JPS6251519B2 - - Google Patents

Info

Publication number
JPS6251519B2
JPS6251519B2 JP56196493A JP19649381A JPS6251519B2 JP S6251519 B2 JPS6251519 B2 JP S6251519B2 JP 56196493 A JP56196493 A JP 56196493A JP 19649381 A JP19649381 A JP 19649381A JP S6251519 B2 JPS6251519 B2 JP S6251519B2
Authority
JP
Japan
Prior art keywords
layer
guide layer
conductivity type
light guide
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56196493A
Other languages
Japanese (ja)
Other versions
JPS5897886A (en
Inventor
Masafumi Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56196493A priority Critical patent/JPS5897886A/en
Priority to CA000417143A priority patent/CA1196078A/en
Priority to US06/447,553 priority patent/US4575851A/en
Publication of JPS5897886A publication Critical patent/JPS5897886A/en
Publication of JPS6251519B2 publication Critical patent/JPS6251519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Description

【発明の詳細な説明】 本発明は少なくとも1つの分布反射器を有し単
一軸モード発振をする分布反射型半導体レーザに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed reflection semiconductor laser that has at least one distributed reflector and oscillates in a single-axis mode.

従来知られている分布反射型半導体レーザは、
半導体基板の上に順次光ガイド層、活性層、クラ
ツド層等を成長させ、その後分布反射部の活性層
をエツチングで取去り、露出した波ガイドの境界
面に活性層内の光波長の1/2の整数倍の周期構造
を形成するものであつた。この型の半導体レーザ
は結晶成長が終了したあとに周期構造を形成する
ので、エツチングの難かしさ等の理由から歩留り
が低い欠点があつた。また高効率化をねらつた埋
込み構造をこの型の半導体レーザに対して適用す
る方法も知られておらず、室温連続発振のレベル
にまで到達することが難かしかつた。
The conventionally known distributed reflection semiconductor laser is
An optical guide layer, an active layer, a cladding layer, etc. are sequentially grown on a semiconductor substrate, and then the active layer in the distributed reflection section is removed by etching, and a layer of 1/1 of the optical wavelength in the active layer is formed on the exposed boundary surface of the waveguide. It formed a periodic structure with an integral multiple of 2. Since this type of semiconductor laser forms a periodic structure after crystal growth is completed, it has the drawback of low yields due to difficulties in etching and other reasons. Furthermore, there is no known method for applying a buried structure aimed at high efficiency to this type of semiconductor laser, and it has been difficult to reach the level of continuous oscillation at room temperature.

本発明は、半導体基板にあらかじめ周期構造を
形成した後に光ガイド層、活性層、クラツド層等
を結晶成長させてなる分布反射型半導体レーザで
あつて、しかも分布反射部には活性層がなく、さ
らに埋込み構造を容易に実現できる分布反射型半
導体レーザを提供するものである。
The present invention is a distributed reflection type semiconductor laser in which a periodic structure is formed on a semiconductor substrate in advance, and then a light guide layer, an active layer, a cladding layer, etc. are grown as crystals, and furthermore, there is no active layer in the distributed reflection part. Furthermore, the present invention provides a distributed reflection type semiconductor laser that can easily realize a buried structure.

本発明によれば、レーザ発振軸とほぼ直交する
凹形溝の低部とそれ以外の高部を有しこの高部に
結晶内部光波長の1/2の整数倍の周期構造が形成
された第1の導電型の半導体基板と、この半導体
基板の全面に形成された第1の導電型の光ガイド
層と、低部の上側に位置するガイド層の部分の上
にのみ形成された活性層及び第2の導電型の第1
クラツド層と、高部の上側に位置する光ガイド層
の部分及び第1のクラツド層の両者の上に成長さ
れた第2の導電型の第2クラツド層とを含む分布
反射型半導体レーザが得られる。
According to the present invention, the concave groove has a lower part substantially orthogonal to the laser oscillation axis and another higher part, and a periodic structure having an integral multiple of 1/2 of the optical wavelength inside the crystal is formed in this higher part. A semiconductor substrate of a first conductivity type, an optical guide layer of a first conductivity type formed on the entire surface of this semiconductor substrate, and an active layer formed only on a portion of the guide layer located above the lower portion. and a first of a second conductivity type.
A distributed reflection semiconductor laser is obtained that includes a cladding layer and a second cladding layer of a second conductivity type grown on both the portion of the light guide layer located above the ridge and the first cladding layer. It will be done.

なお、光ガイド層は光活性層で増幅される光を
極めて低損失に伝搬させることが必要なので、光
ガイド層の帯止帯幅は光活性層の帯止帯幅より大
きくし、光の吸収がおこらない様にすることが要
請される。
Note that the light guide layer must propagate the light amplified in the photoactive layer with extremely low loss, so the tourniquet width of the light guide layer is made larger than the tourniquet width of the photoactive layer to reduce light absorption. It is necessary to take measures to prevent this from happening.

次に本発明の分布反射型半導体レーザについて
図面を用いて説明する。
Next, the distributed reflection type semiconductor laser of the present invention will be explained using the drawings.

第1図は本発明の第1の実施例の縦断面図であ
る。第2図は第1の実施例の低部100における
横断面図、第3図は第1の実施例の高部200に
おける横断面図である。n−InPの基板1はエツ
チングで形成した低部100と高部200とから
なつている。高部200の表面には、2光束干渉
法と化学エツチングを用いて、結晶内部光波長の
1/2に相当する周期の回折格子13が形成されて
いる。低部100と高部200の上には、禁止帯
幅波長が1.15μmのn−In0.82Ga0.18As0.40P0.60
光ガイド層2が成長されている。低部100の上
側にある光ガイド層2の上には、禁止帯幅波長
(発振波長)が1.30μmのIn0.72Ga0.28As0.61P0.39
の活性層3及びp−InPの第1クラツド層4が成
長されている。高部200の上の光ガイド層2及
び低部200の上の第1クラツド層4の上にはp
−InPの第4クラツド層7と禁止帯幅波長が1.30
μmのn−In0.72Ga0.28As0.61P0.39のキヤツプ層8
が成長されている。低部100の上側にあるキヤ
ツプ層8から第4クラツド層7にわたり、亜鉛の
拡散が行なわれキヤツプ層8の上に形成された第
1電極9から第4クラツド層7の間の抵抗は低部
100の上側の領域のみが低くなつている。低部
100の部分では光ガイド層2、活性層3、第1
クランド層4からなる結晶層が2本の溝で三分割
され、中央にメサ状ストライプ21が形成されて
いる。この2本の溝はp−InPの第2クランド層
5及びn−InPの第3クランド層6により埋込ま
れているが、第2クラツド層5と第3クラツド層
6はメサ状ストライプ21の第1クラツド層4の
上には成長していない。これは、結晶成長時の条
件を適当に定めることにより実現できる。一方、
高部200の部分では光ガイド層2が低部100
の部分と同一の2本の溝で三分割されている。こ
の2本の溝は低部100の部分と同様に、第2ク
ラツド層5及び第3クラツド層6により埋込まれ
ている。第2電極10は基板1の下に形成されて
いる。以上の構造において本発明の動作を説明す
る。低部100においては光は活性層3及び光ガ
イド層2内を伝搬し、高部200においては光は
光ガイド層2内を伝搬する。低部100にある活
性層3は波長1.3μm付近の光に対して増幅作用
を有する。また、開面11は活性層3及び光ガイ
ド層2内を伝搬する光を逆方向に反射し、回折格
子13は光ガイド層2内を伝搬する光をブラツグ
回折により逆方向に反射する。これらの作用によ
り本発明の一実施例は波長1.3μmにおいてレー
ザ発振を行なう。第4図は本発明の一実施例の作
製手順を示す図である。まず、第4aに示すよう
にInPの基板1の上に半導体レーザ発振軸に直交
する方向に凹形の溝をフオトレジストをマスクと
して化学エツチングで形成し、その後溝の両わき
の高部200にHe−Cdレーザの2光束干渉露光
法と化学エツチングを用いて回折格子13を形成
する。次いで、基板1の上の全面にエピタキシヤ
ル成長法により光ガイド層2、活性層3、第1ク
ラツド層4を成長させる。(第4図a)。この時、
第1クラツド層4は厚く成長させて表面が平坦に
近づくようにする。次いで、化学エツチングによ
り高部200において光ガイド層2が露出するま
でエツチングする。さらにこのエツチングに引続
き、発振軸方向にメサ状ストライプ21を形成す
るべく、2本の溝を低部100の基板の高さに達
するまでエツチングする(第4図d)。次いで、
第2回目のエピタキシヤル成長を行ない、第2、
第3、第4クラツド層5,6,7及びキヤツプ層
8を成長させる(第4図e)。次いで、メサ状ス
トライプ21の中にある活性層3の直上部分にの
み亜鉛拡散を行なつて第4クラツド層7まで達す
るようにした後、表面全体に第1電極9及び裏面
全体に第2電極10を形成する。ここまでプロセ
スの完了したウエーハを低部100のところでメ
サ状ストライプ21に直交するように、開し、ま
た高部200のところで切断すれば分布反射型半
導体レーザが得られる。以上の説明からわかるよ
うに、この分布反射型半導体レーザにおいては、
低部100で活性層3及び光ガイド層2が埋込み
構造となつており、高部100で光ガイド層2の
みが埋込み構造となつており、さらに高部100
の光ガイド層2には境面界に分布反射器として働
く回折格子13が形成されている。
FIG. 1 is a longitudinal sectional view of a first embodiment of the invention. FIG. 2 is a cross-sectional view of the low part 100 of the first embodiment, and FIG. 3 is a cross-sectional view of the high part 200 of the first embodiment. The n-InP substrate 1 consists of a lower part 100 and a higher part 200 formed by etching. The surface of the high part 200 is etched using two-beam interferometry and chemical etching to adjust the internal light wavelength of the crystal.
A diffraction grating 13 with a period corresponding to 1/2 is formed. A light guide layer 2 of n-In 0.82 Ga 0.18 As 0.40 P 0.60 with a bandgap wavelength of 1.15 μm is grown on the lower portion 100 and the upper portion 200 . On the optical guide layer 2 on the upper side of the lower part 100, In 0.72 Ga 0.28 As 0.61 P 0.39 with a bandgap wavelength ( oscillation wavelength) of 1.30 μm is formed.
An active layer 3 of p-InP and a first cladding layer 4 of p-InP are grown. The optical guide layer 2 above the high part 200 and the first cladding layer 4 above the low part 200 are
-The fourth cladding layer 7 of InP and the bandgap wavelength is 1.30
μm n-In 0.72 Ga 0.28 As 0.61 P 0.39 cap layer 8
is growing. Zinc is diffused from the cap layer 8 to the fourth clad layer 7 on the upper side of the lower part 100, and the resistance between the first electrode 9 formed on the cap layer 8 and the fourth clad layer 7 is lower than that of the lower part 100. Only the area above 100 is low. In the lower part 100, the light guide layer 2, the active layer 3, the first
A crystal layer consisting of the ground layer 4 is divided into three parts by two grooves, and a mesa-shaped stripe 21 is formed in the center. These two grooves are filled with a second cladding layer 5 of p-InP and a third cladding layer 6 of n-InP. It does not grow on the first cladding layer 4. This can be realized by appropriately determining the conditions during crystal growth. on the other hand,
In the high part 200, the light guide layer 2 is in the low part 100.
It is divided into three parts by the same two grooves as the part. These two grooves, like the lower portion 100, are filled with the second cladding layer 5 and the third cladding layer 6. The second electrode 10 is formed under the substrate 1. The operation of the present invention will be explained based on the above structure. In the lower part 100, light propagates in the active layer 3 and the light guide layer 2, and in the higher part 200, light propagates in the light guide layer 2. The active layer 3 in the lower portion 100 has an amplifying effect on light having a wavelength of around 1.3 μm. Further, the open surface 11 reflects the light propagating within the active layer 3 and the light guide layer 2 in the opposite direction, and the diffraction grating 13 reflects the light propagating within the light guide layer 2 in the reverse direction by Bragg diffraction. Due to these effects, one embodiment of the present invention performs laser oscillation at a wavelength of 1.3 μm. FIG. 4 is a diagram showing a manufacturing procedure of an embodiment of the present invention. First, as shown in Section 4a, a concave groove is formed on the InP substrate 1 in a direction perpendicular to the semiconductor laser oscillation axis by chemical etching using photoresist as a mask, and then the high parts 200 on both sides of the groove are formed. The diffraction grating 13 is formed using a He--Cd laser two-beam interference exposure method and chemical etching. Next, a light guide layer 2, an active layer 3, and a first cladding layer 4 are grown on the entire surface of the substrate 1 by epitaxial growth. (Figure 4a). At this time,
The first cladding layer 4 is grown thickly so that the surface approaches flatness. Next, chemical etching is performed until the light guide layer 2 is exposed at the high portion 200. Further, following this etching, two grooves are etched until they reach the height of the substrate in the lower part 100 in order to form a mesa-like stripe 21 in the direction of the oscillation axis (FIG. 4d). Then,
Perform the second epitaxial growth,
The third and fourth cladding layers 5, 6, 7 and the cap layer 8 are grown (FIG. 4e). Next, zinc is diffused only in the part directly above the active layer 3 in the mesa-shaped stripe 21 so as to reach the fourth cladding layer 7, and then a first electrode 9 is spread over the entire front surface and a second electrode is spread over the entire back surface. form 10. A distributed reflection semiconductor laser can be obtained by opening the wafer, which has been processed up to this point, so as to be perpendicular to the mesa-shaped stripes 21 at the lower part 100 and cutting it at the higher part 200. As can be seen from the above explanation, in this distributed reflection semiconductor laser,
The active layer 3 and the optical guide layer 2 have a buried structure in the low part 100, and only the optical guide layer 2 has a buried structure in the high part 100.
A diffraction grating 13 serving as a distributed reflector is formed at the interface of the light guide layer 2 .

この実施例においては、2回のエピタキシヤル
成長で埋込み構造の分布反射型半導体レーザが得
られる特長があり、しかも分布反射器の回折格子
13はエピタキシヤル成長の開始前に形成できる
ためレーザ製作の歩留りが高いという利点があ
る。
This embodiment has the advantage that a distributed reflection semiconductor laser with a buried structure can be obtained with two epitaxial growth steps.Moreover, the diffraction grating 13 of the distributed reflector can be formed before the start of epitaxial growth. It has the advantage of high yield.

次に、この実施例の変形例をのべる。活性層3
の禁止巾は1.3μmに限定されることなく1.5μm
等でもよい。なお、禁止帯幅を1.5μmとする場
合には、活性層3の上の結晶成長を容易にするた
め禁止帯幅が1.3μm付近の四元混晶をさらに積
層させてもよい。この実施例の結晶構成の他に、
適宜InP又は四元混晶の層を挿入した構成とし、
化学エツチングのストツプ層を設けるようにして
もよい。基板1の導電型はP型であつてもよい。
なお、その場合には他の成長層の導電型をこの実
施例の場合の反対のものにすることが必要であ
る。さらに、基板1及び四元混晶はInP及び
In1-xGaxAsyP1-y(ox、y1)以外であつ
てもよい。この実施例では、一方の反射器として
開面11を用いたが、代りに回折格子の分布型反
射器を用いてもよい。なお、3の場合には、光取
出し側の光ガイド層2の回折格子長さを他方より
短くすることが望ましい。この実施例では、スト
ライプ状メサ21を形成するために2本の溝を形
成したが、基板1の上にストライプ状メサ21が
孤立する形にした後、第2回目の成長を行なうよ
うにしてもよい。あるいは、ストライプ状メサ2
1を形成せずプレーナストライプ構造にしてもよ
い。
Next, a modification of this embodiment will be described. active layer 3
The prohibited width is not limited to 1.3μm, but is 1.5μm.
etc. In addition, when the forbidden band width is set to 1.5 μm, in order to facilitate crystal growth on the active layer 3, a quaternary mixed crystal having a forbidden band width of about 1.3 μm may be further laminated. In addition to the crystal structure of this example,
A structure in which a layer of InP or quaternary mixed crystal is inserted as appropriate,
A chemical etching stop layer may also be provided. The conductivity type of the substrate 1 may be P type.
In that case, it is necessary to make the conductivity type of the other growth layer opposite to that in this embodiment. Furthermore, the substrate 1 and the quaternary mixed crystal are InP and
It may be other than In 1-x Ga x As y P 1-y (ox, y1). In this embodiment, the open surface 11 is used as one of the reflectors, but a distributed reflector of a diffraction grating may be used instead. In the case of 3, it is desirable that the length of the diffraction grating of the light guide layer 2 on the light extraction side is shorter than that of the other side. In this example, two grooves were formed to form the striped mesa 21, but after the striped mesa 21 was isolated on the substrate 1, the second growth was performed. Good too. Or striped mesa 2
1 may be omitted and a planar stripe structure may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2、
第3図はそれぞれ低部100および高部200に
おける横断面図である。第4図は一実施例の作製
手順を示す図であり、a〜cは縦断面図、d〜e
は横断面図である。 図において、1……基板、2……光ガイド層、
3……活性層、4,5,6,7……クラツド層、
13……回折格子、21……ストライプ状メサ、
100……低部、200……高部である。
FIG. 1 is a vertical sectional view of one embodiment of the present invention;
FIG. 3 is a cross-sectional view of the lower portion 100 and the higher portion 200, respectively. FIG. 4 is a diagram showing the manufacturing procedure of one example, a to c are longitudinal cross-sectional views, and d to e
is a cross-sectional view. In the figure, 1...substrate, 2... light guide layer,
3...active layer, 4,5,6,7...clad layer,
13... Diffraction grating, 21... Striped mesa,
100...low part, 200...high part.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ発振軸とほぼ直交する凹形溝の低部と
それ以外の高部を有し該高部に結晶内部光波長の
1/2の整数倍の周期構造が形成された第1の導電
型の半導体基板と、該半導体基板の全面に形成さ
れた第1の導電型の光ガイド層と、該低部の上側
に位置する該光ガイド層の部分の上にのみ形成さ
れた活性層及び第2の導電型の第1クラツド層
と、該高部の上側に位置する該光ガイド層の部分
及び該第1クラツド層の両者の上に成長された第
2の導電型の第2のクラツド層とを含む分布反射
型半導体レーザ。
1 It has a lower part of the concave groove that is almost perpendicular to the laser oscillation axis and a higher part, and the upper part has the wavelength of light inside the crystal.
A semiconductor substrate of a first conductivity type in which a periodic structure having an integral multiple of 1/2 is formed, an optical guide layer of a first conductivity type formed on the entire surface of the semiconductor substrate, and a light guide layer of a first conductivity type located above the lower part. an active layer and a first cladding layer of a second conductivity type formed only on a portion of the light guide layer that is located above the high portion; and a second cladding layer of a second conductivity type grown thereon.
JP56196493A 1981-12-07 1981-12-07 Distribution reflection type semiconductor laser Granted JPS5897886A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56196493A JPS5897886A (en) 1981-12-07 1981-12-07 Distribution reflection type semiconductor laser
CA000417143A CA1196078A (en) 1981-12-07 1982-12-07 Double channel planar buried heterostructure laser with periodic structure formed in guide layer
US06/447,553 US4575851A (en) 1981-12-07 1982-12-07 Double channel planar buried heterostructure laser with periodic structure formed in guide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196493A JPS5897886A (en) 1981-12-07 1981-12-07 Distribution reflection type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5897886A JPS5897886A (en) 1983-06-10
JPS6251519B2 true JPS6251519B2 (en) 1987-10-30

Family

ID=16358685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196493A Granted JPS5897886A (en) 1981-12-07 1981-12-07 Distribution reflection type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5897886A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136280A (en) * 1983-12-26 1985-07-19 Toshiba Corp Manufacture of buried type semiconductor laser

Also Published As

Publication number Publication date
JPS5897886A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
JPH0461514B2 (en)
JPH06296007A (en) Formation method for structure of combination of optical waveguide and mirror and structure obtained thereby
JPS6251519B2 (en)
JPS58131785A (en) Single axis mode oscillating semiconductor laser
JPH01129478A (en) Light-emitting diode
JPH037153B2 (en)
JPS596588A (en) Semiconductor laser
JPH0448792A (en) Active optical element of semiconductor provided with window region
JPS6361793B2 (en)
JPS63305582A (en) Semiconductor laser
JPS6237908B2 (en)
JPS63287079A (en) Manufacture of semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPS60165782A (en) Semiconductor laser
JPH0155589B2 (en)
JPS6351558B2 (en)
JP2750180B2 (en) Edge emitting light emitting diode and method of manufacturing the same
JP2913327B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPH07109922B2 (en) Method for manufacturing distributed reflection semiconductor laser
JPH0680864B2 (en) Semiconductor laser
JPS59127889A (en) Semiconductor laser
JPH03237767A (en) End face light emitting diode
JPS59119885A (en) Distributed feedback type semiconductor laser
JPH05145192A (en) Semiconductor optical amplifier and manufacture thereof
JPH02105489A (en) Manufacture of semiconductor laser