JPS6251210A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6251210A
JPS6251210A JP60191173A JP19117385A JPS6251210A JP S6251210 A JPS6251210 A JP S6251210A JP 60191173 A JP60191173 A JP 60191173A JP 19117385 A JP19117385 A JP 19117385A JP S6251210 A JPS6251210 A JP S6251210A
Authority
JP
Japan
Prior art keywords
semiconductor
coupling
hydrogen
additive
deuterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60191173A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Takashi Inushima
犬島 喬
Kunio Suzuki
邦夫 鈴木
Susumu Nagayama
永山 進
Masayoshi Abe
阿部 雅芳
Takeshi Fukada
武 深田
Mikio Kanehana
金花 美樹雄
Ippei Kobayashi
一平 小林
Katsuhiko Shibata
克彦 柴田
Masato Usuda
真人 薄田
Kaoru Koyanagi
小柳 かおる
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP60191173A priority Critical patent/JPS6251210A/en
Publication of JPS6251210A publication Critical patent/JPS6251210A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent light deterioration action from resulting under actual employment conditions, by adding a neutralizing additive of hydrogen or deuterium to unpaired coupling hands resulting from light irradiation, and by neutralizing and stabilizing by coupling with the unpaired coupling hands, in non-single- crystalline semiconductors. CONSTITUTION:On a synthetic quartz substrate 10, a pair of electrodes 24, 24' are formed, on which amorphous semiconductor 26 being non-single- crystalline semiconductor having hydrogen or halogen elements added is formed. Light conductivity and dark conductivity are measured by contacting probes 17, 17' to the electrodes 24, 24'. After light irradiation annealing is done in vacuum, additive for neutralizing recombination centers of hydrogen or deuterium is added into the semiconductor. The additive introduced for neutralizing hydrogen or deuterium, or oxygen as well as the additive invades into the inside from the surface or vacant holes of the semiconductor to deposit there, and couples with the unpaired coupling hands of silicon preliminarily formed with light irradiation, forming Si-H coupling, Si-D coupling, or Si-T coupling, or Si-O coupling, and is neutralized and stabilized.

Description

【発明の詳細な説明】 本発明は、水素またはハロゲン元素を含む半導体材料を
形成し、この半導体を減圧下に保持し光アニールを行う
工程と、この工程の後この半導体表面または半導体中(
以下単に半導体中という)に水素または重水素を添加す
ることによりステブラ・ロンスキ効果を減少またG↓消
滅せしめ、高信軌性特性を得ることに関する。 本発明
は、光照射により光起電力を発生ずる活性半導体層であ
る真性または実質的に真性(PまたはN型用不純物を1
 xlQ14〜5 Xl017cm−3の濃度に人為的
に混入させた、またはバックグラうンドレベルで混入し
た)の水素またはハロゲン元素が添加された半導体に対
し、この半導体を大気に触れさせることなく減圧状態に
保持し、またはこの雰囲気で光アニールを行うことによ
り光照射で発生する不対結合手を十分生成する。この後
この生成された不対結合手に対し、水素または重水素を
半導体中に添加して結合中和せしめることを目的として
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves the steps of forming a semiconductor material containing hydrogen or a halogen element, holding this semiconductor under reduced pressure and photo-annealing it, and after this step, forming a semiconductor material (
The present invention relates to reducing or eliminating the Stebler-Lonski effect by adding hydrogen or deuterium to a semiconductor (hereinafter simply referred to as "inside" a semiconductor), thereby obtaining high-fidelity characteristics. The present invention is an active semiconductor layer that generates a photovoltaic force upon irradiation with light.
xlQ14~5 For semiconductors to which hydrogen or halogen elements (artificially mixed into the concentration of Xl017cm-3 or mixed at background level) are added, the semiconductors are kept in a reduced pressure state without being exposed to the atmosphere. Alternatively, by performing photoannealing in this atmosphere, dangling bonds generated by light irradiation are sufficiently generated. Thereafter, the purpose is to neutralize the generated dangling bonds by adding hydrogen or deuterium into the semiconductor.

本発明は、かかる目的のため、基板上にプラズマCvn
法、光CVD法または光プラズマCvD法により水素ま
たはハロゲン元素を含む非単結晶半導体(以下単に半導
体という)を500°cll下の温度、一般には150
〜30(1’cの減圧下にて形成する。
For this purpose, the present invention provides plasma Cvn on a substrate.
A non-single crystal semiconductor (hereinafter simply referred to as a semiconductor) containing hydrogen or a halogen element is heated at a temperature of 500°cll or less, generally at 150
~30 (formed under reduced pressure of 1'c).

特に、本発明はこの活性半導体層である1層において、
半導体中の最低濃度領域における酸素の濃度(SIMS
で測定した場合における最低濃度)を5×1018cm
−3以下、好ましくはI Xl018cm−3以下しか
含有しない水素またはハロゲン元素が添加された非単結
晶半導体、例えばシリコン半導体を用いたものである。
In particular, the present invention provides that in one layer, which is the active semiconductor layer,
Oxygen concentration in the lowest concentration region in a semiconductor (SIMS
(minimum concentration when measured at 5 x 1018 cm)
A non-single crystal semiconductor, such as a silicon semiconductor, to which hydrogen or a halogen element containing less than -3, preferably less than IXl018 cm-3 is added is used.

そしてかかる半導体の再結合中心、特に光照射により生
しる再結合中心の密度をI XIO■cm−3よりl 
Xl017cm−3以下、好ましくは概略5 Xl01
6cm−3程度にまで下げんとするものである。
Then, the density of recombination centers in such a semiconductor, especially the recombination centers generated by light irradiation, is calculated from IXIOcm-3 to l
Xl017cm-3 or less, preferably approximately 5 Xl01
The aim is to lower the height to about 6 cm-3.

しかし、従来、かかる高純度になった半導体を被膜形成
の直後に大気中に取り出し、大気圧中で光照射を行うと
、電気伝導度が劣化し、また熱アニールにより電気伝導
度が回復するいわゆるステブラ・ロンスキ効果が観察さ
れてしまう。
However, conventionally, when such a highly purified semiconductor is taken out into the atmosphere immediately after film formation and irradiated with light at atmospheric pressure, the electrical conductivity deteriorates, and the electrical conductivity is restored by thermal annealing. The Stebla-Lonski effect is observed.

他方、本発明人はかかる高純度の半導体を形成後、この
半導体を大気に触れさせることなく超高真空雰囲気に保
持し、この真空中で光照射(光アニール)、熱アニール
を行うと、このいずれに対しても電気伝導度が漸減する
いわゆるSEL (S ta teExcited b
y Light)効果が観察された。
On the other hand, the present inventor has found that after forming such a high-purity semiconductor, this semiconductor is held in an ultra-high vacuum atmosphere without being exposed to the atmosphere, and when light irradiation (photoannealing) and thermal annealing are performed in this vacuum, this The so-called SEL (Sta te Excited b
y Light) effect was observed.

この結果、従来より知られているステブラ・ロンスキ効
果は半導体を形成した後大気にふれさせることにより初
めて観察されるものであることが判明した。その要因は
、大気特に酸素が半導体中に含浸していってしまうため
であると推定されるに至った。かかるSt’!L効果及
びその対策として、形成された半導体を酸素を含まない
雰囲気で大気圧にまで戻すことに関しては、本発明人の
出願になる特許側(特願昭60−120881 、昭和
60年6月3日出願)に示されている。
As a result, it was found that the conventionally known Stebla-Lonski effect can only be observed when a semiconductor is formed and then exposed to the atmosphere. It has been concluded that the reason for this is that the atmosphere, particularly oxygen, is impregnated into the semiconductor. It takes St'! Regarding the L effect and its countermeasure, returning the formed semiconductor to atmospheric pressure in an oxygen-free atmosphere, the patent filed by the present inventor (Japanese Patent Application No. 60-120881, June 3, 1985) (Applications filed in Japan).

本発明はかかる本発明人が発見したSEL効果を積極的
に利用し、実使用条件下において光劣化作用が生しない
ようにしたものである。即ち、SEL効果により非単結
晶半導体中には光照射により生成する不対結合手(電気
的には再結合中心またはエネルギハンド的には深いレベ
ルに単位をもつ再結合中心という)を十分に生成させて
しまう。そして十分に光照射により生じた不対結合手に
対し水素または重水素の中和用添加剤またはかかるアル
カリ金属元素に加えて酸素、弗素、塩素、窒素より選ば
れた元素を添加して、この不対結合手と結合させて、中
和し安定化させてしまう。かくの如く、中途半端な弱い
結合手を一度すべて切って不対結合手にし、この不対結
合手に対し十分な時間をおいて中和させてしまうもので
ある。その結果、実使用下では再び光照射を行ってもこ
の照射により不対結合手が生成し、ひいては再結合中心
の増加がおきることにより観察されるステブラ・ロンス
キ効果が生じないようにしたものである。
The present invention actively utilizes the SEL effect discovered by the present inventors to prevent photodegradation effects from occurring under actual use conditions. In other words, due to the SEL effect, a sufficient amount of dangling bonds (called recombination centers in electrical terms or recombination centers with units at deep levels in terms of energy hands) generated by light irradiation is generated in a non-single crystal semiconductor. I'll let you. Then, in addition to an additive for neutralizing hydrogen or deuterium or an element selected from oxygen, fluorine, chlorine, and nitrogen in addition to the alkali metal element, an element selected from oxygen, fluorine, chlorine, and nitrogen is added to the dangling bonds sufficiently generated by light irradiation. It combines with the unpaired bond, neutralizing and stabilizing it. In this way, all halfway weak bonds are cut once to create unpaired bonds, and these unpaired bonds are neutralized after a sufficient period of time. As a result, in actual use, even if light is irradiated again, this irradiation will generate unpaired bonds and, as a result, the Stebla-Lonski effect, which is observed due to an increase in recombination centers, will not occur. be.

以下に図面に従って本発明を示す。The present invention will be illustrated below according to the drawings.

第1図は本発明の半導体装置の作製に用いられた製造装
置の概要を示す。
FIG. 1 shows an outline of the manufacturing equipment used for manufacturing the semiconductor device of the present invention.

第1図は本発明に用いられた超高真空装置(UHV装置
)のブロックダイヤグラム図を示す。
FIG. 1 shows a block diagram of an ultra-high vacuum device (UHV device) used in the present invention.

基板(10’)は、第1の予備室(1)の中にあるヒー
タ(図面では(12’)に示しである)の下側に配設す
る。この基板は予め一対の電気伝導度の測定用電極(第
2図(24) 、 (24’ )に示す)を有している
。この電極には、電気特性を測定せんとする際には被膜
形成後外部よりの一対のプローブ(17)。
The substrate (10') is arranged below the heater (indicated by (12') in the drawing) in the first preliminary chamber (1). This substrate has in advance a pair of electrodes for measuring electrical conductivity (shown in FIG. 2 (24) and (24')). When measuring electrical properties, a pair of probes (17) are attached to this electrode from the outside after the coating is formed.

(17”)を移動させ接触させることができ(第2図参
照)、半導体被膜形成後この被膜を大気に触れさせるこ
となく、光照射(20)の有無により光転導度と暗転導
度との測定を可能とする即ち真空中でIN 5ITUの
条件下での評価を可能としている。
(17") can be moved and brought into contact with each other (see Figure 2), and after the semiconductor coating is formed, the optical conversion conductivity and dark conversion conductivity can be determined by the presence or absence of light irradiation (20) without exposing the coating to the atmosphere. In other words, it enables evaluation under IN 5 ITU conditions in vacuum.

基板(10°)の挿入、脱着用の第1の予備室(1)と
この予備室にゲイト弁(3)により連結された第2の予
備室(2)とを有する。かかる第1の予備室で基板架台
も併用したヒータ(12’)にとりつける。
It has a first preliminary chamber (1) for inserting and removing a substrate (10 degrees) and a second preliminary chamber (2) connected to this preliminary chamber by a gate valve (3). In this first preliminary chamber, a heater (12') which also serves as a substrate stand is attached.

第2の予備室は、第2のゲイト弁(5)によりクライオ
ポンプ(6)と分離され、第3のゲイト弁(7)により
ターボ分子ポンプ(8)とも分離されている。
The second preliminary chamber is separated from the cryopump (6) by a second gate valve (5) and also from the turbomolecular pump (8) by a third gate valve (7).

そして、基板(10’ )とヒータ(12’)とを第1
の予備室に挿着後ゲイト弁(3) 、 (7)を開、ゲ
イト弁(5) 、 (4)を閉とし、ターボ分子ポンプ
(8)にて第1、第2の予備室を真空引きする。さらに
、10−6torr以下とした後、基板(10”)およ
びヒータ(12’ )を第1の予備室(1)より移動機
構(19)を用い第2の予備室に移し、ゲイト弁(3)
を閉とする。そしてゲイト弁(5)を開、ゲイト弁(7
)を閉とし、クライオポンプにて1O−10torrの
オーダにまで真空引きをする。
Then, the substrate (10') and the heater (12') are connected to the first
After inserting it into the preliminary chamber, open the gate valves (3) and (7), close the gate valves (5) and (4), and vacuum the first and second preliminary chambers with the turbo molecular pump (8). Pull. Furthermore, after reducing the pressure to 10-6 torr or less, the substrate (10") and the heater (12') are moved from the first preliminary chamber (1) to the second preliminary chamber using the moving mechanism (19), and the gate valve (3) is moved to the second preliminary chamber using the moving mechanism (19). )
is closed. Then open the gate valve (5) and open the gate valve (7).
), and evacuated to the order of 10-10 torr using a cryopump.

さらに第4のゲイト弁(4)を開とし、ここをへて反応
室(11)に基板(10)、ヒータ(12)を移動機構
(19°)を用いて移設する。そして反応室(11)も
クライオポンプ(6)にて10−9〜10− ” to
rrの背圧とする。さらにゲイト弁(4)を閉とする。
Furthermore, the fourth gate valve (4) is opened, and the substrate (10) and heater (12) are transferred to the reaction chamber (11) using the moving mechanism (19°). The reaction chamber (11) is also pumped with a cryopump (6) from 10-9 to 10-” to
The back pressure is set to rr. Furthermore, the gate valve (4) is closed.

図面では反応室(11)に基板(10)およびヒータ(
12)が配設された状態を示す。反応室(11)には高
周波電源(13)より一対の電極(,14) 、 (,
15)間にプラズマ放電を成さしめ得る。このプラズマ
CVD法以外に紫外光、エキシマレーザ光を窓(16)
より入射して光CVD法またはこれと高周波エネルギと
を加える光プラズマCVD法により半導体被膜を形成し
てもよい。
In the drawing, a substrate (10) and a heater (
12) is installed. A pair of electrodes (,14), (,
15) Plasma discharge can be generated between the two. In addition to this plasma CVD method, ultraviolet light and excimer laser light can be used as a window (16).
The semiconductor film may be formed by a photo-CVD method or a photo-plasma CVD method in which high-frequency energy is added to the photo-CVD method.

反応性気体はドーピング系(21)より加えられ、プラ
ズマCVD法の不要物は他のターボ分子ポンプ(9)に
より圧力をコントロールバルブ(22)により制御させ
つつ排気される。
Reactive gas is added from a doping system (21), and unnecessary substances from the plasma CVD method are exhausted by another turbo-molecular pump (9) while the pressure is controlled by a control valve (22).

反応炉内の圧力はコントロールバルブ(22)により0
.001〜10torr10torr、05〜0.1t
orrに制御した。高周波エネルギを(13)より加え
(13,56MHz出力10−)プラズマCVD法によ
り非単結晶半導体被膜、ここでは水素の添加されたアモ
ルファスシリコン膜を形成した。かくして基板上に0.
6μの厚さにPまたはN型の不純物の添加のない非単結
晶半導体を500℃以下の温度例えば250℃によって
形成した。
The pressure inside the reactor is reduced to 0 by the control valve (22).
.. 001~10torr10torr, 05~0.1t
It was controlled to orr. A non-single crystal semiconductor film, here an amorphous silicon film doped with hydrogen, was formed by applying high frequency energy from (13) (13.56 MHz output 10-) and plasma CVD. Thus, 0.
A non-single crystal semiconductor having a thickness of 6 μm without addition of P or N type impurities was formed at a temperature of 500° C. or less, for example, 250° C.

反応性気体及びキャリアガスは、酸素、水の不純物を0
.IPPM以下好ましくはIPPBにまで下げた高純度
としく21)より導入させた。また、珪素膜を形成させ
ようとする場合、超高純度に液化精製した珪化物気体で
あるシランを用いた。
Reactive gas and carrier gas contain zero impurities of oxygen and water.
.. It was introduced from 21) with a high purity of IPPM or lower, preferably IPPB. Furthermore, when attempting to form a silicon film, silane, which is a silicide gas purified by liquefaction to ultra-high purity, was used.

光電変換装置を構成する場合はこのドーピング系数を増
し、P型用不純物であるジボランをシランにより500
〜5000PPMに希釈させて(21”)より導入すれ
ばよい。また、N型不純物であるフォスヒンをシランに
より5000PPMに希釈して(21″′)より導入す
ればよい。
When constructing a photoelectric conversion device, this doping number is increased, and diborane, which is an impurity for P-type, is mixed with silane by 500%.
It may be diluted to ~5000 PPM and introduced from (21''). Also, phosphin, which is an N-type impurity, may be diluted to 5000 PPM with silane and introduced from (21'').

かくして、反応室にて半導体被膜を形成した後、反応性
気体の供給を中止して、ターボ分子ポンプ(9)により
反応室内の不要物を除去した。    □また中和用添
加物として酸素、弗素、塩素または窒素を添加する場合
は、第1図のドーピング系(25)よりこれらの気体を
予備室内に導入した。
After the semiconductor film was thus formed in the reaction chamber, the supply of reactive gas was stopped, and unnecessary substances in the reaction chamber were removed by the turbo molecular pump (9). □When adding oxygen, fluorine, chlorine, or nitrogen as a neutralizing additive, these gases were introduced into the preliminary chamber from the doping system (25) in FIG.

この後この反応室の真空引きをターボ分子ポンプ(9)
により行った。さらに基板(10)上の半導体(26)
、ヒータ(12)をゲイト弁(4) 、 (3)を開と
して移動機構(19’) 、 (19)を用いて第1の
予備室(1)内に移設する。さらにゲイト弁(4)を閉
、ゲイト弁(5)を開としてクライオポンプ(6)によ
り第1の予備室を減圧下に保持した。この減圧の程度は
少なくも10− ” torr以下であり、一般には1
0−’ 〜1O−9torrとした。この予備室に保持
された半導体(26) 。
After this, the reaction chamber is evacuated using a turbo molecular pump (9).
This was done by Furthermore, the semiconductor (26) on the substrate (10)
, the heater (12) is moved into the first preliminary chamber (1) by opening the gate valves (4), (3) and using the moving mechanisms (19'), (19). Further, the gate valve (4) was closed, the gate valve (5) was opened, and the first preliminary chamber was maintained under reduced pressure by the cryopump (6). The degree of this pressure reduction is at least 10-'' torr or less, and generally 1
The pressure was set at 0-' to 10-9 torr. A semiconductor (26) is held in this preliminary chamber.

基板(10)は50℃以下の熱アニール効果を誘発しな
い、温度に保ち、半導体被膜形成後まったく大気に触れ
させることなく光照射を行った。さらに不対結合手中和
用添加物の半導体中への添加を実行せしめる工程および
光アニール、熱アニールの後の電気伝導度の変化を調べ
る工程を行った。光アニールは窓(20)より可視光例
えばキセノン光(100mW/c11りを照射し、また
熱アニールはヒータ(12”)に電気を供給して実施し
た。
The substrate (10) was kept at a temperature of 50° C. or lower that would not induce thermal annealing effects, and after the semiconductor film was formed, it was irradiated with light without being exposed to the atmosphere at all. Furthermore, we performed a step of adding an additive for neutralizing dangling bonds into the semiconductor, and a step of examining changes in electrical conductivity after photo-annealing and thermal annealing. Optical annealing was performed by irradiating visible light such as xenon light (100 mW/c11) through a window (20), and thermal annealing was performed by supplying electricity to a heater (12'').

第2図は合成石英基板(10)上に一対の電極(ここで
はクロムを使用) (24) 、 (24’)を形成し
、この上面を覆って真性または実質的に真性の水素また
はハ、ロゲン元素が添加された非単結晶半導体であるア
モルファス半導体(26)を形成した。そして光転導度
及び喧伝導度を第1図に示す第1の予備室にてIN 5
ITU 、即ち被膜形成後雰囲気を真空中より変えるこ
となく一対の電極(24) 、 (24”)にプローブ
(17) 、 (17’ )をたてて接触法で測定した
In Figure 2, a pair of electrodes (chromium is used here) (24) and (24') are formed on a synthetic quartz substrate (10), and the upper surface is covered with intrinsic or substantially intrinsic hydrogen or An amorphous semiconductor (26), which is a non-single-crystal semiconductor doped with a rogen element, was formed. Then, the optical conductivity and optical conductivity were measured at IN 5 in the first preliminary room shown in Figure 1.
ITU, that is, after the film was formed, the probes (17) and (17') were set up on the pair of electrodes (24) and (24''), and the measurement was carried out by the contact method without changing the atmosphere from vacuum.

本発明においては、真空中で光照射アニールを行った後
、この半導体に対し水素または重水素の再結合中心中和
用の添加物の添加を行った。
In the present invention, after light irradiation annealing was performed in a vacuum, an additive for neutralizing hydrogen or deuterium recombination centers was added to the semiconductor.

また導入された水素または重水素等の中和用添加物また
はそれらと酸素は半導体の表面および空穴より内部に浸
透付着し、光照射により予め作られていた珪素の不対結
合手と結合し、5i−H結合、5t−D結合、5i−T
結合またはこれらと5i−0結合を作り中和安定化する
In addition, the introduced neutralizing additives such as hydrogen or deuterium or their oxygen and oxygen permeate into the interior of the semiconductor through the surface and holes, and combine with the dangling bonds of silicon that have been created in advance by light irradiation. , 5i-H bond, 5t-D bond, 5i-T
bonds or create 5i-0 bonds with these to neutralize and stabilize.

第3図は従来より公知の装置において、アモルファスシ
リコン半導体被膜を作り、この後、大気中にて電気伝導
度を測定・評価したものである。
FIG. 3 shows an amorphous silicon semiconductor film formed using a conventionally known apparatus, and then its electrical conductivity measured and evaluated in the atmosphere.

そして、基板としての石英ガラス上にシリコン半導体層
を0.6μの厚さに形成した場合の光照射(A旧) (
100mW/cm”)での光伝導度(28)、暗伝導度
(2B’)を示す。
Light irradiation when a silicon semiconductor layer is formed to a thickness of 0.6μ on quartz glass as a substrate (old A) (
The photoconductivity (28) and dark conductivity (2B') at 100 mW/cm'') are shown.

即ち初期状態の光伝導度(28−1)、暗伝導度(28
゛−1)の測定の後、AMI (100mW/cm2)
の光を2時間照射し、その後の光伝導度(28−2)及
び暗伝導度(28”−2)を測定・評価した。更にこの
試料に150 ”C12時間の熱アニールを行い、再び
同様に光伝導度(28−3)、暗伝導度(28°−3)
を測定した。これを繰り返すと、光照射により電気伝導
度が減少し、また熱アニールにより回復するという可逆
特性が第3図に示すごとく観察された。この反復性をい
わゆるステブラ・ロンスキ効果という。
That is, the initial state photoconductivity (28-1) and dark conductivity (28
After measuring ゛-1), AMI (100mW/cm2)
The sample was irradiated with light for 2 hours, and the photoconductivity (28-2) and dark conductivity (28''-2) were then measured and evaluated.Furthermore, this sample was thermally annealed at 150''C for 12 hours, and the same process was performed again. photoconductivity (28-3), dark conductivity (28°-3)
was measured. When this process was repeated, a reversible characteristic was observed as shown in FIG. 3, in which the electrical conductivity decreased due to light irradiation and was recovered by thermal annealing. This repeatability is called the Stebla-Lonski effect.

第4図は本発明に至るための電気特性であってSEI、
効果を示すものである。第1図に示されたUHV装置に
より半導体被膜を形成する。その後反応室にて半導体中
に添加物の添加工程を経ず、この反応室を真空引きした
FIG. 4 shows the electrical characteristics for achieving the present invention, including SEI,
It shows the effectiveness. A semiconductor film is formed using the UHV apparatus shown in FIG. Thereafter, the reaction chamber was evacuated without going through the step of adding additives into the semiconductor.

さらに第1の予備室(1)でこのヒータ(12°)下に
保持された半導体(22)が形成された基板(10’)
を大気に触れさせることなく、超高真空下における光照
射(20)熱アニール(12’)の有無による電気伝導
度の変化(29) 、 (29’ )をIN  5IT
Uで測定したものである。
Furthermore, the substrate (10') on which the semiconductor (22) is formed is held under this heater (12°) in the first preliminary chamber (1).
Changes in electrical conductivity (29), (29') with or without light irradiation (20) and thermal annealing (12') under ultra-high vacuum without exposing it to the atmosphere can be measured IN 5IT.
It was measured in U.

即ち、温度25℃、真空度4 X 10−’torrの
測定で初期の1.5 xlO−”Scm−’の暗伝導度
(29’−1)、 9 X10−’Scm−’の光伝導
度(29−1)(キセノンランプを使用)を得た。これ
にキセノンランプ(100mW/cm2)を2時間照射
すると、電気伝導度は(29−2) 、 (29°−2
)と光伝導度が3.5 XIOXlo−5S’、暗伝導
度が6×10−95cm−’に低下した。この試料に対
しその後150℃3時間の加熱処理を行った。すると、
従来は第3図(28−3) 、 (28’−3)に示す
如く初期状態の値にまで電気伝導度が回復すべきである
が、本発明のUHV下でのIN 5rTU測定方法にお
いては、第4図(29−3) 、 (29’−3)に示
される如く、さらに減少する。再びキセノンランプで2
時間照射しく29−4) 、 (29”−4)を得、ま
た150℃、3時間の熱アニールで(29−5) 。
That is, the initial dark conductivity (29'-1) of 1.5 xlO-'Scm-' and the photoconductivity of 9 x10-'Scm-' were measured at a temperature of 25°C and a vacuum of 4 x 10-'torr. (29-1) (using a xenon lamp) was obtained. When this was irradiated with a xenon lamp (100 mW/cm2) for 2 hours, the electrical conductivity was (29-2), (29°-2
), the photoconductivity decreased to 3.5 XIOXlo-5S', and the dark conductivity decreased to 6 x 10-95 cm-'. This sample was then subjected to heat treatment at 150°C for 3 hours. Then,
Conventionally, the electrical conductivity should recover to the initial state value as shown in Figure 3 (28-3) and (28'-3), but in the IN 5rTU measurement method under UHV of the present invention, , as shown in FIG. 4 (29-3) and (29'-3), further decreases. 2 again with the xenon lamp
29-4), (29''-4) was obtained by time irradiation, and (29-5) was obtained by thermal annealing at 150°C for 3 hours.

(29’−5)を得る。またキセノンランプアニールに
て(29−6) 、 (29’−6)を得る。また熱ア
ニールにして(29−7) 、 (29°−7)を得る
。これら熱照射、熱アニールを繰り返しても、その光伝
導度(29)及び暗伝導度(29°)は単純に減少傾向
となって第3図とはまったく異なる特性となった。
(29'-5) is obtained. Further, (29-6) and (29'-6) are obtained by xenon lamp annealing. Further, (29-7) and (29°-7) are obtained by thermal annealing. Even if these heat irradiation and thermal annealing were repeated, the photoconductivity (29) and dark conductivity (29°) simply tended to decrease, resulting in characteristics completely different from those in FIG. 3.

これは光照射により単位が誘発されることにより電気伝
導度が減少するもので、ががる減少を本発明人は5EL
(State Exicited by Light)
効果と称する。
This is because the electrical conductivity decreases when the unit is induced by light irradiation, and the inventors believe that 5EL
(State Excited by Light)
It is called an effect.

第5図は本発明方法により作られた他の電気特性である
FIG. 5 shows other electrical characteristics produced by the method of the present invention.

即ち第1図の装置において半導体被膜を形成した。この
半導体被膜の光伝導度を(30) 、暗伝導度を(30
″)に示す。かかる被膜形成直後の電気伝導度を(30
−1)、 (30’−1)に示す。その後、反応室また
は第1の予備室にて真空中に保持し、十分な時間(3時
間以上ここでは48時間)可視光(100mW/cm2
)の光照射を行い、St!L効果により再結合中心を誘
起し、その電気伝導度を(30−2) 、 (30’−
2)に示す。
That is, a semiconductor film was formed using the apparatus shown in FIG. The photoconductivity of this semiconductor film is (30), and the dark conductivity is (30).
The electrical conductivity immediately after the film is formed is shown in (30
-1) and (30'-1). Thereafter, the reaction chamber or the first preparatory chamber is kept in vacuum for a sufficient period of time (more than 3 hours, here 48 hours), and visible light (100 mW/cm2) is applied.
), and St! A recombination center is induced by the L effect, and its electrical conductivity becomes (30-2) and (30'-
2).

さらにこのSEL効果がおきている半導体に対し系(2
5)より水素または重水素を予備室に添加する。
Furthermore, for semiconductors in which this SEL effect occurs, the system (2
5) Add hydrogen or deuterium to the preliminary chamber.

この水素または重水素を加熱し減圧下にて保持された半
導体表面及び半導体中に添加し、約48時間後の電気伝
導度を(30−3) 、 (30’−3)に示す。する
とこの含浸した水素または重水素は半導体中のSi−の
不対結合手と結合し Si−十   H−5i−H 5i−+  D  −5i−D SL−十   T    −5i−T となる。そしてこのSi−Li結合はこの後大気中にこ
の半導体装置されても安定であることが期待できる。か
くして本発明方法で形成された半導体はIN 5ITU
の真空中の光照射・熱アニールのサイクルを第3図と同
様に同時に実施した。しかし、第5図に示す如く殆ど変
化がなかった。
This hydrogen or deuterium is heated and added to the semiconductor surface and the semiconductor held under reduced pressure, and the electrical conductivity after about 48 hours is shown in (30-3) and (30'-3). Then, this impregnated hydrogen or deuterium combines with the dangling bond of Si- in the semiconductor to form Si-1 H-5i-H 5i-+ D-5i-D SL-10 T-5i-T. This Si--Li bond is expected to be stable even if the semiconductor device is subsequently placed in the atmosphere. Thus, the semiconductor formed by the method of the present invention has an IN 5 ITU
A cycle of light irradiation and thermal annealing in vacuum was simultaneously performed as shown in FIG. However, as shown in FIG. 5, there was almost no change.

即ち、初期状態の6.OXl0−’5cm−1の光転導
度(30−3)、5.5XIO−7Scm−’の暗転導
度(30’−3)に対し、光照射(2時間) (30−
4) 、 (30”−4) 、 (30−6) 、 (
30’−6)を得る。さらに150℃熱アニール3時間
において(30−5) 、 (30’−5)を得る。そ
してこの電気伝導度は若干の変化を有するが、殆ど変化
がなく、この光照射、熱アニールにより再結合中心が新
たにはほとんど生じていないことがわかる。
That is, 6. in the initial state. The light irradiation (2 hours) (30-
4) , (30”-4) , (30-6) , (
30'-6) is obtained. Furthermore, (30-5) and (30'-5) were obtained by thermal annealing at 150° C. for 3 hours. Although this electrical conductivity changes slightly, there is almost no change, and it can be seen that almost no new recombination centers are generated by this light irradiation and thermal annealing.

以上の実験の結果より、ステブラ・ロンスキ効果は半導
体を形成した後、大気中にこの半導体装置し、酸素を半
導体と吸着または反応させた試料の大気中での光アニー
ルおよび熱アニール処理においてのみ観察される現象で
あることが判明した。そして本発明人の発見したSIl
、L効果は光アニール及び熱アニールを半導体被膜を形
成した後この半導体被膜を大気にふれさせることなく超
高真空下で電気特性評価を行うことにより観察される。
From the results of the above experiments, the Stebla-Lonski effect is observed only in photo-annealing and thermal annealing in the atmosphere of a sample in which a semiconductor is formed, the semiconductor device is exposed to the atmosphere, and oxygen is adsorbed or reacted with the semiconductor. It turns out that this is a phenomenon that occurs. And SIl discovered by the inventor
The L effect is observed by performing optical annealing and thermal annealing to form a semiconductor film, and then evaluating the electrical characteristics of the semiconductor film under ultra-high vacuum without exposing it to the atmosphere.

さらに本発明人の示す半導体被膜を形成した後、超高真
空下でSEL効果を誘起し、この半導体に対し再結合中
心中和用添加物を添加することによって、不安定な不対
結合手と添加物とが結合し安定化することにより光照射
による特性劣化の発生を防ぐことができる。
Furthermore, after forming the semiconductor film shown by the present inventor, the SEL effect is induced under ultra-high vacuum, and by adding an additive for neutralizing recombination centers to this semiconductor, unstable dangling bonds are removed. By combining with additives and stabilizing it, it is possible to prevent property deterioration due to light irradiation.

さらに本発明は半導体を形成してしまった後、この半導
体を超高純度の不活性気体(Ar+He+NeまたはN
z)中で大気圧とする。さらに、この半導体を異なる真
空容器に移し、再び超高真空下に保持して加熱(被膜形
成温度またはその付近以上の温度)し、脱ガス化を図り
、SEL効果を誘起し、光照射により不安定な不対結合
手を十分に生成しておき、ここに添加物を半導体に機械
的な損傷応力を与えることなく添加して不安定な不対結
合手を中和することも有効である。しかしこの工程によ
り作られた半導体装置の電気伝導度の変化は第5図の結
果より若干劣化が大きいと推定される。
Furthermore, after forming the semiconductor, the present invention uses an ultra-high purity inert gas (Ar+He+Ne or N
z) Atmospheric pressure inside. Furthermore, this semiconductor is transferred to a different vacuum container, kept under ultra-high vacuum again, heated (at or above the film formation temperature), degassed, induces the SEL effect, and is removed by light irradiation. It is also effective to generate a sufficient amount of stable dangling bonds and then add an additive to the semiconductor without mechanically damaging stress to neutralize the unstable dangling bonds. However, it is estimated that the change in electrical conductivity of the semiconductor device manufactured by this process is slightly more degraded than the results shown in FIG.

さらに本発明方法においてこの水素と酸素の混合気体中
に基板を保持し、大気圧とするとともにこれら100〜
500℃代表的には250〜300℃にて熱処理を施し
、活性H,0の元素を半導体内部にまで拡散し不対結合
手と中和させることもできる。
Furthermore, in the method of the present invention, the substrate is held in this mixed gas of hydrogen and oxygen, and the pressure is brought to atmospheric pressure.
It is also possible to perform heat treatment at 500° C., typically 250 to 300° C., to diffuse the active H,0 element into the semiconductor and neutralize the dangling bonds.

なお以上の本発明方法は、半導体被膜を形成する際、弗
素等の不純物を含む雰囲気中で被膜形成をし、この被膜
形成と同時にこれらの添加物を添加する従来より公知の
方法(例えばUSP 4226898S、R,オプチン
スキー)とは根本よりその技術思想が異なる。
The method of the present invention described above is similar to the conventional method (for example, USP 4226898S) in which, when forming a semiconductor film, the film is formed in an atmosphere containing impurities such as fluorine, and these additives are added at the same time as the film is formed. , R. Optinski), its technical philosophy is fundamentally different.

本発明において形成される被膜は水素が添加されたアモ
ルファスシリコン半導体を主として示した。しかし弗素
化アモルファスシリコン、水素または弗素または水素と
酸素が添加された5iXCt−x(0<X<1)、5i
xGe+−x(0<X<1)、5ixSn+−x(0<
X<1)  その他のステブラ・ロンスキ効果が通常に
おいて観察される非単結晶半導体に対しても適用が可能
であることはいうまでもない。
The film formed in the present invention mainly consisted of an amorphous silicon semiconductor doped with hydrogen. However, fluorinated amorphous silicon, 5iXCt-x (0<X<1), 5i
xGe+-x(0<X<1), 5ixSn+-x(0<
X<1) It goes without saying that the present invention can also be applied to non-single crystal semiconductors in which other Stebla-Wronski effects are normally observed.

本発明において、水素または重水素の添加は実施例のみ
に限定されるものではなく、他の水素化物(例えばHz
O,HF、IIcI、NHs、DzO,HD、D□、T
2□等)を用いてもよい。また同時に酸素、弗素、塩素
、窒素を添加することは有効であった。
In the present invention, the addition of hydrogen or deuterium is not limited to the examples only, and addition of other hydrides (e.g. Hz
O, HF, IIcI, NHs, DzO, HD, D□, T
2□ etc.) may be used. It was also effective to simultaneously add oxygen, fluorine, chlorine, and nitrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置作製用のプラズマ気相反応
炉の概要を示す。 第2図は電気伝導度の測定用系の縦断面図を示す。 第3図は従来より知られた真性半導体の電気特性を示す
。 第4図は本発明を実施するための真性半導体の電気特性
を示す。 第5図は本発明方法により作られた真性半導体の電気特
性を示す。
FIG. 1 shows an outline of a plasma vapor phase reactor for manufacturing a semiconductor device according to the present invention. FIG. 2 shows a longitudinal cross-sectional view of a system for measuring electrical conductivity. FIG. 3 shows the electrical characteristics of conventionally known intrinsic semiconductors. FIG. 4 shows the electrical characteristics of an intrinsic semiconductor for implementing the present invention. FIG. 5 shows the electrical characteristics of an intrinsic semiconductor produced by the method of the present invention.

Claims (1)

【特許請求の範囲】 1、基板上に水素またはハロゲン元素を含む非単結晶半
導体を形成する工程と、前記半導体を減圧下に保持し、
光アニールを行う工程と、該工程の後、前記半導体中ま
たは表面に添加物として水素または重水素を添加するこ
とを特徴とした半導体装置作製方法。 2、特許請求の範囲第1項において、半導体が保持され
た減圧状態は10^−^3torrまたはそれ以下であ
るとともに50℃以下の温度に保持されていることを特
徴とする半導体装置作製方法。 3、特許請求の範囲第1項において、添加物は水素また
は重水素に加えて酸素、弗素、塩素、窒素より選ばれる
ことを特徴とする半導体装置作製方法。
[Claims] 1. A step of forming a non-single crystal semiconductor containing hydrogen or a halogen element on a substrate, and holding the semiconductor under reduced pressure,
A method for manufacturing a semiconductor device, comprising the steps of performing photo-annealing and, after the step, adding hydrogen or deuterium as an additive into or on the surface of the semiconductor. 2. A method for manufacturing a semiconductor device according to claim 1, wherein the reduced pressure state in which the semiconductor is maintained is 10^-^3 torr or less, and the temperature is maintained at 50°C or less. 3. The method for manufacturing a semiconductor device according to claim 1, wherein the additive is selected from oxygen, fluorine, chlorine, and nitrogen in addition to hydrogen or deuterium.
JP60191173A 1985-08-30 1985-08-30 Manufacture of semiconductor device Pending JPS6251210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60191173A JPS6251210A (en) 1985-08-30 1985-08-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60191173A JPS6251210A (en) 1985-08-30 1985-08-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6251210A true JPS6251210A (en) 1987-03-05

Family

ID=16270112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60191173A Pending JPS6251210A (en) 1985-08-30 1985-08-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6251210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261677A (en) * 2015-11-18 2016-01-20 浙江晶科能源有限公司 Method for rapid light-induced degradation of solar cell piece

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623784A (en) * 1979-08-05 1981-03-06 Shunpei Yamazaki Manufacture of semiconductor device
JPS5623748A (en) * 1979-08-05 1981-03-06 Shunpei Yamazaki Manufacture of semiconductor device
JPS5623736A (en) * 1979-07-31 1981-03-06 Fujitsu Ltd Vapor phase growing method
JPS58209114A (en) * 1982-05-31 1983-12-06 Semiconductor Energy Lab Co Ltd Filling method for reactive gas for semiconductor
JPS60120881A (en) * 1983-10-14 1985-06-28 フアイザ−・インコ−ポレ−テツド 2-azacycloalkylthiopenem derivative
JPS60175194A (en) * 1984-02-20 1985-09-09 株式会社デンソー Store card processor
JPS60186824A (en) * 1984-03-06 1985-09-24 Citizen Watch Co Ltd Matrix display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623736A (en) * 1979-07-31 1981-03-06 Fujitsu Ltd Vapor phase growing method
JPS5623784A (en) * 1979-08-05 1981-03-06 Shunpei Yamazaki Manufacture of semiconductor device
JPS5623748A (en) * 1979-08-05 1981-03-06 Shunpei Yamazaki Manufacture of semiconductor device
JPS58209114A (en) * 1982-05-31 1983-12-06 Semiconductor Energy Lab Co Ltd Filling method for reactive gas for semiconductor
JPS60120881A (en) * 1983-10-14 1985-06-28 フアイザ−・インコ−ポレ−テツド 2-azacycloalkylthiopenem derivative
JPS60175194A (en) * 1984-02-20 1985-09-09 株式会社デンソー Store card processor
JPS60186824A (en) * 1984-03-06 1985-09-24 Citizen Watch Co Ltd Matrix display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261677A (en) * 2015-11-18 2016-01-20 浙江晶科能源有限公司 Method for rapid light-induced degradation of solar cell piece
CN105261677B (en) * 2015-11-18 2017-08-25 浙江晶科能源有限公司 A kind of method of the quick photo attenuation of solar cell piece

Similar Documents

Publication Publication Date Title
US4888305A (en) Method for photo annealing non-single crystalline semiconductor films
US5296405A (en) Method for photo annealing non-single crystalline semiconductor films
KR0143873B1 (en) Fabrication insulation film and semiconductor device
US5171710A (en) Method for photo annealing non-single crystalline semiconductor films
US6946404B2 (en) Method for passivating a semiconductor substrate
JPH02155225A (en) Method of forming amorphous semiconductor thin-film
Sanganeria et al. Low temperature silicon epitaxy in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor using disilane
JPS60224282A (en) Manufacture of semiconductor device
US5230753A (en) Photostable amorphous silicon-germanium alloys
KR950004387A (en) Deposition and Oxidation Methods of High Capacity Semiconductor Dopants
JPS60218879A (en) Semiconductor device
JPS6251210A (en) Manufacture of semiconductor device
JP2660243B2 (en) Semiconductor device manufacturing method
JPS6254423A (en) Manufacture of semiconductor device
JPS6254448A (en) Measurement for semiconductor device
JP2521427B2 (en) Semiconductor device manufacturing method
JPS6269608A (en) Manufacture of semiconductor device
JPS6252924A (en) Manufacture of semiconductor device
JP2004103688A (en) Method for forming insulating film and gate insulating film
JPS6247116A (en) Semiconductor device manufacturing equipment
WO2017145470A1 (en) Method for producing epitaxial wafer, and epitaxial wafer
JPS62115710A (en) Manufacture of semiconductor device
JPS63239931A (en) Deposited film forming method
JPS6252925A (en) Semiconductor device manufacturing equipment
JPH0982637A (en) Manufacture of amorphous semiconductor thin film