JPH05145192A - Semiconductor optical amplifier and manufacture thereof - Google Patents

Semiconductor optical amplifier and manufacture thereof

Info

Publication number
JPH05145192A
JPH05145192A JP30904491A JP30904491A JPH05145192A JP H05145192 A JPH05145192 A JP H05145192A JP 30904491 A JP30904491 A JP 30904491A JP 30904491 A JP30904491 A JP 30904491A JP H05145192 A JPH05145192 A JP H05145192A
Authority
JP
Japan
Prior art keywords
active layer
mesa
optical amplifier
semiconductor optical
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30904491A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30904491A priority Critical patent/JPH05145192A/en
Publication of JPH05145192A publication Critical patent/JPH05145192A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Abstract

PURPOSE:To easily control the width of an active layer of a traveling wave type semiconductor optical amplifier having an oblique optical waveguide structure in which both side ends of a mesa of a semiconductor layer structure including a stripelike active layer are formed stepwisely. CONSTITUTION:When a side etching stepwise oblique optical waveguide structure is formed by using an SiO2 stripe mask 6 on an upper surface of a mesa, both side ends of an SiO2 stripe which are alternately formed stepwisely in directions [011] and [011] are used. Thus, when the side end of the mask 6 is etched in the direction [011] with bromoethanol, the surface A [111] is exposed in an inverted mesa shape, and the part in the direction [011] is exposed at the surface A [111] in a forward mesa shape. Thus, both the surfaces are exposed on the A surfaces [111], and hence scarcely side-etched, and the width of the active layer is determined according to the angle of a crystal at the [111] A surface and the width of the mask.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は入射端から入射した光を
増幅して出射端から出射する半導体光増幅器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical amplifier which amplifies light entering from an incident end and emits the amplified light from an emitting end.

【0002】[0002]

【従来の技術】半導体光増幅器は光通信の中継器として
用いられている。この半導体光増幅器は半導体レーザー
と同じ誘導光増幅作用効果を利用している。そのため、
入射端および出射端の光反射率の低減が重要な問題であ
る。すなわち、残留光反射率がある場合、光増幅率を高
くすると発振してしまうという問題を有している。この
反射率低減のため入射端面および出射端面の低光反射膜
と同時に活性層を端面に対して斜めにする斜め導波路構
造の半導体光増幅器が提案されている。
2. Description of the Related Art Semiconductor optical amplifiers are used as repeaters for optical communication. This semiconductor optical amplifier utilizes the same guided light amplification effect as a semiconductor laser. for that reason,
Reducing the light reflectance at the entrance end and the exit end is an important issue. That is, when there is a residual light reflectance, there is a problem that oscillation occurs when the light amplification factor is increased. In order to reduce this reflectance, a semiconductor optical amplifier having an oblique waveguide structure has been proposed in which an active layer is obliquely formed with respect to the end face at the same time as the low light reflecting films on the incident end face and the emission end face.

【0003】この斜め導波路光増幅器は、例えば図3に
示すように、[100]面のn型InP基板1上に、n
型InPバッファ層2、InGaAsP活性層3、p型
InPクラッド層4、p型InGaAsPオーミック層
5を順次積層する。次にp型InGaAsPオーミック
層4上にSiO2 膜を堆積する。このSiO2 膜を写真
蝕刻法により端面に垂直な[011]方向に対して7度
程度斜めの角度をもつストライプ6にする。さらに、S
iO2 ストライプ6をマスクとして、ブローム−メタノ
ールで活性層までエッチングし、続いてp型InP層
7、n型InP層8、n型InGaAsPキャップ層9
により埋め込む。このような工程を経て斜め導波路半導
体光増幅器を完成する。この後、SiO2 ストライプ6
を除去し、p型InGaAsPオーミック層5表面およ
びn型InP基板1裏面に電極を設け、さらに、端面に
低光反射膜を形成し、劈開によりチップ化する。
This oblique waveguide optical amplifier has, for example, as shown in FIG. 3, an n-type InP substrate 1 having a [100] plane and an n-type InP substrate 1.
The type InP buffer layer 2, the InGaAsP active layer 3, the p type InP clad layer 4, and the p type InGaAsP ohmic layer 5 are sequentially stacked. Next, a SiO 2 film is deposited on the p-type InGaAsP ohmic layer 4. This SiO 2 film is formed into stripes 6 having a slanting angle of about 7 degrees with respect to the [011] direction perpendicular to the end face by photolithography. Furthermore, S
Using the iO 2 stripe 6 as a mask, the active layer is etched with bromine-methanol, and then the p-type InP layer 7, the n-type InP layer 8 and the n-type InGaAsP cap layer 9 are etched.
Embed by. Through these steps, the diagonal waveguide semiconductor optical amplifier is completed. After this, SiO 2 stripe 6
Are removed, electrodes are provided on the surface of the p-type InGaAsP ohmic layer 5 and the back surface of the n-type InP substrate 1, and a low light reflection film is further formed on the end faces, and the chips are formed by cleavage.

【0004】[0004]

【発明が解決しようとする課題】この斜め導波路半導体
光増幅器の場合、SiO2 ストライプ5が[011]方
向に対して斜めになっているため、サイドエッチングが
大きい。すなわち、ストライプが[011]方向に一致
する場合は、エッチングの進行につれてメサ側面にエッ
チングされにくい[111]A面が露出してくるためサ
イドエッチングはかかりにくくなる。しかし、ストライ
プの方向が[011]からずれてくると側面も[11
1]A面からずれてしまうためエッチングされやすくな
ってしまう。このようにサイドエッチングが大きいた
め、活性層幅の制御が困難になってくる。
In the case of this oblique waveguide semiconductor optical amplifier, the side etching is large because the SiO 2 stripe 5 is oblique with respect to the [011] direction. That is, when the stripes coincide with the [011] direction, side etching is less likely to occur because the [111] A surface, which is difficult to be etched, is exposed on the side surface of the mesa as the etching progresses. However, when the direction of the stripes deviates from [011], the side faces also [11]
1] Since it deviates from the A surface, it is easily etched. Since the side etching is large as described above, it becomes difficult to control the width of the active layer.

【0005】本発明は上記欠点を除去するもので、製造
方法が簡単で、かつ、活性層幅の制御が容易におこなえ
る半導体光増幅器を提供するものである。
The present invention eliminates the above-mentioned drawbacks, and provides a semiconductor optical amplifier which can be manufactured easily and whose active layer width can be easily controlled.

【0006】[0006]

【課題を解決するための手段】第1の発明の半導体光増
幅器は、半導体基板上に入射された光の強度を増幅して
出射するストライプ状の活性層を含む半導体層構造のメ
サを形成して成る進行波型半導体光増幅器において、前
記ストライプ状の活性層を含むメサの両側端が階段状の
斜め導波路で形成されていることを特徴とする。
A semiconductor optical amplifier according to a first aspect of the present invention forms a mesa having a semiconductor layer structure including a stripe-shaped active layer that amplifies the intensity of light incident on a semiconductor substrate and emits the amplified light. In the traveling wave type semiconductor optical amplifier, the mesa including the stripe-shaped active layer is formed at both ends by a stepwise oblique waveguide.

【0007】第2の発明の半導体光増幅器の製造方法
は、前記ストライプ状の活性層を含む半導体層構造のメ
サ上面にSiO2 ストライプマスクを形成してサイドエ
ッチングし、階段状の斜め光導波路構造を製造する方法
において、SiO2 ストライプマスクの両側端が[01
1]方向と[01▲バー▼1]方向を交互に繰返す階段
状に形成された前記SiO2 ストライプマスクを用いる
ことを特徴とする。
In the method for manufacturing a semiconductor optical amplifier of the second invention, a SiO 2 stripe mask is formed on the upper surface of the mesa of the semiconductor layer structure including the stripe-shaped active layer and side-etched to form a stepwise oblique optical waveguide structure. a process for preparing, both side ends of the SiO 2 stripe mask 01
It is characterized in that the above-mentioned SiO 2 stripe mask formed in a staircase pattern in which the [1] direction and the [01 ▲ bar ▼ 1] direction are alternately repeated is used.

【0008】[0008]

【作用】SiO2 マスクの側端が[011]方向になっ
ている部分ではブロム−メタノールでエッチングしたと
きに[111]A面が露出して逆メサ形状になり、[0
1▲バー▼1]方向になっている部分では同様に[11
1]A面が露出して順メサ形状になる。いずれも[11
1]A面が露出してくるのでサイドエッチングがかかり
にくく、SiO2 マスクの幅と[111]A面の結晶の
角度によって活性層幅が決まってくる。そのためSiO
2 マスクの幅だけで活性層幅を制御することができる。
In the portion where the side edge of the SiO 2 mask is in the [011] direction, the [111] A surface is exposed when etching with bromine-methanol to form an inverted mesa shape.
Similarly, in the direction of 1 bar 1], [11
1] Surface A is exposed to form a normal mesa shape. Both [11
1] Since the A surface is exposed, side etching is less likely to occur, and the active layer width is determined by the width of the SiO 2 mask and the angle of the [111] A surface crystal. Therefore SiO
2 The width of the active layer can be controlled only by the width of the mask.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の一実施例で、図2a,b,
cは図1の半導体光増幅器の製造工程を説明するための
もので、各図は主な工程の中間生成構造を示している。
FIG. 1 shows an embodiment of the present invention.
c is for explaining the manufacturing process of the semiconductor optical amplifier of FIG. 1, and each drawing shows the intermediate production structure of the main process.

【0011】図2(a)において、まず、液相成長法な
どによりn型[100]InP基板1上にInPバッフ
ァ層2、InGaAsP活性層3、p型InPクラッド
層4、p型InGaAsPオーミック層5を順次成長さ
せる。p型InGaAsPオーミック層5の表面に[0
11],[01▲バー▼1]方向を繰り返すようなスト
ライプ状のSiO2 マスク6を設ける。
In FIG. 2A, first, an InP buffer layer 2, an InGaAsP active layer 3, a p-type InP clad layer 4, and a p-type InGaAsP ohmic layer are first formed on an n-type [100] InP substrate 1 by a liquid phase growth method or the like. 5 are sequentially grown. On the surface of the p-type InGaAsP ohmic layer 5, [0
11] and the [01 (1) bar 1] direction are repeated to provide a stripe-shaped SiO 2 mask 6.

【0012】続いて、図2(b)のように、ブロム−メ
タノールで活性層3の下までエッチングする。このさ
い、[011]方向の部分では逆メサ形状[01▲バー
▼1]方向の部分では順メサ形状になる。そのため、
[011]方向と[01▲バー▼1]方向の交わる所で
は活性層の側端は[011]と[01▲バー▼1]の間
の斜めの方向になる。活性層の側端が階段状であった場
合、導波される光に対して散乱損失が大きくなるが、こ
のように交点では斜めになっているので損失も小さく抑
えることができる。
Subsequently, as shown in FIG. 2B, etching is performed to the bottom of the active layer 3 with bromine-methanol. In this case, the portion in the [011] direction has an inverted mesa shape, and the portion in the [01 (1) bar] direction has a forward mesa shape. for that reason,
At the intersection of the [011] direction and the [01 ▲ bar ▼ 1] direction, the side edge of the active layer is an oblique direction between [011] and [01 ▲ bar ▼ 1]. When the side edge of the active layer has a stepwise shape, the scattering loss becomes large with respect to the guided light, but since it is oblique at the intersection as described above, the loss can be suppressed to be small.

【0013】最後に、図2cのように、p型InP層
7、n型InP層8、n型InGaAsPキャップ層9
で埋め込み、半導体光増幅器の結晶成長プロセスを終わ
る。
Finally, as shown in FIG. 2c, p-type InP layer 7, n-type InP layer 8 and n-type InGaAsP cap layer 9 are formed.
Then, the crystal growth process of the semiconductor optical amplifier is completed.

【0014】以上の構造では、サイドエッチングが少な
いため活性層幅の制御性の良い斜め導波路を容易に形成
できることが特徴である。
The above structure is characterized in that an oblique waveguide having a good controllability of the active layer width can be easily formed because side etching is small.

【0015】[0015]

【発明の効果】以上実施例で述べたように、本発明の構
造により活性層幅の制御性の良い半導体光増幅器を得る
ことができる。また、[011]と[01▲バー▼1]
方向の長さの比および繰り返しの周期を調整することに
より斜め導波路の角度などを容易に変化させることもで
きる。
As described in the above embodiments, the structure of the present invention makes it possible to obtain a semiconductor optical amplifier having a good controllability of the active layer width. Also, [011] and [01 ▲ bar ▼ 1]
The angle of the oblique waveguide and the like can be easily changed by adjusting the ratio of the length of the direction and the repetition period.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すための斜視図。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】(a),(b),(c)は図1の半導体光増幅
器の製造工程を説明するための斜視図。
2A, 2B, and 2C are perspective views for explaining a manufacturing process of the semiconductor optical amplifier of FIG.

【図3】従来構造の半導体光増幅器の斜視図である。FIG. 3 is a perspective view of a semiconductor optical amplifier having a conventional structure.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 3 活性層 4 クラッド層 5 オーミック層 6 SiO2 マスク 7,8,9 埋め込み層 10 メサ上に形成された階段状SiO2 ストライプマ
スク 11 メサの両側端が階段状に形成された斜め光導波路
構造
1 substrate 2 buffer layer 3 active layer 4 clad layer 5 ohmic layer 6 SiO 2 mask 7, 8, 9 buried layer 10 stepped SiO 2 stripe mask formed on the mesa 11 both side ends of the mesa are formed stepwise Oblique optical waveguide structure

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、入射された光の強度を
増幅して出射するストライプ状の活性層を含む半導体層
構造のメサを形成して成る進行波型半導体光増幅器にお
いて、前記ストライプ状の活性層を含むメサの両側端が
階段状の斜め導波路で形成されていることを特徴とする
半導体光増幅器。
1. A traveling-wave type semiconductor optical amplifier comprising a semiconductor layer structure mesa formed on a semiconductor substrate, the mesa having a stripe-shaped active layer for amplifying the intensity of incident light and emitting the amplified light. A semiconductor optical amplifier in which both ends of the mesa including the active layer are formed by stepwise oblique waveguides.
【請求項2】 請求項1記載の前記ストライプ状の活性
層を含む半導体層構造のメサ上面にSiO2 ストライプ
マスクを形成してサイドエッチングし、階段状の斜め光
導波路構造を製造する方法において、SiO2 ストライ
プマスクの両側端が[011]方向と[01▲バー▼
1]方向を交互に繰返す階段状に形成された前記SiO
2 ストライプマスクを用いることを特徴とする半導体光
増幅器の製造方法。
2. A method for producing a stepwise oblique optical waveguide structure by forming a SiO 2 stripe mask on the upper surface of a mesa of the semiconductor layer structure including the stripe-shaped active layer and side-etching it according to claim 1. Both ends of the SiO 2 stripe mask are in the [011] direction and the [01 ▲ bar ▼
1] The above-mentioned SiO formed in a step-like shape in which the directions are alternately repeated.
A method for manufacturing a semiconductor optical amplifier, characterized by using a two- stripe mask.
JP30904491A 1991-11-25 1991-11-25 Semiconductor optical amplifier and manufacture thereof Pending JPH05145192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30904491A JPH05145192A (en) 1991-11-25 1991-11-25 Semiconductor optical amplifier and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30904491A JPH05145192A (en) 1991-11-25 1991-11-25 Semiconductor optical amplifier and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05145192A true JPH05145192A (en) 1993-06-11

Family

ID=17988200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30904491A Pending JPH05145192A (en) 1991-11-25 1991-11-25 Semiconductor optical amplifier and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05145192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745906A (en) * 1993-07-29 1995-02-14 Nec Corp Optical semiconductor element and manufacture thereof
US7899100B2 (en) * 2002-03-01 2011-03-01 Sharp Kabushiki Kaisha GaN laser element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745906A (en) * 1993-07-29 1995-02-14 Nec Corp Optical semiconductor element and manufacture thereof
US7899100B2 (en) * 2002-03-01 2011-03-01 Sharp Kabushiki Kaisha GaN laser element
US8170076B2 (en) * 2002-03-01 2012-05-01 Sharp Kabushiki Kaisha GaN laser element
US8548019B2 (en) 2002-03-01 2013-10-01 Sharp Kabushiki Kaisha GaN laser element
US8824516B2 (en) 2002-03-01 2014-09-02 Sharp Kabushiki Kaisha GaN-based laser device

Similar Documents

Publication Publication Date Title
JP3104789B2 (en) Semiconductor optical device and method of manufacturing the same
JPH08107251A (en) Manufacture of reflection digital tuning laser
JPS5940592A (en) Semiconductor laser element
JP2002057400A (en) Semiconductor device and its manufacturing method
JP2950028B2 (en) Method for manufacturing optical semiconductor device
JPH1187844A (en) Semiconductor optical coupling circuit and its manufacture
JP3061169B2 (en) Semiconductor laser
JPH05145192A (en) Semiconductor optical amplifier and manufacture thereof
JP3100641B2 (en) Traveling wave type semiconductor optical amplifier
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JP2001185805A (en) Optical semiconductor device
JP3266728B2 (en) Manufacturing method of waveguide type optical element
JP3208860B2 (en) Semiconductor laser device
JP2002217446A (en) Optical semiconductor integrated device and method of manufacturing the same
JP2903321B2 (en) Method of manufacturing semiconductor laser device
JP3159914B2 (en) Selectively grown waveguide type optical control element and method of manufacturing the same
JP4453937B2 (en) Optical integrated device and manufacturing method thereof
KR100261238B1 (en) Manufacturing method of a laser diode
JP2002319739A (en) Method for manufacturing rib-shape optical waveguide distributed reflection type semiconductor laser
JP2003304035A (en) Semiconductor optical element
JP2780307B2 (en) Semiconductor laser
JP2822195B2 (en) Semiconductor laser manufacturing method
JPH07109922B2 (en) Method for manufacturing distributed reflection semiconductor laser
JPH04340286A (en) Manufacture of semiconductor laser
JP2003304028A (en) Optical modulator integrated semiconductor laser