JPS62115710A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62115710A
JPS62115710A JP60254743A JP25474385A JPS62115710A JP S62115710 A JPS62115710 A JP S62115710A JP 60254743 A JP60254743 A JP 60254743A JP 25474385 A JP25474385 A JP 25474385A JP S62115710 A JPS62115710 A JP S62115710A
Authority
JP
Japan
Prior art keywords
semiconductor
light
layer
semiconductor layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60254743A
Other languages
Japanese (ja)
Inventor
Shinichi Muramatsu
信一 村松
Tadashi Saito
忠 斉藤
Juichi Shimada
嶋田 寿一
Shigeru Kokuuchi
滋 穀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60254743A priority Critical patent/JPS62115710A/en
Publication of JPS62115710A publication Critical patent/JPS62115710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve characteristics of a solar battery photodiode and the like, by radiating 185nm light without mixing mercury vapor in reaction gas, when alloy is minutely crystallized by photo-excitation CVD method, so that a doping layer of extremely low resistance can be obtained with its band gap being different from that of a Si-single thin film. CONSTITUTION:In a semiconductor device whose main constituent is a non-single crystalline silicon group semiconductor containing hydrogen, at least one layer of p-type or/and n-type semiconductor layers is an alloy necessarily containing Si and H and containing at least one kind of C, N, and O, being provided with dopant such as P or B. Besides, the semiconductor layer is formed by a chemical gaseous phase growth method of light radiation so that conductivity of the semiconductor layer becomes 10<-3>OMEGA.cm<-1> or more. The semiconductor layer is formed by using Si2H6 as a Si source and using ultraviolet rays at least containing light whose peak wavelength is about 185nm as a light source. Hence, non-single crystalline alloy with a large band gap can be formed without use of laser light-radiation annealing.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜半導体を有する半導体装置に係り。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a semiconductor device having a thin film semiconductor.

特に太陽電池、ホトダイオード、あるいはFET素子に
好適な半導体層の形成方法に関する。
In particular, the present invention relates to a method for forming a semiconductor layer suitable for solar cells, photodiodes, or FET devices.

〔発明の背景〕[Background of the invention]

従来、アモルファスシリコン系光起電力素子においては
、特開昭58−171868のようにその2層にアモル
ファスS i C: Hを用いることが一般的となって
いた。しかしながら、アモルファスSiC:Hはアモル
ファスSiC:Hに比べて、バンドギャップは広がり透
光性は良くなったものの、導電率は低下し10一番Ω−
1・■−工〜10−δΩ−1・Cm −1となっている
。そしてこの導電率の低し1ことが光起電力素子におい
ては直列抵抗の増加となり、光起電力特性の向上を制限
していた。
Conventionally, in amorphous silicon-based photovoltaic devices, it has been common to use amorphous S i C:H for the two layers as disclosed in Japanese Patent Application Laid-open No. 58-171868. However, compared to amorphous SiC:H, amorphous SiC:H has a wider bandgap and better light transmittance, but has lower conductivity and 10Ω-
1.■-E to 10-δΩ-1.Cm-1. This low conductivity 1 leads to an increase in series resistance in photovoltaic devices, which limits the improvement of photovoltaic characteristics.

一方、1985年春季応用物理学会予講集31p−T−
5に見られようにアモルファスSiC:Hはレーザー光
照射アニールにより、結晶化でき導電率を10−8Ω−
”CIl−”以上にできることが知られ。
On the other hand, 1985 Spring Applied Physics Society Preliminary Lecture 31p-T-
As shown in Figure 5, amorphous SiC:H can be crystallized by laser irradiation annealing and its conductivity can be reduced to 10-8Ω-.
It is known that it can do more than "CIl-".

これを光起電力素子に応用することが提案されていた。It has been proposed to apply this to photovoltaic devices.

しかし、この方法ではレーザー光照射によりアモルファ
スSiC:H以外d部分、たとえばアモルファス5iC
xH層下の透明電極も熱処理を受け、その材料の拡散と
いった問題が不可避であった。
However, in this method, d parts other than amorphous SiC:H, such as amorphous 5iC, are removed by laser beam irradiation.
The transparent electrode under the xH layer was also subjected to heat treatment, and the problem of diffusion of the material was unavoidable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、バンドギャップが大きく、かつ導電率
が10−8Ω−1・Qll −”以上である非単結晶系
合金を、レーザー光照射アニールを用いずに形成する方
法を提供することにある。
An object of the present invention is to provide a method for forming a non-single crystal alloy having a large band gap and a conductivity of 10-8 Ω-1·Qll-'' or more without using laser light irradiation annealing. be.

〔発明の概要〕[Summary of the invention]

前述のようにS i C: Hなどの合金においても、
レーザー光照射アニールを行えば微結晶化し、抵抗値が
急激に低下することが知られていた。しかし、プラズマ
CVD方法などによる成膜時に、微結晶化する方法は知
られていなかった。本発明者は、水素化シリコンがプラ
ズマCVD法より光励起CVD法によって微結晶化しや
すいことから、光励起CVD法を用い合金を微結晶化す
る条件を検討した。その結果、反応ガス中に水銀蒸気を
混入させず、185nmの光を照射することにより、従
来より格段に低抵抗のドーピング層を形成できる条件が
明らかになった。
As mentioned above, in alloys such as S i C: H,
It was known that annealing with laser light irradiation causes microcrystalization and a rapid decrease in resistance value. However, a method for microcrystallization during film formation using a plasma CVD method or the like has not been known. Since silicon hydride is more easily microcrystallized by photo-excited CVD than by plasma CVD, the inventor investigated conditions for microcrystallizing an alloy using photo-excited CVD. As a result, it was revealed that the conditions under which a doped layer with much lower resistance than before can be formed by irradiating with 185 nm light without mixing mercury vapor into the reaction gas were clarified.

、反応ガスとしては以下のようなものを用いることがで
きる。Si源としては5izHe を始めとして、S 
iHa 、5iaHaなどのシラン系ガス、S i H
4,5iHzCQ2などのハロゲンを含むガス、CHa
SiHa *  (CI(s)zsiHzなとのアルキ
ルシラン系ガスが使用できる。Cgとしては、Cz H
x、 Cz H4等の炭化水素ガスや((、H3)zs
iHzなどのアルキルシラン系ガスが使用できる。また
As the reaction gas, the following can be used. Si sources include 5izHe, S
Silane gas such as iHa, 5iaHa, S i H
4,5iHz Gas containing halogen such as CQ2, CHa
An alkylsilane gas such as SiHa* (CI(s)zsiHz) can be used. As Cg, Cz H
Hydrocarbon gas such as x, Cz H4 or ((, H3)zs
Alkylsilane gas such as iHz can be used. Also.

SiN:H合金作製のためにはN[としてNHa+N2
等を用いれば良いし、SiO:H合金作製のためには0
源としてOz 、NzO等を用い−れば良い。もちろん
、上記のようなC,N、Oの必須な成分のみでなく、F
、Ge等を含んでいても良いことは言うまでもない。
For the preparation of SiN:H alloy, N[as NHa+N2
etc., and for producing SiO:H alloy, 0
Oz, NzO, etc. may be used as the source. Of course, in addition to the essential components of C, N, and O as mentioned above, F
, Ge, etc. may be included.

ドーパントとしては、p型膜形成のためには水素希釈の
B2H8,n型膜形成のためには水素希釈のPH3を用
いた。もちろん、HeやNx、Ar等で希釈したガスで
も良いし、BFa + PBra等でも良い。
As dopants, B2H8 diluted with hydrogen was used to form a p-type film, and PH3 diluted with hydrogen was used to form an n-type film. Of course, gas diluted with He, Nx, Ar, etc. may be used, or BFa + PBra etc. may be used.

反応に使用するガスは、微結晶化のために反応時の混合
ガス中にSi源ガス成分に対して0.5以上の比率のH
zを含む必要がある。希釈ガスとしてソースガス中に含
まれているH2のみではこの比率にならない場合には、
別途Hzガスを導入する。
The gas used in the reaction contains H at a ratio of 0.5 or more to the Si source gas component in the mixed gas during the reaction for microcrystallization.
Must include z. If this ratio cannot be achieved only with H2 contained in the source gas as a diluent gas,
Separately introduce Hz gas.

また1台金5ll−XXX : H(X = C+ O
+ N)は、Xの比率があまり高くなると低抵抗化が困
難となることから又は0.05〜0.5  が適当であ
る。さらに堆積速度については遅いことが望ましく、0
.05〜0.5 人/Sで堆積を行うのが良い。
Also, 1 unit gold 5ll-XXX: H (X = C + O
+N) is suitably 0.05 to 0.5 since it becomes difficult to lower the resistance if the ratio of X becomes too high. Furthermore, it is desirable that the deposition rate be slow;
.. It is preferable to perform the deposition at a rate of 0.05 to 0.5 people/S.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図を用いて説明する。ガラス基板1上に、5bzO
aを含有するSnowによる透明電極2を形成し、この
上にシリコン系合金による半導体薄膜を形成した。まず
、基板を200℃に加熱し。
Example 1 This will be explained using FIG. 5bzO on glass substrate 1
A transparent electrode 2 made of Snow containing a was formed, and a semiconductor thin film made of a silicon-based alloy was formed thereon. First, the substrate was heated to 200°C.

100%5izHa: 10%Cz’HzCHz希釈)
:1%BzHa(Hz希釈)=20:30:8の割合で
反応ガスを反応室に導入し、2 Torrに保つように
排気しながら、低圧水銀灯により、少くとも185nm
の光が反応室内に届くように窓材を選んで光照射を行っ
た。これによってp型SiC:HM!j3を100人形
成した。より厚膜を形成して膜質の評価を行ったところ
、バンドギャップは2.1eVで導電率はlXl0−”
Ω−1−■−1であった。
100% 5izHa: 10%Cz'HzCHz dilution)
: 1% BzHa (Hz dilution) = 20:30:8 ratio of the reaction gas was introduced into the reaction chamber, and while evacuated to maintain the temperature at 2 Torr, a low-pressure mercury lamp was used to evacuate the reaction gas to at least 185 nm.
The window material was selected so that the light could reach the reaction chamber, and the light was irradiated. This allows p-type SiC:HM! Formed J3 with 100 members. When a thicker film was formed and the film quality was evaluated, the band gap was 2.1 eV and the conductivity was lXl0-"
It was Ω-1-■-1.

次に100%5izH6と1 ppmB zHe (H
A希釈)により微量Bドープしたi型アモルファスSi
:H層4を5000人形成した。さらに100%5iz
He と500ppmP Ha (H2希釈)によりn
型微結晶化Si :H層4を300人形成した。このi
型層、n型層はいずれもプラズマCVD法で形成した。
Next, 100% 5izH6 and 1 ppmB zHe (H
i-type amorphous Si doped with a trace amount of B by A dilution)
: 5000 people formed H layer 4. More 100% 5iz
n by He and 500 ppm P Ha (H2 dilution)
Type microcrystalline Si:H layer 4 was formed by 300 people. This i
Both the type layer and the n-type layer were formed by plasma CVD.

次に裏面電極6としてAQをマスク蒸着法で1μmにパ
ターン蒸着した。最後に、この裏面電極6をマスクにエ
ツチングを行い、第1図の形状を得た。エツチングには
DF4十oz  (4〜8%)を用いてプラズマエツチ
ングを行った。
Next, as the back electrode 6, AQ was deposited in a pattern of 1 μm using a mask deposition method. Finally, etching was performed using the back electrode 6 as a mask to obtain the shape shown in FIG. Plasma etching was performed using DF40 oz (4-8%).

本装置を太陽光(100mW/a+F)下で光電変換特
性の測定を行ったところ、10%の変換効率を得た。
When the photoelectric conversion characteristics of this device were measured under sunlight (100 mW/a+F), a conversion efficiency of 10% was obtained.

実施例2 第2図を用いて説明する。Example 2 This will be explained using FIG.

SUS基板11上に1000pp朧のBzHs(Hz希
釈)と100%5iHaによりp型アモルファスSi 
:H層12を300人形成し、その後、微量Bドープし
たi型アモルファスSi :H層13を、H2希釈のB
2H1と100%SiH4により5000人形成した。
P-type amorphous Si is formed on the SUS substrate 11 using 1000pp hazy BzHs (Hz dilution) and 100% 5iHa.
:H layer 12 was formed by 300 people, and then the i-type amorphous Si doped with a trace amount of B was formed.
5000 people were formed using 2H1 and 100% SiH4.

これらはいずれもプラズマCVD法で形成した。次に、
100%5izPIe、 500ppmP Ha  (
H2希釈)、高純度02の混合ガスを反応室に導入し0
.5Torrに保ちながら、低圧水銀灯により、少くと
も185nmの光が反応室内に届くように窓材を選んで
光照射を行った。
All of these were formed by plasma CVD. next,
100% 5izPIe, 500ppmP Ha (
H2 dilution), high purity 02 mixed gas is introduced into the reaction chamber, and 0
.. While maintaining the temperature at 5 Torr, light was irradiated with a low-pressure mercury lamp by selecting a window material so that light of at least 185 nm could reach the inside of the reaction chamber.

これによりバンドギャップ1.9eV、導電率1.0Ω
−”Cl1−1のn型Si○:H層14を150人形成
した。最後にI To (Ir+zOx+ S n O
z)を電子ビーム蒸着法によるマスク原著し、700人
の透明電極15を形成した6本装置での光電変換効率は
8.5 %であった。
This results in a bandgap of 1.9eV and a conductivity of 1.0Ω.
-"Cl1-1 n-type Si○:H layer 14 was formed by 150 people.Finally, ITo(Ir+zOx+SnO
The photoelectric conversion efficiency was 8.5% in 6 devices in which 700 transparent electrodes 15 were formed using a mask made by the electron beam evaporation method.

以上の実施例において、CやOを含む合金層以外の層は
、いずれもプラズマCVD法によって形成したが、これ
は光CVD法でも同様に形成できる。また、上、記の合
金層を形成する際の光源としては、低圧水銀灯のみでは
なく、重水素ランプ、Xeランプ、あるいはレーザー光
でも、200nm以下の波長の光を有するものは同様に
用いることができる。また、装置構造は上記に限られる
ものではなく、たとえば透明電極/pin(I)/pi
n(■)/金属基板のようなタンデム型太陽電池におい
ても本発明は適用できる。さらに。
In the above embodiments, all layers other than the alloy layer containing C and O were formed by plasma CVD, but they can also be formed by photo-CVD. In addition, as a light source for forming the above-mentioned alloy layer, not only a low-pressure mercury lamp but also a deuterium lamp, a Xe lamp, or a laser beam having a wavelength of 200 nm or less can be used. can. Further, the device structure is not limited to the above, for example, transparent electrode/pin(I)/pi
The present invention is also applicable to tandem solar cells such as n(■)/metal substrates. moreover.

薄膜の81を用いたホトダイオードやTFT(Thin
 Film Transistor)においても同様に
適用できることは言うまでもない。
Photodiodes and TFTs (Thin
Needless to say, the present invention can be similarly applied to (Film Transistor).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Si単独の薄膜とは異ったバンドギャ
ップの、非常に低抵抗なドーピング層が得られるので、
太陽電池やホトダイオードなどの特性が大きく向上する
効果がある。
According to the present invention, a doped layer with a band gap different from that of a thin film of Si alone and a very low resistance can be obtained.
It has the effect of greatly improving the characteristics of solar cells, photodiodes, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1を示す縦断面図、第2図は本
発明の実施例2を示す縦断面図である。 1・・ガラス基板、2・・・透明電極、3・・・p型S
iC:8層、4・・・i型アモルファスSi:HpIj
、5・・・n型微結晶化Si:HpIj、6・・・裏面
電極、11・・・S tJ S基板、12・・・p型ア
モルファスSi :8層。 13・i型アモルファスS i : 8層、14・・・
n型層 i O: 8層、15・・・透明電極。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view showing a second embodiment of the present invention. 1...Glass substrate, 2...Transparent electrode, 3...p type S
iC: 8 layers, 4...i-type amorphous Si: HpIj
, 5... N-type microcrystalline Si: HpIj, 6... Back electrode, 11... S tJ S substrate, 12... P-type amorphous Si: 8 layers. 13・I-type amorphous S i: 8 layers, 14...
N-type layer i O: 8 layers, 15...transparent electrode.

Claims (1)

【特許請求の範囲】 1、水素を含有する非単結晶シリコン系半導体を主な構
成要素とする半導体装置において、p型あるいは、およ
びn型の半導体層のうち少くとも一層は、SiおよびH
を必ず含みさらにC,N,Oのうち1種は少くとも含有
する合金で、PもしくはB等のドーパントを有し、かつ
、該半導体層の形成は光照射による化学気相成長法を用
いて、該半導体層の導電率を10^−^8Ω^−^1・
cm^−^1以上にすることを特徴とする半導体装置の
製造方法。 2、上記半導体層の形成には、Si源としてSi_nH
_2_n_+_2_1(n≧2)を用いることを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
。 3、上記半導体層の形成には、Si源としてSi_2H
_6を用いるとともに、光源として少くともピーク波長
がほぼ185nmの光を含む紫外線を用いることを特徴
とする特許請求の範囲第1項記載の半導体装置の製造方
法。 4、水素を含有する非単結晶シリコン系半導体を主な構
成要素とする半導体装置において、半導体層のうち少く
とも一層は、SiおよびHを必ず含みさらにC,N,O
のうち1種は少くとも含有する微結晶合金で、該半導体
層の形成は光照射による化学気相成長法を用いることを
特徴とする半導体装置の製造方法。
[Claims] 1. In a semiconductor device whose main component is a non-single crystal silicon semiconductor containing hydrogen, at least one of the p-type or n-type semiconductor layers is composed of Si and H
An alloy that always contains at least one of C, N, and O, and has a dopant such as P or B, and the semiconductor layer is formed using a chemical vapor deposition method using light irradiation. , the conductivity of the semiconductor layer is 10^-^8Ω^-^1.
A method for manufacturing a semiconductor device, characterized in that the thickness is at least cm^-^1. 2. In the formation of the semiconductor layer, Si_nH is used as a Si source.
2. The method of manufacturing a semiconductor device according to claim 1, wherein _2_n_+_2_1 (n≧2) is used. 3. In the formation of the above semiconductor layer, Si_2H is used as a Si source.
6. The method of manufacturing a semiconductor device according to claim 1, wherein ultraviolet light including light having a peak wavelength of at least approximately 185 nm is used as a light source. 4. In a semiconductor device whose main component is a non-single-crystal silicon-based semiconductor containing hydrogen, at least one layer of the semiconductor layer always contains Si and H, and also contains C, N, and O.
A method for manufacturing a semiconductor device, characterized in that the semiconductor layer is formed using a chemical vapor deposition method using light irradiation, wherein at least one of the semiconductor layers is a microcrystalline alloy.
JP60254743A 1985-11-15 1985-11-15 Manufacture of semiconductor device Pending JPS62115710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254743A JPS62115710A (en) 1985-11-15 1985-11-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254743A JPS62115710A (en) 1985-11-15 1985-11-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62115710A true JPS62115710A (en) 1987-05-27

Family

ID=17269250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254743A Pending JPS62115710A (en) 1985-11-15 1985-11-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62115710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451618A (en) * 1987-08-22 1989-02-27 Nippon Soken Microcrystalline silicon carbide semiconductor film and manufacture thereof
JPH01119015A (en) * 1987-10-31 1989-05-11 Nippon Soken Inc Silicon carbide semiconductor film and manufacture thereof
US5206468A (en) * 1990-06-21 1993-04-27 Mitsubishi Denki Kabushiki Kaisha Locking apparatus for a drawer type circuit breaker
US8575502B2 (en) 2009-12-31 2013-11-05 Ls Industrial Systems Co., Ltd. Plug interlock device for circuit breaker and circuit breaker having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451618A (en) * 1987-08-22 1989-02-27 Nippon Soken Microcrystalline silicon carbide semiconductor film and manufacture thereof
JPH01119015A (en) * 1987-10-31 1989-05-11 Nippon Soken Inc Silicon carbide semiconductor film and manufacture thereof
US5206468A (en) * 1990-06-21 1993-04-27 Mitsubishi Denki Kabushiki Kaisha Locking apparatus for a drawer type circuit breaker
US8575502B2 (en) 2009-12-31 2013-11-05 Ls Industrial Systems Co., Ltd. Plug interlock device for circuit breaker and circuit breaker having the same

Similar Documents

Publication Publication Date Title
US9099585B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
JP2539916B2 (en) Photovoltaic element
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
EP1085579A1 (en) Method of manufacturing solar cell
JPH0513347A (en) Formation of deposited film
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4710786A (en) Wide band gap semiconductor alloy material
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPS62115710A (en) Manufacture of semiconductor device
US4703336A (en) Photodetection and current control devices
JPH07106611A (en) Fabrication of bsf solar cell
JP3439051B2 (en) Microcrystalline film and manufacturing method thereof
JPH07297428A (en) Thin film solar battery and its manufacture
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPH0982996A (en) Amorphous thin film solar cell
JPH04298023A (en) Manufacture of single crystal silicon thin film
JP2733471B2 (en) Semiconductor device
JP2966908B2 (en) Photoelectric conversion element
JP2002246317A (en) Thin-film forming method by plasma cvd method
TWI407578B (en) Chemical vapor deposition process
JPS60240168A (en) Manufacture of photoelectric converter
JP2003197939A (en) Silicon film for solar battery and silicon solar battery and method for manufacturing the same
JPS61255016A (en) Semiconductor device manufacturing method