JPS6249964B2 - - Google Patents
Info
- Publication number
- JPS6249964B2 JPS6249964B2 JP54143347A JP14334779A JPS6249964B2 JP S6249964 B2 JPS6249964 B2 JP S6249964B2 JP 54143347 A JP54143347 A JP 54143347A JP 14334779 A JP14334779 A JP 14334779A JP S6249964 B2 JPS6249964 B2 JP S6249964B2
- Authority
- JP
- Japan
- Prior art keywords
- ribbon
- magnetic
- amorphous
- roll
- iron loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 8
- 230000007547 defect Effects 0.000 claims description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 description 12
- 230000005381 magnetic domain Effects 0.000 description 10
- 239000011162 core material Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】
本発明は、商用周波数から数10KHz以上の周波
数帯域における非晶質磁性合金薄帯の交流磁気特
性の改善、特に鉄損の低減方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the alternating current magnetic properties of an amorphous magnetic alloy ribbon in a frequency band from commercial frequencies to several tens of kilohertz or higher, and particularly to a method for reducing iron loss.
近年、非晶質合金薄帯が、単ロール、双ロール
法をはじめとする種々の溶湯急冷法により連続製
造可能になり、且つ数々の特長ある性質を有する
事が、明らかになるにつれて、様々の応用が考え
られている。その中で磁性材料としては、磁気ヘ
ツドコア材、トランスコア材、磁歪振動コア材等
としての使用が有望視されている。特にトランス
コア材については、非晶質材が低い鉄損を持つて
いる事により、商用周波数域においては柱上トラ
ンス材に使われている珪素鋼板に、20KHz付近の
高周波帯域においてはスイツチングレギユレータ
ー等に使われているフエライトコアに置き換わる
事ができれば、省エネルギーの面からその意義は
大きい。 In recent years, it has become clear that amorphous alloy ribbons can be manufactured continuously by various molten metal quenching methods, including single-roll and twin-roll methods, and that they have a number of unique properties. Applications are being considered. Among these, magnetic materials are promising for use as magnetic head core materials, transformer core materials, magnetostrictive vibration core materials, and the like. In particular, regarding transformer core materials, amorphous materials have low iron loss, so in the commercial frequency range, silicon steel sheets used for pole-mounted transformer materials are used, but in high frequency bands around 20KHz, switching legs are used. If it can replace the ferrite core used in products such as Yurator, it will be of great significance in terms of energy conservation.
しかしながら、これまでは非晶質磁性薄帯の鉄
損は組成によつて異なるものの総じて、商用周波
数域においては、現用の珪素鋼板のそれの1/2〜
1/4であり、20KHz付近の高周波帯域において
は、現用フエライトの鉄損より大きくなつてしま
い、この事が非晶質磁性薄帯のトランス材として
の実用化を妨げている主たる原因となつている事
は公知の事実である。 However, although the core loss of amorphous magnetic ribbon varies depending on the composition, it has generally been found that in the commercial frequency range, the core loss of amorphous magnetic ribbon is 1/2 to 1/2 that of current silicon steel sheets.
In the high frequency band around 20KHz, the iron loss is larger than that of the currently used ferrite, and this is the main reason preventing the practical application of amorphous magnetic ribbons as transformer materials. It is a known fact that there are.
さて、非晶質材を含めた一般の金属磁性材料の
鉄損は、その発生機構によりいわゆるヒステレシ
ス損と渦電流損に分類される。更に渦電流損は、
材料の厚さと電気抵抗に依存する古典的渦電流損
と、材料の磁区構造に依存する異常渦電流損に分
類される。 Now, the iron loss of general metallic magnetic materials including amorphous materials is classified into so-called hysteresis loss and eddy current loss depending on the generation mechanism. Furthermore, the eddy current loss is
It is classified into classical eddy current loss, which depends on the thickness and electrical resistance of the material, and anomalous eddy current loss, which depends on the magnetic domain structure of the material.
我々は、非晶質磁性薄帯の鉄損の発生機構を実
験的に調べた結果、20KHz付近の高周波域におい
ては、渦電流損、特に異常渦電流損が全鉄損の50
〜90%もの割合をしめている事を見出した。そし
てその異常渦電流損が大きいのは、非晶質磁性薄
帯では結晶粒界が存在しないため、磁区が大きく
なつてしまう為と予想した。(磁区が無限に小さ
くなれば、異常渦電流損は零となる)。 As a result of experimentally investigating the generation mechanism of iron loss in amorphous magnetic ribbons, we found that in the high frequency region around 20KHz, eddy current loss, especially abnormal eddy current loss, accounts for 50% of the total iron loss.
We found that the proportion was as high as ~90%. We predicted that the reason why the abnormal eddy current loss is large is because there are no grain boundaries in amorphous magnetic ribbons, so the magnetic domains become large. (If the magnetic domain becomes infinitely small, the abnormal eddy current loss will be zero).
そこで我々は磁区を小さくする事が、非晶質磁
性薄帯の鉄損を低減するきめ手となる考え、種々
の実験を行なつた結果、該薄帯の表面及び内部
に、ひつかき傷や、ピンホールを故意に作つてや
れば、磁区の大きさが小さくなり、従つて鉄損が
低減する事を新規に発見し、本発明をなすに到つ
たものである。本発明においてこの形状的欠陥は
は、該薄帯の特殊な製法をうまく利用する事によ
り、容易に作る事ができ、従来の磁場中焼鈍等に
よる鉄損低減法に比して極めて、優れた効果を有
している。 Therefore, we believe that reducing the magnetic domain size is the key to reducing iron loss in amorphous magnetic ribbons, and as a result of various experiments, we found that scratches and scratches were found on the surface and inside of the ribbons. The inventors have newly discovered that if pinholes are intentionally created, the size of the magnetic domain becomes smaller and therefore the iron loss is reduced, leading to the present invention. In the present invention, this shape defect can be easily created by making good use of the special manufacturing method of the ribbon, and is extremely superior to conventional iron loss reduction methods such as annealing in a magnetic field. It has an effect.
実施例 1 以下本発明を実施例に基づき詳述する。Example 1 The present invention will be described in detail below based on examples.
第1図に示した如き装置を用いいわゆる単ロー
ル法により組成がFe78Si10B12で、厚さが25μ、
巾5mm、長さ数10mの非晶質リボンを作製した。
図において、1はノズル、2は溶湯を示す。ロー
ル3は材質が銅製で、溶湯2が接触する外周面に
図に示した如き横キズ5(深さは10〜100μ程
度)を入れた事により、このキズはリボン4に転
写され作製されたリボン4は横キズが入つたもの
となつた。 The composition is Fe 78 Si 10 B 12 , the thickness is 25μ, and the so-called single roll method is used using the apparatus shown in Fig.
An amorphous ribbon with a width of 5 mm and a length of several tens of meters was produced.
In the figure, 1 indicates a nozzle, and 2 indicates a molten metal. The roll 3 is made of copper, and by making horizontal scratches 5 (depth is about 10 to 100μ) as shown in the figure on the outer circumferential surface where the molten metal 2 comes into contact, these scratches are transferred to the ribbon 4. Ribbon 4 had horizontal scratches.
なお、作製条件はロール半径150mmφ、ロール
回転数3500rpm、噴出溶湯温度は1300℃であつ
た。又キズのないロールを使い、上記条件と同一
の作製条件にて、リボンを作製し比較材とした。
両方のリボンを別口にトロイダルに巻き、450℃
×30minの焼鈍後、鉄損を測定した。その結果を
第2図に示す。なお測定周波数は50Hzである。こ
の図から本発明の効果は明らかである。又Kerr
効果により、実際の磁区構造を調べた所、磁区の
大きさが小さくなつている事が確認された。 The manufacturing conditions were a roll radius of 150 mmφ, a roll rotation speed of 3500 rpm, and a spouted molten metal temperature of 1300°C. In addition, a ribbon was produced as a comparison material using a roll without scratches and under the same production conditions as above.
Wrap both ribbons in a toroidal fashion at 450℃.
After annealing for ×30 min, iron loss was measured. The results are shown in FIG. Note that the measurement frequency is 50Hz. The effect of the present invention is clear from this figure. Kerr again
As a result of this effect, when the actual magnetic domain structure was investigated, it was confirmed that the size of the magnetic domains became smaller.
実施例 2
実施例1と同様にいわゆる単ロール法により組
成がFe78Si10B12で、厚さが20μ、巾5mm、長さ
が数10mの非晶質リボンを作製した。ただし、ロ
ールは材質が銅製で、溶湯が接触する外周面を
#240の紙ヤスリで研摩して、凹凸を故意につけ
たものである。Example 2 As in Example 1, an amorphous ribbon having a composition of Fe 78 Si 10 B 12 , having a thickness of 20 μm, a width of 5 mm, and a length of several tens of meters was produced by the so-called single roll method. However, the roll is made of copper, and the outer circumferential surface that the molten metal comes into contact with is polished with #240 sandpaper to intentionally create irregularities.
この凹凸は作製されたリボン表面に影響し作製
されたリボンには、平均して1平方cm当り数10ケ
のピンホールができた。なお作製条件はロール半
径150mmφロール回転数4000rpm、噴出溶湯温度
は1300℃であつた。又#1500の紙やすりで研摩
し、外周面を鏡面としたロールを使い、上記条件
と同一の作製条件にて、リボンを作製し比較材と
した。両方のリボンを別々にトロイダルに巻き、
450℃×30minの焼鈍後、鉄損を測定した。その
結果を第3図に示す。なお測定周波数は20KHzで
ある。この図から、本発明の効果は明らかであ
る。又Kerr効果により実際の磁区構造を調べた
所、ピンホールの所で逆磁区の芽が発生しており
結局、磁区の大きさが小さくなつている事が確認
された。 These irregularities affected the surface of the produced ribbon, and the produced ribbon had, on average, several dozen pinholes per square centimeter. The manufacturing conditions were a roll radius of 150 mmφ, a roll rotation speed of 4000 rpm, and a spouted molten metal temperature of 1300°C. A ribbon was also prepared as a comparative material under the same conditions as above, using a roll that had been polished with #1500 sandpaper and whose outer peripheral surface was mirror-finished. Wrap both ribbons separately into a toroidal
After annealing at 450°C for 30 minutes, iron loss was measured. The results are shown in FIG. Note that the measurement frequency is 20KHz. From this figure, the effects of the present invention are clear. Furthermore, when the actual magnetic domain structure was investigated using the Kerr effect, it was confirmed that buds of reversed magnetic domains occur at the pinholes, and that the size of the magnetic domains eventually becomes smaller.
第1図は、本発明による薄帯製造方法の一例を
示す概略説明図、第2図は本発明により得られた
非晶質材と比較材との50Hzにおける鉄損の比較
図、第3図は本発明により得られた他の非晶質材
と比較材との20KHzにおける鉄損の比較図であ
る。
1:ノズル、2:溶湯、3:ロール、4:リボ
ン(薄帯)、5:ロール面の横キズ。
Fig. 1 is a schematic explanatory diagram showing an example of the ribbon manufacturing method according to the present invention, Fig. 2 is a comparison diagram of iron loss at 50Hz between an amorphous material obtained by the present invention and a comparative material, and Fig. 3 is a comparison diagram of iron loss at 20 KHz between another amorphous material obtained by the present invention and a comparative material. 1: Nozzle, 2: Molten metal, 3: Roll, 4: Ribbon (thin strip), 5: Horizontal scratches on roll surface.
Claims (1)
内部に形状的欠陥を作る事により、該薄帯の鉄損
を低減する事を特徴とする磁気特性改善方法。 2 特許請求の範囲第1項記載の方法において、
形状的欠陥を特に表面のひつかき傷(スクラツ
チ)とすることを特徴とする磁気特性改善方法。 3 特許請求の範囲第1項記載の方法において、
形状的欠陥を特に表面から裏面へ貫通する小孔
(ピンホール)とすることを特徴とする磁気特性
改善方法。[Claims] 1. A method for improving magnetic properties of an amorphous magnetic alloy ribbon, which is characterized by reducing iron loss in the ribbon by creating geometric defects on the surface and inside the ribbon. 2. In the method described in claim 1,
A method for improving magnetic properties characterized by treating geometrical defects as surface scratches. 3. In the method described in claim 1,
A method for improving magnetic properties characterized by forming a shape defect into a small hole (pinhole) that penetrates from the front surface to the back surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14334779A JPS5667905A (en) | 1979-11-07 | 1979-11-07 | Improvement method of magnetic characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14334779A JPS5667905A (en) | 1979-11-07 | 1979-11-07 | Improvement method of magnetic characteristic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5667905A JPS5667905A (en) | 1981-06-08 |
JPS6249964B2 true JPS6249964B2 (en) | 1987-10-22 |
Family
ID=15336669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14334779A Granted JPS5667905A (en) | 1979-11-07 | 1979-11-07 | Improvement method of magnetic characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5667905A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011030907A1 (en) | 2009-09-14 | 2011-03-17 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same |
DE112012000399T5 (en) | 2011-01-28 | 2013-10-10 | Hitachi Metals, Ltd. | Quenched soft magnetic Fe-based alloy ribbon and its manufacturing process and core |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4724015A (en) * | 1984-05-04 | 1988-02-09 | Nippon Steel Corporation | Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip |
CA2040741C (en) * | 1990-04-24 | 2000-02-08 | Kiyonori Suzuki | Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials |
JP2506267B2 (en) * | 1993-11-29 | 1996-06-12 | 株式会社東芝 | High frequency magnetic core manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353525A (en) * | 1976-10-22 | 1978-05-16 | Allied Chem | Method and device for continuously casting metal strip |
JPS54104454A (en) * | 1978-02-03 | 1979-08-16 | Matsushita Electric Ind Co Ltd | Production of thin metal strip |
-
1979
- 1979-11-07 JP JP14334779A patent/JPS5667905A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353525A (en) * | 1976-10-22 | 1978-05-16 | Allied Chem | Method and device for continuously casting metal strip |
JPS54104454A (en) * | 1978-02-03 | 1979-08-16 | Matsushita Electric Ind Co Ltd | Production of thin metal strip |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011030907A1 (en) | 2009-09-14 | 2011-03-17 | 日立金属株式会社 | Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same |
US9290831B2 (en) | 2009-09-14 | 2016-03-22 | Hitachi Metals, Ltd. | Soft-magnetic, amorphous alloy ribbon and its production method, and magnetic core constituted thereby |
DE112012000399T5 (en) | 2011-01-28 | 2013-10-10 | Hitachi Metals, Ltd. | Quenched soft magnetic Fe-based alloy ribbon and its manufacturing process and core |
US10468182B2 (en) | 2011-01-28 | 2019-11-05 | Hitachi Metals, Ltd. | Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core |
Also Published As
Publication number | Publication date |
---|---|
JPS5667905A (en) | 1981-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2698369B2 (en) | Low frequency transformer alloy and low frequency transformer using the same | |
JP6918930B2 (en) | Low iron loss directional silicon steel products for low noise transformers and their manufacturing methods | |
US4318758A (en) | Method for producing a grain-oriented magnetic steel sheet having good magnetic properties | |
JPH0211728A (en) | Ultrahigh speed annealing of unoriented electric iron plate | |
JPH032932B2 (en) | ||
JPS6249964B2 (en) | ||
JPH02173209A (en) | Cold rolling method for grain oriented silicon steel sheet | |
JP2001295005A (en) | Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS | |
EP2243865B1 (en) | Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics | |
JPS621821A (en) | Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing | |
JPH09249916A (en) | Production of grain-oriented silicon steel sheet and separation agent for annealing | |
JPH0832927B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density | |
JPS61119620A (en) | Annealing method of silicon steel strip by vertical continuous annealing furnace | |
JPS6256202B2 (en) | ||
WO2024111647A1 (en) | Grain-oriented electrical steel sheet | |
JPS61227194A (en) | Surface treatment of thin amorphous alloy strip | |
JPS5855211B2 (en) | (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss | |
JPS59123715A (en) | Production of non-directional electromagnetic steel | |
JPH02182397A (en) | Production of welding material consisting of martensitic stainless steel | |
JP2684468B2 (en) | Method for producing mirror-oriented silicon steel strip | |
JPH067527B2 (en) | Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same | |
KR820001937B1 (en) | Grain oriented magnetic steel sheets having good magnetic properties | |
JPS61190021A (en) | Manufacture of grain-oriented electrical steel sheet having satisfactory magnetism | |
JPH0453084B2 (en) | ||
KR970007034B1 (en) | Method for manufacturing non-oriented electrical steel sheet having high flux density |