の処理方
法。
1 A process of drying the bottom mud deposited on the bottom of rivers, lakes, and sea areas, and then granulating it into spherical or other shapes, a process of drying this granulated product to a moisture content of 15% or less, and a process of drying this dried granulation. A first firing process in which the product is fired in a firing furnace while blowing air while setting the maximum temperature in the furnace to 950℃, and a granulated product after this first firing process is heated to the maximum temperature in the furnace without blowing air. 1100℃~1250
A method for treating bottom sludge, which comprises obtaining a granular solidified product through a second firing step of firing at a temperature set at ℃.
JP2306879A 1979-02-28 1979-02-28 Treating method for bottom mud Granted JPS55116498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2306879A JPS55116498A (en) 1979-02-28 1979-02-28 Treating method for bottom mud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2306879A JPS55116498A (en) 1979-02-28 1979-02-28 Treating method for bottom mud

Publications (2)

Publication Number Publication Date
JPS55116498A JPS55116498A (en) 1980-09-08
JPS6254560B2 true JPS6254560B2 (en) 1987-11-16

Family

ID=12100080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2306879A Granted JPS55116498A (en) 1979-02-28 1979-02-28 Treating method for bottom mud

Country Status (1)

Country Link
JP (1) JPS55116498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322957U (en) * 1989-07-11 1991-03-11

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607999A (en) * 1983-06-21 1985-01-16 エ−デ−・チユブリン・アクチエンゲゼルシヤフト Method of removing finely divided particle-shaped sediment from river, sea, lake and marsh, etc.
JP2005074390A (en) * 2003-09-03 2005-03-24 Yuushin Denki Kk Sludge ceramic carrier and its production method
JP2005305354A (en) * 2004-04-23 2005-11-04 Penta Ocean Constr Co Ltd Detoxication method for polluted material, detoxication system and recycling method for calcinated material
JP5307950B1 (en) * 2013-05-28 2013-10-02 株式会社フジコーポレーション Test piece manufacturing method
JP5307951B1 (en) * 2013-05-28 2013-10-02 株式会社フジコーポレーション Test piece manufacturing system and test piece manufacturing method
CN106006814B (en) * 2015-11-12 2019-06-14 中国环境科学研究院 Utilize the deposit/zeolite control nitrogen material and method, application of bottom mud in lake preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322957U (en) * 1989-07-11 1991-03-11

Also Published As

Publication number Publication date
JPS55116498A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
CN108774041B (en) Water permeable brick using artificial carbonized steel slag balls as aggregate and preparation method thereof
JP2008247728A (en) Method for producing water-retentive block
JPS6254560B2 (en)
JP2634220B2 (en) Watertight soil formation method especially for construction of sedimentation repository
JP2007145669A (en) Water-retainable block and its production method
CA2447539A1 (en) Aggregate for concrete and construction
JP3059674B2 (en) Manufacturing method of non-fired brick block
KR100591060B1 (en) composition of lightweight aggregate and menufacturing method of lightweight aggregate thereby
JP2004155636A (en) Construction or building material using slag or fly ash as main material
DE10354711B4 (en) Process for the preparation of porous granules and their use
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
KR101631276B1 (en) Manufacturing method of recycled aggregates using bauxite residue
JP3641458B2 (en) Manufacturing method of granular construction materials mixed with natural stone particles
Azim et al. Enhancing the compressive strength of landfill soil using cement and bagasse ash
JP2010120820A (en) Water retentive block
JP2890389B2 (en) Filler and manufacturing method thereof
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
JP2684353B2 (en) Water-permeable material with concrete aggregate as aggregate and method for producing the same
KR100669491B1 (en) Recycling treatment method of dredged soil
JP2002128560A (en) Water-absorbing molded form and its manufacturing method
JP3636767B2 (en) Solidification method of Otani stone chips
JP2004067399A (en) Method of producing regenerated sand from construction sludge
JP2002115204A (en) Manufacturing method for permeable concrete block using molten slag of general waste
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
JP2002338314A (en) Sandy granulated material and producing method thereof