JPS60136280A - Manufacture of buried type semiconductor laser - Google Patents

Manufacture of buried type semiconductor laser

Info

Publication number
JPS60136280A
JPS60136280A JP24371383A JP24371383A JPS60136280A JP S60136280 A JPS60136280 A JP S60136280A JP 24371383 A JP24371383 A JP 24371383A JP 24371383 A JP24371383 A JP 24371383A JP S60136280 A JPS60136280 A JP S60136280A
Authority
JP
Japan
Prior art keywords
layer
etching
crystal
inp
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24371383A
Other languages
Japanese (ja)
Inventor
Hideto Furuyama
英人 古山
Yuji Hirayama
平山 雄二
Yutaka Uematsu
豊 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24371383A priority Critical patent/JPS60136280A/en
Publication of JPS60136280A publication Critical patent/JPS60136280A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the inhibition of diffusion leakage current and the inhibition of turn-ON of a P/N reverse junction in the high output action of the titled laser by a method wherein a current diffusion preventing region is provided in adjacency to a buried mesa stripe. CONSTITUTION:The Fig (a) shows the state that a groove is provided by etching after a photoresist 9 is provided on an N type InP substrate 1. The Fig (b) shows the state that an N type InP buffer layer 1', an InGaAsP active layer 2, a P type InP clad layer 3, and a P type InGaAsP ohmic contact layer 4 are crystal-grown after removal of the photoresist 9. The state of crystal growth at this time shows crystal growth with a thickness of the degree that the trace of the groove provided in the Fig (a) remains. The Fig (c) shows the state that mesa etching is carried out with an etchant having no crystal selectivity to InGaAsP and InP. The etched state at this time shows an etching deep on both sides because of the trace of the groove provided first and shallow at the other part. Successively, a P type InP buried layer 5, an N type InP blocking layer 6, and a P type or N type InGaAsP crystal protection layer 7 are grown.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、埋め込み型半導体レーザーの製造方法に係り
5%に高出力特性及び出力効率の改善を図った埋め込み
#、導1本レーザーの製造方法に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a buried type semiconductor laser, and relates to a method for manufacturing a buried type semiconductor laser with a 5% improvement in high output characteristics and output efficiency. Regarding the method.

〔従来技術とその問題点〕[Prior art and its problems]

埋め込ミ梨半導体レーザーは、安定した単−横モード、
低い発振閾値電流が得られる等の利点を有している。埋
め込み型半導体レーザーは、2重へテロ接合構造のウエ
ノ1−に1μm程度のメサストライプを設け、そのメサ
ストライプをP/N逆接合等を設けたクラッド結晶によ
って埋め込むものである。この構造によれば、縦横両方
向に光閉じ込めが可能であり、安定した単−横モード発
振が得られる。また、埋め込み層′による電流閉じ込め
が行えるために低い発振閾値電流も得ることができる。
The buried Milli semiconductor laser has a stable single-transverse mode,
It has advantages such as low oscillation threshold current. An embedded semiconductor laser is a device in which a mesa stripe of about 1 μm is provided on a double heterojunction structure Ueno 1-, and the mesa stripe is embedded with a clad crystal provided with a P/N reverse junction or the like. According to this structure, optical confinement is possible in both the vertical and horizontal directions, and stable single-transverse mode oscillation can be obtained. Furthermore, since current confinement can be achieved by the buried layer', a low oscillation threshold current can also be obtained.

−1図に埋め込み成牛4体レーザーの模式断面図を示す
。図中2の部分が活性1蓄であり、l。
Figure-1 shows a schematic cross-sectional view of the laser implanted in four adult cows. The part 2 in the figure is active 1 storage, and l.

3.5のクラッド結晶によって埋め込まれてG)る。G) is embedded by a cladding crystal of 3.5.

しかしながら、このような従来の埋め込み型半導体レー
ザーにおいては、4のオーミックコンタクト層から注入
された′電流が一部5のクラッド層中へ流入し、5の層
中を拡散して拡がりリークα流となることが多かった。
However, in such a conventional buried semiconductor laser, a part of the current injected from the ohmic contact layer 4 flows into the cladding layer 5, diffuses through the layer 5, and spreads, resulting in a leakage α current. It often happened.

口のリーク電流(図中破線矢印で示す)は、半導体レー
ザーの高出力動作において効率の低下、埋め込みr帝の
P/’N逆接合をターンオンさせ易(する等の問題が生
じ、埋め込み型半導体レーザーの高出力動作を困難なも
のにしていた。
The leakage current (indicated by the broken line arrow in the figure) causes problems such as a decrease in efficiency during high-output operation of the semiconductor laser and the tendency to turn on the P/'N reverse junction of the buried semiconductor. This made high-power laser operation difficult.

〔発明の目的〕[Purpose of the invention]

不発明は、このような従来技術の欠点にM月して考慮さ
れたものであり、埋め込み型半導体レーザーの高出力動
作において拡散リークα流の抑1fflJ。
The invention was made in consideration of these drawbacks of the prior art, and is aimed at suppressing the diffusion leakage α flow in high-power operation of an embedded semiconductor laser.

P/N逆凄合のターンオン抑制を可能とする埋め込み型
半導体レーザーの製造方法を提供することを目的として
いる。
It is an object of the present invention to provide a method for manufacturing a buried semiconductor laser that makes it possible to suppress turn-on due to P/N reverse coupling.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、埋め込んだメサストライプに隣接して
電流拡散防止領域を設けたことにある。
A feature of the present invention is that a current diffusion prevention region is provided adjacent to the buried mesa stripe.

82図に本発明の模式断面図を示す。FIG. 82 shows a schematic cross-sectional view of the present invention.

この図において、8の領域が電流拡散防止領域である。In this figure, a region 8 is a current diffusion prevention region.

第1図と同様5の層中に流入したリーク電′a、(破線
矢印)は菓子全体にかかる電界のために8の領域より外
側には拡散して拡がることかできない。それは8の領域
より外側に拡がろうとした場合、電界に逆って流れなけ
ればならないためである(図中実線矢印は電界方向を示
す)。
As in FIG. 1, the leakage electric current 'a (indicated by the broken line arrow) that has flowed into the layer 5 cannot diffuse and spread outside the region 8 because of the electric field applied to the entire confectionery. This is because if it tries to spread outside the region 8, it must flow against the electric field (the solid line arrow in the figure indicates the direction of the electric field).

かくして本発明によれば、リーク電流の拡散拡がりを抑
制でき、高出力動作時における効率低下、P/N逆接合
のターンオンを防止することが可能となる。
Thus, according to the present invention, it is possible to suppress the diffusion and spread of leakage current, and it is possible to prevent a decrease in efficiency and turn-on of the P/N reverse junction during high output operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リークα流の拡牧拡がりによるP/N
逆接合のターンオン現象等を防止てぺ、埋め込み型半導
体レーザーの高出力動作を容易にする効果を奏する。
According to the present invention, the P/N due to the expansion of the leak α flow
This has the effect of preventing reverse junction turn-on phenomena and facilitating high-output operation of a buried semiconductor laser.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しながら本発明実柿例の説明を行う。こ
こではInGaAsP活性1i 系結晶の場合について
説明を行う、。
Examples of persimmons according to the present invention will be explained below with reference to the drawings. Here, the case of InGaAsP active 1i type crystal will be explained.

i嘉31ス(al〜(diは本発明の一夷症例の製造工
程を示す図である。fat図はN形1nP基板1上にフ
ォトレジスト9を設はエツチングによる購を設けた状態
である。Fb1図のフォトレジスト9を除去し、N形I
nP′<ンフy 層1’、 InGaAsP活性1i 
2 、 、P形InPクラッド層3.P形InGaAs
Pオーミククコンタクト層4を結晶成長させた状態であ
る。
Figure 31 shows the manufacturing process of one example of the present invention. The fat diagram shows a state in which a photoresist 9 is provided on an N-type 1nP substrate 1 and a groove is formed by etching. .Remove the photoresist 9 in figure Fb1 and
nP′<nfy layer 1′, InGaAsP activity 1i
2. , P-type InP cladding layer 3. P-type InGaAs
This is a state in which the P ohmic contact layer 4 has been crystal-grown.

このと性の結晶成長状態は、(a1図で設けた溝の痕跡
が残る程度の厚みで結晶成長2行う。列えば荷幅10〜
20〔μm〕を溝の深さ1〜2〔μm〕では結晶成長厚
は2〜2.5〔μm〕とすればよい。fC1図はInG
aAsP及びInPに対して結晶選択性をもたないエツ
チング液1例えばBr−メタノール等のエツチング液に
よってメサエッチングを行った状/劇である。
In this normal crystal growth state, (crystal growth 2 is carried out to a thickness that leaves traces of the grooves provided in figure a1.
20 [μm] and the groove depth is 1 to 2 [μm], the crystal growth thickness may be 2 to 2.5 [μm]. fC1 diagram is InG
This is the result of mesa etching performed using an etching solution 1 that does not have crystal selectivity for aAsP and InP, such as Br-methanol.

このときのエツチング状態は、最初に設けた溝の痕跡の
ためメサストライプ両側で深く、それ以外の部分で浅く
エツチングされたような状態となる。
At this time, the etching state is such that it is deep etched on both sides of the mesa stripe due to the traces of the grooves that were initially provided, and shallowly etched on other parts.

続いて、P形InP埋め込み層5.N形InPブロッキ
ング層6.P形又はN形InGaAsP結晶保護層7を
5y、侵させる。この状態がfd1図で第2図と同様な
状態となる。
Next, a P-type InP buried layer 5. N-type InP blocking layer6. The P-type or N-type InGaAsP crystal protective layer 7 is eroded by 5y. This state is the fd1 diagram, which is similar to that in FIG. 2.

次に最初のN形InP基板にP形の不純物拡散層又は結
晶成長層を設けた実施例について説明する。
Next, an example in which a P-type impurity diffusion layer or a crystal growth layer is provided on a first N-type InP substrate will be described.

第4図はこの実施例の製造工程を示す図である。FIG. 4 is a diagram showing the manufacturing process of this embodiment.

fat図はN形InP基板にP形の結晶層11を設け。The fat diagram shows a P-type crystal layer 11 provided on an N-type InP substrate.

次にフォトレジスト9を設けて111予より深い溝を形
成した状態である。fb1図は第3図fb1図と同様に
結晶成長を行った状態である。
Next, a photoresist 9 is provided to form a groove deeper than 111 before. Figure fb1 shows a state where crystal growth has been performed in the same way as Figure 3 fb1.

(c1図は、第3図te1図同様にメサエッチングを栴
した状態であるが、第3図と異なる点は11のP形層を
残すようにエツチングを行っていることである。fd1
図は第3図fd1図と同様の埋め込み結晶成長を行った
状態である。
(Figure c1 shows a mesa-etched state similar to figure 3 te1, but the difference from figure 3 is that the etching was performed to leave 11 P-type layers. fd1
The figure shows a state in which buried crystal growth similar to that in FIG. 3 fd1 has been performed.

第4図の実施例の利点は第3図の実施例の場合時として
5の埋め込み層の成長が途切れてしまう場合があるのに
対して、第4図では5の埋め込み層が途切れても11の
P層により等制約に結晶成長されている状態になるとい
つことである。
The advantage of the embodiment shown in FIG. 4 is that in the case of the embodiment shown in FIG. 3, the growth of the buried layer 5 may be interrupted, whereas in FIG. When a state is reached in which crystal growth is uniformly constrained by the P layer of .

以上の最初にInP基板に溝を設ける実施例であるが、
以下に最初に溝を設けない実施例について説明を行う。
The above is an example in which grooves are first formed in the InP substrate,
An example in which no grooves are provided will first be described below.

第5図はその実施例であり、(a)図はN形InP基板
1上にN形InPバッファー 層1’、 I nGaA
sP活性12’、P形InPクラッド層3.P形InG
aAsPオーミックコンタクト1ψ4を結晶?成長させ
、 8 i 0゜10を蒸着ののちフォトレジスト9に
よってSin。
FIG. 5 shows an example of this, and (a) shows an N-type InP buffer layer 1' and an InGaA layer on an N-type InP substrate 1.
sP active 12', P-type InP cladding layer 3. P-type InG
Crystal aAsP ohmic contact 1ψ4? After evaporation of 8 i 0° 10, a photoresist 9 is applied to form a sin.

のストライプエツチングを行った状態である。次にSi
n、ストライプマスクより広い窓をもつフォトレジスト
9′ をストライプマスクを中心に平行に設け、Br−
メタノール等の非結晶選択性エツチング液によって活性
層まで達しないエツチングを行う(b図〕。
This is the state where stripe etching has been performed. Next, Si
n, a photoresist 9' having a window wider than the stripe mask is provided parallel to the stripe mask, and Br-
Etching that does not reach the active layer is performed using an amorphous selective etching solution such as methanol (Figure b).

しかる後フォトレジスト9′を除去し、再びに3r−メ
タノール等のエツチング液でエツチングを行う。このと
きメサストライプ両側の窓部では活性層よ(深く、それ
以外の部分では活性層より浅く。
Thereafter, the photoresist 9' is removed and etching is performed again using an etching solution such as 3r-methanol. At this time, the active layer is deeper in the windows on both sides of the mesa stripe, and shallower than the active layer in other parts.

且つオーミックコンタクト層4より深くなるようにエツ
チングを行う((C)図ン。そして次にInPの選択エ
ツチング液、例えばHCノ:H3P0.=I:1の溶液
でメサストライプ以外の活性層が4田するまでエツチン
グを行う((d)図)。
Then, the active layer other than the mesa stripe is etched to be deeper than the ohmic contact layer 4 (Fig. Etching is continued until the surface is completely etched (Figure (d)).

こうした後に第3図及び第4図の実施例と同様な埋め込
み結晶成長を行えは、(01図のようになり、第2図と
同様な状態となる。
After this, if buried crystal growth similar to the embodiments of FIGS. 3 and 4 is performed, the result will be as shown in FIG. 01, and the same state as in FIG. 2.

また、第5図(atの状態でP型の不純′吻、例えばZ
 n 、 Cd等を活性層より深く拡散Tれば、第4図
の実施例の第3図の実施例1こ対するのと同様な効果か
、第5図の実施例の製造方法で得ることができる。この
実施例を第6図に示す。
In addition, in Fig. 5 (at state, P type impurity, for example, Z
If n, Cd, etc. are diffused deeper than the active layer, the same effect as that of the embodiment shown in FIG. 3 in the embodiment 1 of FIG. can. This embodiment is shown in FIG.

上記夫々の実施例ではN形InP基板を用いた実施しυ
について説明したが、これはP形InP基板でもさしつ
かえなく、各結晶j−のP/Nを逆に用いればよいもの
である。その他結晶・詰のキャリヤ濃度、厚み等のパラ
メータは特に指定していないが、これはそれぞれの場合
によって険いわければ良いものである。
In each of the above embodiments, an N-type InP substrate was used.
Although this has been described, a P-type InP substrate may be used, and the P/N of each crystal j- may be reversed. Other parameters such as the carrier concentration and thickness of the crystal/packing are not specified, but these may be adjusted according to each case.

要するに本発明は、発明の主旨を逸脱しない範囲に3い
て個々の変形が可能である。
In short, the present invention is capable of various modifications without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は埋め込み半導体レーザーを示す構成1lf1面
図、第2図〜第6図は本発明の実施例の埋め込み型半導
体レーザーの製造方法を説明するための図である。 1・・・半導体基板及びバッファ一層(N)、2・・・
活性層、3・・・クラッド% (P)、4・・・オーミ
ックコンタクト19 (P) 、 5・・・埋め込み層
(P)、6・・・ブロクキング層(N)、7・・・保護
者(N又はP)、8・・・拡散防止領域、9・・・フォ
トレジスト、10・・・5f02又はSi3N4マスク
、11・・・P形層(拡散又は結高成長による層)。 代理人弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第3図 (α) (b) (C) 第8図 432 <d) 第4図 (ム) (ム) (c) 第4図 32 (d−) 第5図 (ム) (l:)) (C>
FIG. 1 is a plan view of a configuration 1lf showing an embedded semiconductor laser, and FIGS. 2 to 6 are diagrams for explaining a method of manufacturing an embedded semiconductor laser according to an embodiment of the present invention. 1... Semiconductor substrate and buffer single layer (N), 2...
Active layer, 3... Cladding % (P), 4... Ohmic contact 19 (P), 5... Buried layer (P), 6... Blocking layer (N), 7... Protection 8... Diffusion prevention region, 9... Photoresist, 10... 5f02 or Si3N4 mask, 11... P type layer (layer by diffusion or crystallization growth). Representative Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Figure 3 (α) (b) (C) Figure 8 432 <d) Figure 4 (Mu) (Mu) (c) Fig. 4 32 (d-) Fig. 5 (mu) (l:)) (C>

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板上に後に形成するメサスト
ライプのメサ幅よりも広い幅の溝を形成する工程と、前
記半導体基板上に少なくとも活性層を含む半導体多層膜
を前記溝の痕跡が残る範囲内の厚さで結晶成長させる工
程と、前記溝の痕跡内に溝と平行なストライプマスクを
設は活性層よりも深いエツチングによってメサストライ
プを設ける工程と、前記メサストライプを少なくとも第
2導電型クラッド層及び第1導電型クラッド層を含む埋
め込み層によって埋め込み成長を行う工程とを含んで成
ることを特徴とする埋め込み型半導体レーザーの製造方
法。
(1) Forming a groove wider than the mesa width of a mesa stripe to be formed later on a first conductivity type semiconductor substrate, and forming a semiconductor multilayer film including at least an active layer on the semiconductor substrate so that traces of the groove are formed. a step of growing a crystal to a thickness within the remaining range; a step of forming a stripe mask parallel to the groove within the trace of the groove to form a mesa stripe by etching deeper than the active layer; 1. A method for manufacturing a buried semiconductor laser, comprising the step of performing buried growth using a buried layer including a type cladding layer and a first conductivity type cladding layer.
(2)第1導電型半導体基板には形成する溝の深さより
も浅く、第2導電型の不純物拡散層もしくは結晶成畏層
が予め設けられて成ることを特徴とする特許請求の範囲
第1項記載の埋め込み型半導体レーザーの製造方法。
(2) The semiconductor substrate of the first conductivity type is provided with an impurity diffusion layer or a crystallization layer of the second conductivity type, which is shallower than the depth of the trench to be formed. A method for manufacturing an embedded semiconductor laser as described in Section 1.
(3)半導体レーザーの構成結晶をI n GaA s
 P/InP系とし、@1導電型InP基板上にInG
aAsP 活性層を含むInGaAsP/InP 多層
1模を結晶成長させる工程と、酸化膜又は窒化膜による
ストライプマスクを設ける工程と、前記ストライプマス
クを中心としてストライプマスクより広くストライプマ
スクと平行な窓をもつフォトレジストを設ける工程と、
InGaAsP及びInPに対して結晶選択性のないエ
ツチング液を用い、活性層に到達しない深さまでエツチ
ングを行う工程と、フォトレジストを除去して前記結晶
選択性のないエツチング液を用いてストライプマスクに
隣接する領域では活性層より深く、メサストライプを除
(その他の領域では活性層上のInPクラッド層中で停
止させるようにエツチングを行う工程と、前記ストララ
イプマスク下以外の電域の活性層が一蕃出するまでIn
Pの選択エツチング液を用いてエツチングを行う工程と
、しかる陵ストライプマスク下のメサストライプを少な
くとも第2導電型のInP及び第1導電型のInP を
含む埋め込み結晶層によって埋め込み成長を行う工程と
を含んで成ることを特徴とする埋め込み型半導体レーザ
ーの製造方法。
(3) The constituent crystal of the semiconductor laser is In GaAs
P/InP system, with InG on @1 conductivity type InP substrate.
A step of crystal-growing an InGaAsP/InP multilayer pattern including an aAsP active layer, a step of providing a stripe mask made of an oxide film or a nitride film, and a photo-etching process having a window wider than the stripe mask and parallel to the stripe mask around the stripe mask. a step of providing a resist;
A process of etching to a depth that does not reach the active layer using an etching solution that does not have crystal selectivity for InGaAsP and InP, and a step of removing the photoresist and etching adjacent to the stripe mask using an etching solution that does not have crystal selectivity for InGaAsP and InP. In the area where the etching is to be performed, the etching process is performed to remove the mesa stripe (in other areas, the etching process is performed so as to stop in the InP cladding layer on the active layer, and the active layer in the electric area other than under the stripe mask is etched). In until it buds out
A step of etching using a selective etching solution for P, and a step of growing the mesa stripe under the corresponding ridge stripe mask with a buried crystal layer containing at least InP of the second conductivity type and InP of the first conductivity type. A method of manufacturing an embedded semiconductor laser, comprising:
(4)酸化膜又は窒化膜によるストライプマスクを設け
る工程とフォトレジストを設ける工程の間に第2導電型
となる不純物を活性層より深く拡散する工程が入ること
を特徴とする特許請求の範囲第3項記載の咋め込み型半
導体レーザーの製造方法。
(4) A step of diffusing an impurity of the second conductivity type deeper than the active layer is included between the step of providing a stripe mask made of an oxide film or a nitride film and the step of providing a photoresist. 3. A method for manufacturing a built-in semiconductor laser according to item 3.
JP24371383A 1983-12-26 1983-12-26 Manufacture of buried type semiconductor laser Pending JPS60136280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24371383A JPS60136280A (en) 1983-12-26 1983-12-26 Manufacture of buried type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24371383A JPS60136280A (en) 1983-12-26 1983-12-26 Manufacture of buried type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60136280A true JPS60136280A (en) 1985-07-19

Family

ID=17107875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24371383A Pending JPS60136280A (en) 1983-12-26 1983-12-26 Manufacture of buried type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60136280A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897886A (en) * 1981-12-07 1983-06-10 Nec Corp Distribution reflection type semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897886A (en) * 1981-12-07 1983-06-10 Nec Corp Distribution reflection type semiconductor laser

Similar Documents

Publication Publication Date Title
US4099999A (en) Method of making etched-striped substrate planar laser
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
JPH09232618A (en) Semiconductor light receiving element and its manufacture
JPH0888445A (en) Buried p-type substrate semiconductor laser
US5441912A (en) Method of manufacturing a laser diode
US5661077A (en) Method for fabricating an optical integrated circuit
JPS60136280A (en) Manufacture of buried type semiconductor laser
JPH059951B2 (en)
JP2528877B2 (en) Semiconductor laser
JP2542570B2 (en) Method for manufacturing optical integrated device
JPH0685390A (en) Fabrication of semiconductor laser
JPS60123083A (en) Semiconductor device
JPH05218585A (en) Semiconductor light emitting device
JPH05226774A (en) Semiconductor laser element and its production
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
KR19990003158A (en) Manufacturing method of laser diode
JPH06120615A (en) Manufacture of semiconductor laser element
JPH084172B2 (en) Embedded quantum well semiconductor laser
JPS6072285A (en) Buried type semiconductor laser device
JPS5925398B2 (en) Manufacturing method of semiconductor laser
JPH05136525A (en) Semiconductor laser and manufacture thereof
JPH04320083A (en) Semiconductor laser element and manufacture thereof
JPH11261156A (en) Semiconductor laser and manufacture thereof
JPS6255988A (en) Buried semiconductor laser
JPH0377675B2 (en)