JPS6252011B2 - - Google Patents

Info

Publication number
JPS6252011B2
JPS6252011B2 JP5166282A JP5166282A JPS6252011B2 JP S6252011 B2 JPS6252011 B2 JP S6252011B2 JP 5166282 A JP5166282 A JP 5166282A JP 5166282 A JP5166282 A JP 5166282A JP S6252011 B2 JPS6252011 B2 JP S6252011B2
Authority
JP
Japan
Prior art keywords
cycle
steel
temperature
cooling
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5166282A
Other languages
Japanese (ja)
Other versions
JPS58167728A (en
Inventor
Manabu Ueno
Yutaka Okayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5166282A priority Critical patent/JPS58167728A/en
Publication of JPS58167728A publication Critical patent/JPS58167728A/en
Publication of JPS6252011B2 publication Critical patent/JPS6252011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は焼入焼戻による高硬度高じん性を有す
るすぐれた鋼帯または鋼線を連続急速球状化焼鈍
する方法に関するものである。 従来鉄鋼メーカーで製造する中高炭素鋼或は中
高炭素低合金鋼鋼帯または鋼線は、熱間および冷
間圧延した後に網状・層状炭化物を球状化して、
即ち箱型焼鈍方法を実施して鋼材として市販され
るのが一般的である。需要家はこの鋼材を製品加
工・切削し、その後焼入焼戻処理により高硬度の
焼戻マルテンサイト組織にして使用状態に適合す
る性質を製品に附与することが普通である。この
際高硬度のために、じん性の劣化が生じるのであ
る。即ち、高硬度の焼戻マルテンサイト組織は耐
摩耗性には非常に有利であるが、耐衝撃性につい
ては不利である。そのため耐衝撃性を重視すれ
ば、焼戻温度を上げて硬度を下げる必要がある。
そうすると耐摩耗性が劣化するという悪循環を生
ずる。このため先づ第一に高硬度で高じん性の良
好な鋼材を製造する必要がある。 また、第二として鉄鋼メーカーでは鋼材の加
工、切削が可能なように炭化物の球状化焼鈍工程
が組こまれる。この工程は鋼帯または鋼線を積み
上げて、雰囲気調整された箱焼鈍方法で長時間の
加熱処理(通常40時間以上)が必要であり、生産
効率は著しく悪く、燃料の消費率も著しく高い欠
点がある。即ち従来の網状・層状炭化物の球状化
焼鈍は箱焼鈍方法であつて、これはコイル状にま
かれた鋼帯または鋼線を積み上げその上にイン
ナ・カバーと呼ばれるベルをおおい、そのイン
ナ・カバー内に無酸化雰囲気ガスを送りこんで、
750〜780℃の温度の加熱、均熱し、それから約
700℃まで徐冷を実施し、この温度に数時間保持
し、次いで200℃以下まで冷却してとりだしてい
る。このため鋼材を炉に入れて、とりだすために
は2日以上の熱処理工程を必要とするのが普通で
ある。 本発明は以上の点に鑑み鋭意検討研究の結果な
されたものでその要旨とするところは、熱間およ
び冷間圧延によつて製造した中高炭素鋼鋼帯また
は鋼線を加熱・均熱、一次急冷、サイクル急速加
熱・冷却の各帯域を順次直列に有する連続焼鈍炉
を連続的に通過せしめ、加熱均熱帯においてA3
線およびAcm線より50℃〜200℃高い完全オース
テナイト域の温度で30秒〜5分の均熱を行い、次
いで一次急冷帯において200℃以下まで10℃〜200
℃/秒の速度で急冷した後、サイクル急速加熱・
冷却帯において780〜800℃と100℃以下との温度
範囲を急速加熱冷却のサイクル処理を2〜6回繰
り返すことにより、微細球状化炭化物を析出させ
ることを特徴とする中高炭素鋼鋼帯または鋼線の
連続急速球状化焼鈍方法にある。 以下本発明を詳細に説明する。 本発明の対象とする鋼帯または鋼線は、電気炉
または転炉、真空脱ガス、連続鋳造等、従来の製
鋼法で溶製され、造塊・分塊あるいは連続鋳造の
各工程を経て、次いて均熱、熱延、酸洗、冷延の
各工程を経たもので、これらの各工程の条件は任
意のものを採用することができる。 また含有成分については、球状化焼鈍の可能な
範囲であるC:0.45〜1.5%の中高炭素鋼であれ
ば本発明の効果を充分発揮しうる。或はまたこれ
に合金元素として0.2〜3.0%の範囲内でCr、
Mo、Ni、W等を含有しても同様に効果を奏し得
る。 本発明の連続急速球状化焼鈍方法は、鋼帯また
は鋼線をコイルからまきほどいて、単一な板状か
線状で焼鈍炉内に供給するので被処理材の熱容量
は小さく、高周波加熱の間接あるいは直接加熱で
あつても被処理材を1分以内で950℃前後の均熱
温度に到着せしめることが可能である。そして続
いて急冷により、マルテンサイト組織とすること
ができる。さらに引きつづいてサイクル急速加熱
冷却帯域において780〜800℃と100℃以下の温度
範囲を急速加熱冷却のサイクル処理をする。しか
してこの急速加熱と急速冷却の処理を2〜6回繰
り返して実施する。したがつて連続的に短時間で
炭化物の球状化焼鈍処理が可能であるため、生産
効率が著しく向上し、かつ省エネルギーが可能と
なり、また急速加熱・冷却のサイクル処理により
炭化物が微細に折出して、焼入・焼戻処理によつ
て高硬度高じん性のすぐれた製品の製造が可能と
なる。 均熱時間については、6回までのサイクル熱理
処理において、780℃の温度で1分間保持した
が、実験結果では30秒でも充分であつた。また5
分間としたのは、実施例で660℃×5分間による
熱処理をサイクル熱処理後におこなつて軟化処理
をしているからである。以上の理由によつて30秒
〜5分の均熱時間を限定した。 急冷速度については静的油冷の場合には10℃/
秒で、カク伴した水冷の場合には200℃/秒であ
るので急冷速度を10〜200℃/秒と限定した。 サイクル熱処理を2回以上6回までとしたの
は、2回でも超塑性を示すm値が0.3以上になつ
ているからである。また6回迄のサイクル熱処理
で充分所期の目的が達成できる。 以下本発明を実施例により説明する。 実施例 1 転炉にて吹練されたC:0.85%、Si:0.22%、
Mn:0.41%、P:0.021%、S:0.005%、Cr:
0.12%、残余Feおよび不可避的不純物からなる
キルド鋼塊を通常の方式でスラブにした後、1200
℃×5時間の均熱後、最終仕上り温度850℃にな
るよう4.5mmに熱延し、酸洗後加工ひづみを除く
ために焼鈍をおこなう、そして冷間圧延により厚
み3.0mmにする。この所用厚さに仕上げた鋼帯を
第1図に示す本発明の連続急速球状化焼鈍方法の
熱サイクル・モデルとそのライン構成により製造
する。これを説明すると、先づ上記鋼材を950℃
に1分間高周波加熱した後に油槽に焼入する。焼
入によつて生じたマルテンサイト組織が有する鋼
材を次のサイクル急速加熱・冷却帯に連続的に送
給しサイクル熱処理により炭化物の微細球状化を
うながす。即ちサイクル急速加熱冷却帯において
は、前記鋼材を高周波加熱装置5により780℃に
急速加熱し、直ちに水噴射ノズル6により80℃に
冷却し、次いで同じく高周波加熱装置7により
780℃に急速加熱し直ちに水噴射ノズル8により
80℃に冷却し、さらに同じく高周波加熱装置9に
より780℃に急速加熱し、直ちに水噴射ノズル1
0により80℃に冷却し、以下かくの如く急速加熱
冷却処理を繰り返し、6回サイクル処理しテンシ
ヨンリール4に巻取つた。この鋼材の特性は以下
の通りである。 第2図は顕微鏡による組織写真図でbは本発明
実施例によつて得た処理材を示し、aは従来の箱
焼鈍炉で球状化焼鈍した従来例を示す。本発明の
ものはbに示すように炭化物が微細化しているこ
とが明確である。このことを更に精密に確認する
ために、電解研磨によつて薄膜を作り、これを透
過型電子顕微鏡で検鏡した写真を第3図にしめ
す。これらの写真図より炭化物の粒径と結晶粒を
測定して、その大きさと標準偏差を求め下表に示
す。
The present invention relates to a method for continuous rapid annealing of steel strips or steel wires having high hardness and high toughness through quenching and tempering. Traditionally, medium-high carbon steel or medium-high carbon low alloy steel strips or steel wires manufactured by steel manufacturers are hot- and cold-rolled, then reticulated or layered carbides are spheroidized.
That is, it is common to carry out the box annealing method and sell it as a steel material. Consumers usually process and cut this steel into products, and then use quenching and tempering to create a highly hard tempered martensitic structure to impart properties to the product that suit the conditions of use. At this time, due to the high hardness, the toughness deteriorates. That is, a tempered martensitic structure with high hardness is very advantageous in terms of wear resistance, but is disadvantageous in terms of impact resistance. Therefore, if impact resistance is important, it is necessary to raise the tempering temperature and lower the hardness.
This creates a vicious cycle in which wear resistance deteriorates. Therefore, first of all, it is necessary to manufacture a steel material with high hardness and high toughness. Secondly, steel manufacturers incorporate a carbide spheroidizing annealing process to enable processing and cutting of steel materials. This process requires stacking steel strips or steel wires and subjecting them to long-term heat treatment (usually over 40 hours) using a box annealing method in a controlled atmosphere, resulting in extremely low production efficiency and high fuel consumption. There is. That is, the conventional spheroidizing annealing of reticulated and layered carbides is a box annealing method, in which a steel strip or steel wire wound in a coiled shape is stacked and a bell called an inner cover is placed on top of the steel strip or steel wire. By sending non-oxidizing atmosphere gas into the
Heating at a temperature of 750-780℃, soaking, then approx.
It is slowly cooled to 700°C, held at this temperature for several hours, and then cooled to below 200°C before being taken out. For this reason, it is common that a heat treatment process of two or more days is required to put the steel material into a furnace and take it out. The present invention has been made as a result of intensive study and research in view of the above points, and its gist is that medium-high carbon steel strips or steel wires produced by hot and cold rolling are heated, soaked, and A3
Soak for 30 seconds to 5 minutes at a temperature in the fully austenite range that is 50℃ to 200℃ higher than the Acm line and Acm line, and then soak for 10℃ to 200℃ to 200℃ or less in the primary quenching zone.
After rapid cooling at a rate of °C/sec, cycle rapid heating/
A medium-high carbon steel strip or steel characterized in that fine spheroidal carbides are precipitated by repeating a cycle of rapid heating and cooling in a temperature range of 780 to 800°C and 100°C or less 2 to 6 times in a cooling zone. Continuous rapid spheroidizing annealing method for wire. The present invention will be explained in detail below. The steel strip or steel wire that is the object of the present invention is produced by conventional steel manufacturing methods such as electric furnaces or converters, vacuum degassing, continuous casting, etc., and then undergoes the steps of ingot making, blooming, or continuous casting. Next, it is subjected to the steps of soaking, hot rolling, pickling, and cold rolling, and any conditions can be adopted for each of these steps. Regarding the content of the steel, medium-high carbon steel having a C content of 0.45 to 1.5, which is within the range in which spheroidizing annealing is possible, can fully exhibit the effects of the present invention. Alternatively, Cr may be added as an alloying element within the range of 0.2 to 3.0%.
Even if Mo, Ni, W, etc. are contained, similar effects can be achieved. In the continuous rapid spheroidizing annealing method of the present invention, the steel strip or steel wire is unwound from the coil and fed into the annealing furnace in the form of a single plate or wire, so the heat capacity of the material to be treated is small, and the heat capacity of the material to be treated is small. Even with indirect or direct heating, it is possible to bring the material to be treated to a soaking temperature of around 950°C within one minute. Then, by rapid cooling, a martensitic structure can be obtained. Subsequently, a cycle process of rapid heating and cooling is performed in a temperature range of 780 to 800°C and 100°C or less in a cycle rapid heating and cooling zone. However, the process of rapid heating and rapid cooling of the lever is repeated 2 to 6 times. Therefore, it is possible to spheroidize carbide annealing continuously in a short period of time, which significantly improves production efficiency and saves energy.Also, the rapid heating and cooling cycle treatment allows carbide to be finely precipitated. By quenching and tempering, it is possible to manufacture products with excellent hardness and toughness. Regarding the soaking time, the temperature was maintained at 780° C. for 1 minute in up to 6 cycles of heat treatment, but experimental results showed that 30 seconds was sufficient. Also 5
The reason why it is set as 5 minutes is because in the examples, a heat treatment at 660° C. for 5 minutes was performed after the cycle heat treatment to perform the softening treatment. For the above reasons, the soaking time was limited to 30 seconds to 5 minutes. Regarding the quenching rate, in the case of static oil cooling, it is 10℃/
The rapid cooling rate was limited to 10 to 200°C/second because the cooling rate was 200°C/second in the case of water cooling with a stutter. The reason why the cycle heat treatment was performed from 2 times to 6 times is because the m value indicating superplasticity is 0.3 or more even after 2 times. Further, the desired purpose can be sufficiently achieved by cycle heat treatment up to six times. The present invention will be explained below with reference to Examples. Example 1 C: 0.85%, Si: 0.22%, blown in a converter
Mn: 0.41%, P: 0.021%, S: 0.005%, Cr:
After the killed steel ingot consisting of 0.12%, residual Fe and unavoidable impurities is made into a slab by the usual method, 1200
After soaking for 5 hours at ℃, it is hot rolled to a thickness of 4.5 mm to a final finishing temperature of 850 ℃, annealed to remove processing distortion after pickling, and then cold rolled to a thickness of 3.0 mm. A steel strip finished to the required thickness is manufactured using the thermal cycle model and line configuration of the continuous rapid spheroidizing annealing method of the present invention shown in FIG. To explain this, first the above steel material is heated to 950°C.
After heating with high frequency for 1 minute, quenching is performed in an oil bath. The steel material having a martensitic structure produced by quenching is continuously fed to the next cycle rapid heating/cooling zone, and the cycle heat treatment promotes the formation of fine spherules of carbides. That is, in the cycle rapid heating and cooling zone, the steel material is rapidly heated to 780°C by the high-frequency heating device 5, immediately cooled to 80°C by the water jet nozzle 6, and then heated to 780°C by the high-frequency heating device 7.
Rapidly heat to 780℃ and immediately spray with water injection nozzle 8.
Cooled to 80°C, then rapidly heated to 780°C using the same high-frequency heating device 9, and immediately turned on to the water injection nozzle 1.
The film was cooled to 80° C. at 0° C., and then the rapid heating and cooling treatment was repeated as described above, and the cycle was repeated 6 times, and the film was wound onto a tension reel 4. The properties of this steel material are as follows. FIG. 2 is a photograph of the structure taken by a microscope, and b shows a treated material obtained according to an example of the present invention, and a shows a conventional example annealed to form a spheroid in a conventional box annealing furnace. In the case of the present invention, it is clear that the carbides are refined as shown in b. In order to confirm this more precisely, a thin film was prepared by electrolytic polishing, and a photograph of this film examined under a transmission electron microscope is shown in Figure 3. The grain size and crystal grain of the carbide were measured from these photographs, and the size and standard deviation were determined and are shown in the table below.

【表】 これによると従来材の炭化物の平均粒径は0.8
μm、標準偏差は0.35μmで、本実施例の6回サ
イクル処理材の炭化物の平均粒経は0.39μmで、
標準偏差は0.27μmであつた。すなわち、本発明
の連続急速焼鈍方法によると球状炭化物の大きさ
が約半分になり、バラツキも小さくなることが明
らかである。 また、従来材の結晶粒径は5.7μmで、本実施
例の6回サイクル処理材のそれは2.0μmであ
り、かなり結晶粒が微細化していることが明らか
である。 かくのごとく結晶粒が微細化するので、650
℃、710℃の温度でひずみ速度を変えて引張試験
を行うと超塑性現象を示す。そして数百%の延び
を示す、この超塑性現象の目やすとして、ひずみ
速度感受性指数(m値)を実験的に求めた。m値
≧0.3以上あると一般的に超塑性現象を示すとい
はれている。第4図にサイクル急熱急冷処理の回
数とm値の関係を示す。2回以上急熱急冷処理を
繰返えすとm値は0.3以上になることがわかる。
よつて、本発明の焼鈍方法を採用すれば超塑性材
料を製造することも可能である。 第5図には、本発明の焼鈍方法により、微細炭
化物の球状化焼鈍を実施すると、材料の硬さがど
んな変化するかを示す。これによると3回サイク
ル以上で硬度が一定近くなることを示す。焼鈍硬
度の点からいえば3回以上サイクル処理が工業的
には必要と考えられる。 本発明の焼鈍方法による微細球状化炭化物の鋼
材は、需要家において製品加工・切削後焼入・焼
戻処理して使用される。この熱処理における利点
を詳細に説明する。従来材と本発明実施例処理材
との焼入温度と硬度との関係を第6図に示す、従
来材は保持時間5分では800℃以上の焼入温度に
なつて始めて焼が入るといえる。これは球状化炭
化物が比較的に大きくオーステナイトに固溶する
に時間がかかるからである。本実施例による6回
サイクル処理材では750℃×5分間でも充分に焼
が入る状態になる。 これは球状化炭化物が微細なために迅速にオー
ステナイトに固溶するものと考えられ、本発明の
処理材では低い焼入温度で充分な硬度が確保され
る。従来材は工業的に焼入処理する場合、焼入の
バラツキを考慮して840℃の焼入温度が必要であ
るが、本実施例の6回サイクル処理材では780℃
の温度で大量焼入処理が可能であり、硬度のバラ
ツキも安定している。この焼入温度の約60℃の差
があるので、本発明の連続急速球状化焼鈍方法に
よつて製造された鋼材は需要化にとつて省エネル
ギーと生産効率の点で大変有利である。 焼入処理した鋼材は、通常300℃以下の温度で
焼戻処理するのが一般的である。これは焼入した
硬いマルテンサイト組織だけでは、非常にもろく
じん性に欠げるためである。このじん性を評価す
るために、計装化シヤルピー衝撃試験機を使用し
て、動的破壊の挙動を記録計に荷重−時間軸の変
化として記録し、クラツク発生までの吸収エネル
ギー、クラツクの伝ぱエネルギー、破断面のぜい
性破面率の3の値でじん性の評価を行つた。第7
図は、焼戻温度と硬度およびクラツク発生までの
吸収エネルギーとの関係を示す。これより明らか
な通り、焼戻温度が上るにつれて硬度は低下する
が、従来材と本実施例処理材とは同じ傾向を示
し、焼戻抵抗は同じであるが、クラツク発生まで
の吸収エネルギーについては各焼戻温度とも本実
施例の処理材の方が従来材よりも良好である。例
えば同じ吸収エネルギー値をとるとすると、本実
施例処理材は200℃の焼戻温度が、従来材では250
℃になり、約50℃の温度差となり、硬度では約
Rc3の差になる。耐摩耗性の点より考えると、高
い硬度の水準でRc3の差は相当の違いを生ずる。 第8図は、焼戻温度をクラツク伝ぱエネルギー
およびぜい性破面率との関係を示す。クラツクの
伝ぱエネルギーは焼戻温度が高くなるにつれて良
くなる傾向を示す。そしていづれの焼戻温度にお
いても本実施例処理材は従来材に比して良い値を
示す。また、ぜい性破面率を見ても本実施例処理
材の方が従来材に比してぜい性破面率が20%も低
い、すなはち延性破面が20%も多くなるという結
果を示す。以上の事から本実施例処理材は従来材
に比して、じん性が非常に良好な結果を示すこと
が明らかである。 実施例 2 軸受鋼SUJ2(0.98%、C、0.21%、Si、0.28
%、Mn、0.014%、P、0.008%、S、1.4%、
Cr、0.08%、Cu、0.01%Mo)の鋼線(直径3
mm)について実施例を次に示す。 この鋼線について、第9図のようなサイクル熱
処理を実施した。すなわち、650℃に10分予熱し
て、1000℃に昇熱、30分保持し、次に850℃まで
炉冷する。この850℃の温度より油焼入れし、残
存炭化物がない完全なマルテンサイト組織にす
る。このマルテンサイト組織の材料について最適
なサイクル熱処理を実施する。即ち、材料を急速
加熱(約50℃/sec)にて780℃まで加熱し、この
温度で1分保持して、油冷する(冷却速度の急冷
度H値は0.2あつた)。サイクルを6回繰り返した
後、660℃×5分加熱して油冷する。 このようなサイクル熱処理を行うと、従来材の
平均16.34μmのフエライト粒径が平均1.73μm
粒径に微細化し、かつ従来材の平均0.39μmの炭
化物粒径が平均0.19μmに微細する。このため第
10図のごとく、フエライト粒と炭化物粒が微細
化するにつれて、すなわちサイクル数が2回以上
になるとm値が0.3以上になる。この0.3以上では
超塑性現象を示すと言われている。 この時の延びは400%〜500%の値を示した(m
値は、710℃の温度にてひずみ変換法で求めた。) この6回サイクル熱処理材の線材より、軸受ボ
ールを製造し、このボールを850℃温度×5分加
熱し油焼入れした後、直ちに−70℃にてサブゼロ
処理する。その後200℃×30分焼戻処理をおこな
つた。この熱処理したボールを研削した。このボ
ールを転がり疲れ試験機にて寿命試験(曽田式)
をおこなつた。その結果を第11図にしめす。こ
の図の縦軸の累積度数50%の所が平均寿命値にな
る。従来材では、その値が7.16×10となり、6回
サイクル材ではその値が18.84×10となつた。す
なわち、6回サイクル熱処理することによりころ
がり疲れ寿命が約2.5倍向上した。 このように本発明の連続急速球状化焼鈍方法を
採用した鋼材は、需要家の製品の品質の向上に著
しい効果がある。
[Table] According to this, the average grain size of carbides in conventional materials is 0.8
μm, the standard deviation is 0.35 μm, and the average grain size of the carbide of the 6-cycle treated material in this example is 0.39 μm.
The standard deviation was 0.27 μm. That is, it is clear that according to the continuous rapid annealing method of the present invention, the size of the spherical carbides is approximately halved and the variation is also reduced. Further, the crystal grain size of the conventional material was 5.7 μm, and that of the 6-cycle-treated material of this example was 2.0 μm, and it is clear that the crystal grains were considerably refined. As the crystal grains become finer in this way, 650
When a tensile test is performed at different strain rates at temperatures of 710°C and 710°C, it exhibits a superplastic phenomenon. The strain rate sensitivity index (m value) was experimentally determined as a measure of this superplastic phenomenon, which shows an elongation of several hundred percent. It is generally said that an m value of 0.3 or more indicates a superplastic phenomenon. FIG. 4 shows the relationship between the number of cycle rapid heating and cooling treatments and the m value. It can be seen that when the rapid heating and cooling process is repeated two or more times, the m value becomes 0.3 or more.
Therefore, by employing the annealing method of the present invention, it is also possible to produce superplastic materials. FIG. 5 shows how the hardness of the material changes when spheroidizing fine carbide is annealed by the annealing method of the present invention. This shows that the hardness becomes nearly constant after 3 cycles or more. From the point of view of annealing hardness, three or more cycle treatments are considered to be industrially necessary. The fine spheroidized carbide steel produced by the annealing method of the present invention is used by customers after processing, cutting, quenching, and tempering. The advantages of this heat treatment will be explained in detail. Figure 6 shows the relationship between the quenching temperature and hardness of the conventional material and the treated material according to the present invention.It can be said that the conventional material undergoes quenching only when the quenching temperature reaches 800°C or higher when the holding time is 5 minutes. . This is because the spheroidized carbide is relatively large and takes time to dissolve into austenite. The 6-cycle-treated material according to this example can be sufficiently hardened even at 750°C for 5 minutes. This is thought to be due to the fact that the spheroidized carbide is so fine that it quickly forms a solid solution in the austenite, and the treated material of the present invention can ensure sufficient hardness at a low quenching temperature. When conventional materials are quenched industrially, a quenching temperature of 840°C is required to account for quenching variations, but the 6-cycle-treated material of this example requires a quenching temperature of 780°C.
It can be hardened in large quantities at a temperature of , and the variation in hardness is stable. Because of this difference in quenching temperature of about 60°C, the steel produced by the continuous rapid spheroidizing annealing method of the present invention is very advantageous in terms of energy saving and production efficiency for commercialization. Hardened steel materials are generally tempered at a temperature of 300°C or less. This is because a hardened, hard martensitic structure alone is extremely lacking in toughness. In order to evaluate this toughness, we used an instrumented Sharpie impact tester to record the dynamic fracture behavior on a recorder as changes in the load-time axis, and measured the absorbed energy up to the crack occurrence and the propagation of the crack. Toughness was evaluated using three values: energy and brittle fracture surface ratio of the fracture surface. 7th
The figure shows the relationship between tempering temperature, hardness, and absorbed energy until cracking occurs. As is clear from this, the hardness decreases as the tempering temperature increases, but the conventional material and the material treated in this example show the same tendency, and the tempering resistance is the same, but the energy absorbed until cracking is At each tempering temperature, the treated material of this example is better than the conventional material. For example, assuming that the absorbed energy value is the same, the tempering temperature of the treated material of this example is 200℃, while the tempering temperature of the conventional material is 250℃.
℃, the temperature difference is about 50℃, and the hardness is about 50℃.
The difference will be Rc3. From the point of view of wear resistance, the difference in Rc3 makes a considerable difference at high hardness levels. FIG. 8 shows the relationship between tempering temperature, crack propagation energy and brittle fracture ratio. The crack propagation energy tends to improve as the tempering temperature increases. At any tempering temperature, the treated material of this example shows better values than the conventional material. Furthermore, when looking at the brittle fracture rate, the brittle fracture rate of the material treated in this example is 20% lower than that of the conventional material, which means that the ductile fracture rate is 20% higher. The result is shown below. From the above, it is clear that the treated material of this example shows very good results in toughness compared to the conventional material. Example 2 Bearing steel SUJ2 (0.98%, C, 0.21%, Si, 0.28
%, Mn, 0.014%, P, 0.008%, S, 1.4%,
Cr, 0.08%, Cu, 0.01%Mo) steel wire (diameter 3
An example is shown below regarding mm). This steel wire was subjected to cycle heat treatment as shown in FIG. That is, preheat to 650°C for 10 minutes, raise the temperature to 1000°C, hold for 30 minutes, and then cool down to 850°C. It is oil quenched at a temperature of 850°C to create a complete martensitic structure with no residual carbide. Optimal cycle heat treatment is performed on this martensitic structure material. That is, the material was rapidly heated (approximately 50°C/sec) to 780°C, held at this temperature for 1 minute, and cooled with oil (the quenching degree H value of the cooling rate was 0.2). After repeating the cycle 6 times, heat at 660°C for 5 minutes and cool in oil. When such cycle heat treatment is performed, the average ferrite grain size of the conventional material is 16.34 μm, but it is reduced to an average of 1.73 μm.
The carbide grain size is refined to an average of 0.19 μm from the average 0.39 μm of conventional material. Therefore, as shown in FIG. 10, as the ferrite grains and carbide grains become finer, that is, as the number of cycles becomes two or more, the m value becomes 0.3 or more. It is said that a value of 0.3 or more indicates a superplastic phenomenon. The elongation at this time showed a value of 400% to 500% (m
The values were determined by the strain conversion method at a temperature of 710°C. ) A bearing ball is manufactured from the wire of this 6-cycle heat-treated material, and after this ball is oil quenched by heating at 850°C for 5 minutes, it is immediately subjected to sub-zero treatment at -70°C. After that, tempering treatment was performed at 200°C for 30 minutes. This heat-treated ball was ground. Life test of this ball using a rolling fatigue tester (Soda type)
I did this. The results are shown in Figure 11. The 50% cumulative frequency on the vertical axis of this figure is the average lifespan value. For the conventional material, the value was 7.16×10, and for the 6-cycle material, the value was 18.84×10. In other words, rolling fatigue life was improved by about 2.5 times by 6-cycle heat treatment. As described above, the steel products employing the continuous rapid spheroidizing annealing method of the present invention have a remarkable effect on improving the quality of products for customers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは、本発明の焼鈍方法の熱サイク
ル・モデルとその焼鈍ラインの構成を示す図。第
2図a,bは、従来材と本発明の6回サイクル処
理材の球状化炭化物の顕微鏡による組織写真図。
第3図は、本発明の6回サイクル処理材の薄膜の
透過型電子顕微鏡による組織写真図。第4図は、
ひずみ速度感受性指数(m値)と急熱・急冷のサ
イクル回数との関係を示すグラフ。第5図は、微
細球状化焼鈍したときの硬度と急熱急冷のサイク
ル回数との関係を示すグラフ。第6図は、焼入温
度と焼入硬度との関係を示すグラフ。第7図は、
焼戻温度と硬度およびクラツク発生までの吸収エ
ネルギーとの関係を示すグラフ。第8図は、焼戻
温度とクラツク伝ぱエネルギーおよびぜい性破面
率との関係を示すグラフ第9図は軸受鋼SUJ2の
最適サイクル熱処理方法の概略図、第10図はサ
イクル回数と延性および最大M値との関係を示す
図、第11図は軸受鋼の従来材と6回サイクル熱
処理材のころがり疲れ寿命のワイブル分布を示す
図である。 1……ベイオフーリール、2,5,7,9……
高周波加熱装置、3……油槽または水槽、4……
テンシヨンリール、6,8,10……水噴射ノズ
ル、a……加熱均熱帯、b……第1次急冷帯、c
……サイクル急速加熱冷却帯。
FIGS. 1a and 1b are diagrams showing a thermal cycle model of the annealing method of the present invention and the configuration of its annealing line. FIGS. 2a and 2b are microscopic microscopic micrographs of the spheroidized carbides of the conventional material and the 6-cycle-treated material of the present invention.
FIG. 3 is a microstructure photograph taken with a transmission electron microscope of a thin film of the 6-cycle treated material of the present invention. Figure 4 shows
A graph showing the relationship between the strain rate sensitivity index (m value) and the number of cycles of rapid heating and cooling. FIG. 5 is a graph showing the relationship between hardness and the number of cycles of rapid heating and cooling when annealed to form fine spherules. FIG. 6 is a graph showing the relationship between quenching temperature and quenching hardness. Figure 7 shows
A graph showing the relationship between tempering temperature, hardness, and absorbed energy until cracking occurs. Figure 8 is a graph showing the relationship between tempering temperature, crack transfer energy, and brittle fracture ratio. Figure 9 is a schematic diagram of the optimum cycle heat treatment method for bearing steel SUJ2. Figure 10 is a graph showing the relationship between the number of cycles, ductility and FIG. 11 is a diagram showing the relationship between the maximum M value and the Weibull distribution of the rolling fatigue life of the conventional bearing steel and the 6-cycle heat-treated material. 1... Beio four reel, 2, 5, 7, 9...
High frequency heating device, 3... oil tank or water tank, 4...
Tension reel, 6, 8, 10...Water injection nozzle, a...Heating soaking zone, b...First rapid cooling zone, c
...Cycle rapid heating and cooling zone.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間および冷間圧延によつて製造した中高炭
素鋼鋼帯または鋼線を加熱・均熱、一次急冷、サ
イクル急速加熱・冷却の各帯域を順次直列に有す
る連続焼鈍炉を連続的に通過せしめ、加熱均熱帯
において、A3線およびAcm線より50℃〜200℃高
い完全オーステナイト域の温度で30秒〜5分の均
熱を行い、次いで一次急冷帯において200℃以下
まで10℃〜200℃/秒の速度で急冷した後、サイ
クル急速加熱・冷却帯において780〜800℃と100
℃以下との温度範囲を急速加熱冷却のサイクル処
理を2〜6回繰返すことにより、微細球状化炭化
物を析出させることを特徴とする中高炭素鋼鋼帯
または鋼線の連続急速球状化焼鈍方法。
1 Medium-high carbon steel strips or steel wires manufactured by hot and cold rolling are continuously passed through a continuous annealing furnace having heating/soaking, primary quenching, and cycle rapid heating/cooling zones in series. In the heating soaking zone, soaking is performed for 30 seconds to 5 minutes at a temperature in the complete austenite range that is 50℃ to 200℃ higher than the A3 line and Acm line, and then in the primary quenching zone, the temperature is 10℃ to 200℃ to 200℃ or less. After quenching at a rate of ℃/sec, 780-800℃ and 100℃ in the cycle rapid heating/cooling zone.
A continuous rapid spheroidizing annealing method for medium-high carbon steel strip or steel wire, characterized in that fine spheroidized carbides are precipitated by repeating a cycle of rapid heating and cooling 2 to 6 times in a temperature range of 0.degree. C. or lower.
JP5166282A 1982-03-30 1982-03-30 Method for continuously spheroidization-annealing of strip or wire of medium or high-carbon steel, or medium or high-carbon low-alloyed steel excellent in high hardness and toughness Granted JPS58167728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5166282A JPS58167728A (en) 1982-03-30 1982-03-30 Method for continuously spheroidization-annealing of strip or wire of medium or high-carbon steel, or medium or high-carbon low-alloyed steel excellent in high hardness and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5166282A JPS58167728A (en) 1982-03-30 1982-03-30 Method for continuously spheroidization-annealing of strip or wire of medium or high-carbon steel, or medium or high-carbon low-alloyed steel excellent in high hardness and toughness

Publications (2)

Publication Number Publication Date
JPS58167728A JPS58167728A (en) 1983-10-04
JPS6252011B2 true JPS6252011B2 (en) 1987-11-02

Family

ID=12893083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5166282A Granted JPS58167728A (en) 1982-03-30 1982-03-30 Method for continuously spheroidization-annealing of strip or wire of medium or high-carbon steel, or medium or high-carbon low-alloyed steel excellent in high hardness and toughness

Country Status (1)

Country Link
JP (1) JPS58167728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344074U (en) * 1989-09-07 1991-04-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294271A (en) * 1991-06-14 1994-03-15 Nisshin Steel Co., Ltd. Heat treatment for manufacturing spring steel excellent in high-temperature relaxation resistance
CN109609750B (en) * 2019-01-17 2024-04-12 西南石油大学 Zero-tension synchronous transmission heat treatment system for preparing high-performance superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344074U (en) * 1989-09-07 1991-04-24

Also Published As

Publication number Publication date
JPS58167728A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
CN106544597B (en) Ultra-thin ultra-wide steel for nuclear power pressure equipment plate and its manufacture method
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP3966493B2 (en) Cold forging wire and method for producing the same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
CN106133169A (en) High-carbon hot-rolled steel sheet and manufacture method thereof
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP3879447B2 (en) Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JPS6252011B2 (en)
JP3266902B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPH10204540A (en) Production of cold rolled high-carbon steel strip
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JP3103268B2 (en) Method for producing steel sheet for containers with excellent fluting resistance
JP4976985B2 (en) Manufacturing method of wire rod and steel bar with excellent low-temperature torsional characteristics
JPH0570685B2 (en)
CN115449806B (en) Production process for improving microstructure uniformity of spring steel
TW202039869A (en) Method of manufacturing medium carbon steel
JPH1060540A (en) Production of high carbon cold rolled steel strip
TWI815504B (en) Cold-rolled steel plate, steel parts, manufacturing method of cold-rolled steel plate, and manufacturing method of steel parts
JPS5913024A (en) Manufacture of directly spheroidized steel material
JP2852810B2 (en) Manufacturing method of high carbon cold rolled steel strip with excellent workability
JPH058256B2 (en)
JPH02294450A (en) Die steel for molding plastics and its manufacture
JPS6056017A (en) Production of thick steel plate having excellent low- temperature toughness