JPS6256202B2 - - Google Patents

Info

Publication number
JPS6256202B2
JPS6256202B2 JP54164693A JP16469379A JPS6256202B2 JP S6256202 B2 JPS6256202 B2 JP S6256202B2 JP 54164693 A JP54164693 A JP 54164693A JP 16469379 A JP16469379 A JP 16469379A JP S6256202 B2 JPS6256202 B2 JP S6256202B2
Authority
JP
Japan
Prior art keywords
ribbon
annealing
silicon steel
moving
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54164693A
Other languages
Japanese (ja)
Other versions
JPS5687627A (en
Inventor
Hiroshi Shimanaka
Isao Ito
Takahiro Suga
Tooru Sato
Noboru Tsuya
Kenichi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16469379A priority Critical patent/JPS5687627A/en
Publication of JPS5687627A publication Critical patent/JPS5687627A/en
Publication of JPS6256202B2 publication Critical patent/JPS6256202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、極めて磁気特性の優れた(100)面
内無方向性珪素鋼薄帯の製造方法に関し、特に本
発明はSi2〜8%を含有し、結晶粒の<100>軸が
板法線方向に高度に集積した組織を有し極めて磁
気特性の優れた(100)面内無方向性珪素鋼薄帯
の製造方法に関するものである。 Siを3%程度含有する珪素鋼板は電気機器の鉄
心材料として広く使用されている。このような珪
素鋼板は通常熱間圧延と冷間圧延によつて仕上げ
られ、特に一方向に、通常は圧延方向に特に優れ
た磁化特性をもつ方向性珪素鋼板は複雑な焼鈍な
どを施す必要があるので、その製造コストは他の
鋼種に比し格段に高価となつている。 近時溶鋼を円孔状あるいはスリツト状ノズルか
ら高速で回転するローラなどの回転体上に噴出し
て急冷凝固させて薄帯を製造する技術が公開され
ているが、Si2〜8%、より好適には6〜7%を
含有する薄帯を上記技術に基づく方法によつて製
造すると、製造コストは格段に低下すると共に、
その製造が容易であることが知られている。かか
るSiを多く含有する珪素鋼素材は脆性が大きいた
め、特にSi5%以上を含有するものは従来の圧延
方法によつては薄帯となすことができず、Si5%
以上を含有する珪素鋼板は工業的には製造された
ことはなかつた。 ところで、上記新しい方法によつて製造される
薄帯は、そのままの状態では歪が大きく、また集
合組織的にも好適な状態ではないため、磁気特性
は従来の珪素鋼に比して一般的には劣つている。
前記歪を除去するため焼鈍が施されるが磁気特性
は余り改善されない。 本発明は、高Si含有溶鋼を移動冷却体の移動冷
却面上に噴射させ、急冷、凝固させ次に焼鈍を施
して製造した珪素鋼急冷薄帯の前記磁気特性が従
来の珪素鋼帯に比して劣つているという欠点を除
去、改善する方法を提供することを目的とするも
のであり、前記特許請求の範囲に記載の方法によ
つて、この目的を達成することができる。 次に本発明を詳細に説明する。 本発明者等は珪素鋼急冷薄帯をある真空度範囲
内の真空中で高温焼鈍すると(100)面が薄帯面
に平行に集積するようになり、その結果磁気特性
が極めて良好になることを新規に知見して本発明
を完成した。 次に本発明を工程を追つて説明する。 Si2%以上を含有する珪素鋼はr変態がないの
で、高温で焼鈍することにより結晶粒を大きくす
ることができ、またSiはFe中に含有されると電
気抵抗を最も増大させる元素の一つであるため、
Siは電磁鋼板には好ましい元素である。Siが約
6.5%Fe中に含有されると、磁歪はほぼ消失し、
したがつて鉄損が大幅に減少するので最良の特性
が期待できることが知られており、一方Siが8%
を超えると飽和磁束密度が1.8T以下になり、ト
ランスなどの鉄心としては不適になるばかりでな
く、著しく脆くなり、さらに磁歪が大きくなるた
め鉄損が増大することが知られている。 またMnは、磁気特性と熱間靭性の向上を図る
上で有用な元素であるが、0.1%を超えて多量に
添加すると飽和磁束密度の劣化を招くおそれが大
きい。 そこで本発明では、基本成分として、Si:2〜
8%、Mn:0.1%以下を含有させるものとした。 さらにこの発明では、OやNの磁性に対する悪
影響を防ぎ磁気特性のより一層の向上を図るため
にAlを0.1%以下の範囲で添加することもでき
る。ここにAl量の上限を0.1%に規制したのは、
0.1%を超えると飽和磁束密度の低下を招くから
である。 なおO,N,C,P等の付加避不純物の混入量
は、目的とする等級に等じて制限されねばならな
い。 本発明によれば、前記成分組成の薄帯となすに
適する溶鋼を収容する容器から容器に付設された
適当形状のノズルを経て移動冷却体の移動冷却面
上に噴出させて急冷、凝固させると一挙に薄帯を
製造することができる。第1図(1),(2),(3)はそれ
ぞれ移動冷却体が単ロール、双ロール、ドラムで
ある従来公知の代表的装置の斜視説明図である。
同図において1は溶鋼容器、2は容器に付設され
た溶鋼噴出ノズル、3はロール、4はドラムであ
り、同図(1),(2)においては、溶鋼のロール外周冷
却面上に、(3)においてはドラム内周冷却面上にノ
ズルを経て溶鋼を噴出させる。 次に本発明を実験データについて説明する。 本発明者等はSi6.4%、Mn0.06%を含有し、残
部は実質的にFeの組成になる溶鋼を1.0mm厚×15
mm幅の直方形スリツトを有するノズルより
650rpmで回転する直径500mmの双ロールの外周面
のロール噛込部附近に噴出させて厚さ130μmの
薄帯を得た。この薄帯の表面の平均粗度Raは
ほゞ1.5μmと非常に平滑で、銀白色の金属光沢
を呈していた。この薄帯をエチルアルコール中で
連続的に超音波洗浄した後に、800℃から65分間
で1140℃に昇温し、1140℃1時間真空焼鈍を施す
際薄帯表面を真空中に裸出させて真空度を種々変
えて焼鈍を施した。この後で薄帯の(200)X線
極点図を撮り、薄帯面法線から傾きが10゜以内の
立体角内の平均的(200)X線強度を調べた。そ
の結果を第2図に示す。このX線強度が強いほ
ど、(100)面がより板面に平行になつている。ま
た(100)面が板面に平行に揃うと、磁化容易軸
である<100>軸が板面内に揃うようになり、薄
帯を板面内の方向に磁化した時の磁気特性が良好
になる。第2図において真空度が1×10-2〜5×
10-7Torrの範囲内で、かつ焼鈍温度が1050℃以
上の領域においては安定して高度に集積した
(100)面内無方向組織が得られることが判る。実
際の工業的製造にあつては1300℃より高温で真空
焼鈍することは技術的に困難であるばかりでなく
製造コストが上昇する。すなわち本発明によれ
ば、真空焼鈍の際真空度が1×10-2Torrより低
いと磁気特性が悪く、一方5×10-7Torrより高
くても特に磁気特性が良くならないので真空度は
1×10-2〜5×10-7Torrの範囲内にする必要があ
り、好ましくは1×10-3〜1×10-5Torrの範囲内
にすることが有利である。また真空焼鈍の際の焼
鈍温度は1050℃より低いと磁気特性が良くなら
ず、一方1300℃より高くすることは工業的にコス
トが上昇するので、1050〜1300℃の範囲内にする
必要があり、より好ましくは1150〜1250℃の範囲
内にすることが有利である。 本発明によつて製造された(100)面内無方向
性珪素鋼薄帯の長手方向の磁気特性は、X線強度
が5X程度のものにあつてはW15/50=0.6〜
0.9W/Kgであり、3X程度のものにあつては
W15/50=1.0〜1.5W/Kgであり、これらの特性
は現在市販されている方向性珪素鋼の特性に匹敵
することが判る。現在の方向性珪素鋼板は極めて
複雑な工程を経て製造されるので、製造コストが
高いのに対し、本発明による(100)面内無方向
性珪素鋼薄帯は極めて簡単な工程で製造すること
ができるので、そのコストは低廉であり、したが
つて本発明方法は経済的に極めて有利である。 次にSi3.5%、Mn0.03%を含み、残部は実質的
にFeの組成になる溶鋼を1.2mmφの孔が5.5mm間隔
で並んでいる多孔ノズルから直径がそれぞれ45mm
φ、500mmφの異形双ロールの噛込部外接線上に
噴出させて170μm厚さの薄帯を作成した。かく
して作成された薄帯のうち表面の酸化度が軽微で
あつてかなり金属光沢を保持している薄帯Aと、
高温において酸化が進行していSiO2の層が表面
に薄く形成されている薄帯Bとを、それぞれ(イ)希
硫酸水溶液中に15秒間浸漬した後水洗乾燥したも
の、(ロ)珪酸ナトリウム洗剤で洗浄し水洗乾燥した
もの、(ハ)電解脱脂したもの、(ニ)エーテル、アルコ
ールなどで超音波洗浄したもの、(ホ)全然洗浄処理
を施さなかつたものの5種類について、これら薄
帯の表面を裸出した状態にして約10-4Torrの真
空焼鈍を第3図に示すヒートパターンで実施し
た。これら真空焼鈍後の薄帯のX線強度を第1表
に示す。
The present invention relates to a method for manufacturing a (100) in-plane non-oriented silicon steel ribbon with extremely excellent magnetic properties, and in particular, the present invention relates to a method for manufacturing a (100) in-plane non-oriented silicon steel ribbon containing 2 to 8% Si, with the <100> axis of the crystal grains being parallel to the plate normal. The present invention relates to a method for manufacturing a (100) in-plane non-oriented silicon steel ribbon which has a highly oriented structure and has extremely excellent magnetic properties. Silicon steel sheets containing about 3% Si are widely used as iron core materials for electrical equipment. Such silicon steel sheets are usually finished by hot rolling and cold rolling, and grain-oriented silicon steel sheets, which have particularly excellent magnetization properties in one direction, usually in the rolling direction, require complicated annealing. Therefore, its manufacturing cost is much higher than that of other steel types. Recently, a technology has been disclosed in which molten steel is jetted from a circular or slit nozzle onto a rotating body such as a roller rotating at high speed and rapidly solidified to produce a ribbon, but Si2-8% is more suitable. When a ribbon containing 6 to 7% of
It is known that its manufacture is easy. Such silicon steel materials containing a large amount of Si are highly brittle, so those containing more than 5% Si cannot be made into thin strips using conventional rolling methods.
A silicon steel plate containing the above has never been produced industrially. By the way, the ribbon produced by the above-mentioned new method is highly strained in its original state, and its texture is not in a suitable state, so its magnetic properties are generally inferior to that of conventional silicon steel. is inferior.
Although annealing is performed to remove the strain, the magnetic properties are not improved much. The present invention provides a silicon steel quenched ribbon produced by injecting high Si-containing molten steel onto the moving cooling surface of a moving cooling body, rapidly cooling it, solidifying it, and then annealing it. The object of the present invention is to provide a method for eliminating and improving the drawbacks of poor performance, and this object can be achieved by the method described in the claims. Next, the present invention will be explained in detail. The present inventors have discovered that when a rapidly solidified silicon steel ribbon is annealed at high temperature in a vacuum within a certain degree of vacuum, the (100) planes are accumulated parallel to the ribbon surface, resulting in extremely good magnetic properties. The present invention was completed based on the new findings. Next, the present invention will be explained step by step. Silicon steel containing 2% or more of Si does not undergo r-transformation, so the crystal grains can be enlarged by annealing at high temperatures, and Si is one of the elements that increases electrical resistance the most when contained in Fe. Therefore,
Si is a preferable element for electrical steel sheets. Si is about
When contained in 6.5% Fe, magnetostriction almost disappears,
Therefore, it is known that the best characteristics can be expected because the iron loss is significantly reduced.
It is known that when the saturation magnetic flux density exceeds 1.8 T, the iron core becomes not only unsuitable for use in transformers, but also becomes extremely brittle, and magnetostriction increases, leading to an increase in iron loss. Furthermore, Mn is a useful element for improving magnetic properties and hot toughness, but if it is added in a large amount exceeding 0.1%, there is a strong possibility that the saturation magnetic flux density will deteriorate. Therefore, in the present invention, Si:2 to
8%, Mn: 0.1% or less. Furthermore, in the present invention, Al can be added in an amount of 0.1% or less in order to prevent the negative effects of O and N on magnetism and to further improve magnetic properties. The reason why the upper limit of Al content was regulated to 0.1% was because
This is because if it exceeds 0.1%, the saturation magnetic flux density will decrease. Note that the amount of additional avoidable impurities such as O, N, C, and P must be limited according to the intended grade. According to the present invention, when molten steel suitable for forming a ribbon having the above-mentioned composition is spouted from a container containing the molten steel onto the moving cooling surface of a moving cooling body through a suitably shaped nozzle attached to the container, the steel is rapidly cooled and solidified. Thin strips can be manufactured all at once. FIGS. 1 (1), (2), and (3) are perspective views of typical conventional apparatuses in which the movable cooling body is a single roll, twin rolls, or drum, respectively.
In the same figure, 1 is a molten steel container, 2 is a molten steel spouting nozzle attached to the container, 3 is a roll, and 4 is a drum. In (3), molten steel is ejected onto the inner peripheral cooling surface of the drum through a nozzle. Next, the present invention will be explained using experimental data. The present inventors prepared 1.0 mm thick
From a nozzle with a mm-wide rectangular slit
A thin ribbon with a thickness of 130 μm was obtained by ejecting it near the roll engagement part on the outer peripheral surface of twin rolls with a diameter of 500 mm rotating at 650 rpm. The average roughness Ra of the surface of this ribbon was approximately 1.5 μm, which was very smooth and had a silvery white metallic luster. After continuously ultrasonically cleaning this ribbon in ethyl alcohol, the temperature was raised from 800℃ to 1140℃ for 65 minutes, and vacuum annealing was performed at 1140℃ for 1 hour to expose the surface of the ribbon in vacuum. Annealing was performed at various degrees of vacuum. After this, a (200) X-ray pole figure of the ribbon was taken, and the average (200) X-ray intensity within a solid angle within a 10° inclination from the normal to the ribbon surface was investigated. The results are shown in FIG. The stronger the X-ray intensity, the more parallel the (100) plane becomes to the plate surface. In addition, when the (100) planes are aligned parallel to the plate surface, the <100> axis, which is the axis of easy magnetization, is aligned within the plate plane, and the magnetic properties when the ribbon is magnetized in the direction within the plate plane are good. become. In Figure 2, the degree of vacuum is 1×10 -2 ~5×
It can be seen that within the range of 10 -7 Torr and in the region where the annealing temperature is 1050°C or higher, a stable and highly integrated (100) in-plane non-directional structure can be obtained. In actual industrial production, vacuum annealing at a temperature higher than 1300°C is not only technically difficult but also increases production costs. That is, according to the present invention, if the degree of vacuum during vacuum annealing is lower than 1×10 -2 Torr, the magnetic properties will be poor, while if it is higher than 5×10 -7 Torr, the magnetic properties will not be particularly good. It is necessary to keep it within the range of ×10 −2 to 5×10 −7 Torr, preferably within the range of 1×10 −3 to 1×10 −5 Torr. In addition, if the annealing temperature during vacuum annealing is lower than 1050℃, the magnetic properties will not improve, while if it is higher than 1300℃, the industrial cost will increase, so it is necessary to keep it within the range of 1050 to 1300℃. , more preferably within the range of 1150 to 1250°C. The magnetic properties in the longitudinal direction of the (100) in-plane non-oriented silicon steel ribbon manufactured by the present invention are W15/50 = 0.6 ~ when the X-ray intensity is about 5X.
0.9W/Kg, for something around 3X
W15/50=1.0 to 1.5 W/Kg, and it can be seen that these properties are comparable to those of grain-oriented silicon steel currently on the market. Current grain-oriented silicon steel sheets are manufactured through extremely complicated processes, resulting in high manufacturing costs, whereas the (100) in-plane non-oriented silicon steel ribbon according to the present invention can be manufactured through extremely simple processes. The cost is low, and therefore the method of the present invention is economically very advantageous. Next, the molten steel containing 3.5% Si, 0.03% Mn, and the remainder is essentially Fe, is passed through a multi-hole nozzle with 1.2mmφ holes lined up at 5.5mm intervals, each with a diameter of 45mm.
A thin strip with a thickness of 170 μm was created by ejecting it onto the outer tangent line of the biting part of two irregularly shaped twin rolls with a diameter of 500 mm. Among the ribbons thus created, ribbon A has a slight degree of oxidation on the surface and retains a considerable metallic luster;
Thin strip B, in which oxidation progresses at high temperatures and a thin layer of SiO 2 is formed on the surface, is (a) immersed in a dilute sulfuric acid aqueous solution for 15 seconds, then washed and dried, and (b) a sodium silicate detergent. The surface of these thin strips was examined for five types: (c) electrolytically degreased, (d) ultrasonically cleaned with ether, alcohol, etc., and (v) no cleaning treatment at all. Vacuum annealing at approximately 10 -4 Torr was carried out using the heat pattern shown in FIG. 3 in the exposed state. Table 1 shows the X-ray intensities of these ribbons after vacuum annealing.

【表】 同表より明らかなように昇温パターンが(a),
(b),(c)のものにあつては強い(100)面内無方向
組織となつているのに対して、(d),(e)のものにあ
つては(100)面内立方組織の発達は抑止されて
いる。また焼鈍前に薄帯の表面を酸洗(イ)あるいは
クリーニング(ロ)等の方法で洗浄して金属面を裸出
させたものについては良好な(100)面内無方向
組織が得られることが判る。 すなわち金属面を裸出させた薄帯に昇温速度を
速くして適当な真空度の高温焼鈍を施すと良好な
組織が得られ、磁気特性の優れた成品を得ること
ができることが判つた。かかる現象は一般的に3
次再結晶に基いて生起するものと考えられ、ある
特定の真空度および温度の領域内では(100)面
の面エネルギーが最も低くなり、そのために
(100)面に近い面であつて表面に裸出している面
の結晶粒のみが成長するものと推考される。鋼に
あつては結晶粒の成長すなわち粒界の移動は約10
μm以上の結晶粒では800℃以上で顕著になる。
本発明の実験例によれば3次再結晶は1050℃以上
で生成しており、800℃から1050℃までの焼鈍時
間が長いとこの間で正常粒成長が生起していろい
ろの方位の粒がランダムに成長しているので、
1050℃以上の高温に保持しても、もはや(100)
面を有する粒のみが成長することは困難になる。
第3図から判るように800℃から1050℃までの平
均昇温速度が100℃/hrを下廻ると良い(100)面
組織は得られないから、本発明では、(100)面内
無方向組織を得るために、焼鈍の際の昇温速度に
つき、少なくとも800〜1050℃の温度範囲につい
ては平均昇温速度:100℃/hr以上の速度で昇温
するものとした。 また本発明では、上記の如き洗浄・焼鈍処理に
先立つて急冷凝固後の薄帯に圧延を施すこともで
きる。とくに板厚を所定の値に厳しくコントロー
ルする必要がある場合にはかかる圧延を付すのが
好ましい。また表面の性状を平滑にすることによ
つて磁気特性の向上を図り得るので、圧延によつ
て薄帯表面を平滑にすることは有利である。 なおかような急冷凝固薄帯は、結晶粒が微細で
あり、またもともと薄いこともあつて、たとえSi
を8%程度含有する高珪素鋼であつても充分に圧
延に耐え得る。 次に本発明を実施例について説明する。 実施例 1 Si2.1%、Mn0.08%、C0.006%、O0.003%、
N0.005%を含み、残部実質的にFeよりなる溶鋼
から単ロール方式で180μm厚の薄帯を作成し
た。この薄帯を100μm厚に圧延した後、電解脱
脂し、ついで焼鈍に際し、800℃から1200℃まで
を500℃/hrの昇温速度で昇温したのち、真空槽
内で1200℃×8minの焼鈍を施した。真空度に応
じて成品の10゜以内の平均(200)X線強度と鉄
損は次の第2表の通りであつた。
[Table] As is clear from the table, the temperature increase pattern is (a),
The ones in (b) and (c) have a strong (100) in-plane non-directional structure, while the ones in (d) and (e) have a (100) in-plane cubic structure. Organizational development is inhibited. In addition, if the surface of the ribbon is cleaned by pickling (a) or cleaning (b) to expose the metal surface before annealing, a good (100) in-plane non-directional structure can be obtained. I understand. In other words, it has been found that if a ribbon with exposed metal surfaces is subjected to high temperature annealing in an appropriate degree of vacuum at a high heating rate, a good structure can be obtained and a product with excellent magnetic properties can be obtained. Such a phenomenon is generally 3
It is thought that this occurs due to secondary recrystallization, and the surface energy of the (100) plane is the lowest within a certain vacuum degree and temperature region, and therefore, the surface energy of the (100) plane is the lowest. It is assumed that only the crystal grains on the exposed surfaces grow. In steel, the growth of grains, that is, the movement of grain boundaries, is approximately 10
For crystal grains larger than μm, this becomes noticeable at temperatures above 800°C.
According to the experimental examples of the present invention, tertiary recrystallization occurs at temperatures above 1050°C, and when the annealing time from 800°C to 1050°C is long, normal grain growth occurs during this time, and grains with various orientations are randomly formed. Since it has grown to
Even if it is kept at a high temperature of 1050℃ or higher, it will no longer (100)
It becomes difficult for only grains with faces to grow.
As can be seen from Figure 3, if the average heating rate from 800℃ to 1050℃ is less than 100℃/hr, a good (100) plane structure cannot be obtained. In order to obtain the structure, the temperature was raised at an average rate of 100° C./hr or more in the temperature range of at least 800 to 1050° C. during annealing. Further, in the present invention, the ribbon after being rapidly solidified may be rolled prior to the above-mentioned cleaning and annealing treatment. Particularly when it is necessary to strictly control the plate thickness to a predetermined value, it is preferable to carry out such rolling. Furthermore, since magnetic properties can be improved by smoothing the surface properties, it is advantageous to smooth the surface of the ribbon by rolling. Such a rapidly solidified ribbon has fine crystal grains and is also thin to begin with, so even if it is made of Si,
Even high-silicon steel containing about 8% of silicon can sufficiently withstand rolling. Next, the present invention will be explained with reference to examples. Example 1 Si2.1%, Mn0.08%, C0.006%, O0.003%,
A 180 μm thick ribbon was produced using a single roll method from molten steel containing 0.005% N and the remainder substantially Fe. After rolling this ribbon to a thickness of 100 μm, it was electrolytically degreased, then annealed by increasing the temperature from 800°C to 1200°C at a rate of 500°C/hr, and then annealing at 1200°C for 8 minutes in a vacuum chamber. was applied. The average (200) X-ray intensity and iron loss within 10° of the product were as shown in Table 2 below, depending on the degree of vacuum.

【表】 実施例 2 Si7.6%、Mn0.08%、Al0.05%を含み残部実質
的にFeよりなる溶鋼から双ロール方式で80μm
厚の薄帯を作成した。この薄帯を75℃の8%
H2SO4水溶液中に10秒間浸漬して酸化層を除去
し、さらに超音波洗浄した後、種々の時間で真空
焼鈍を施した。真空度は5×10-3〜8×10-4Torr
に保持し、温度は1180℃とした。800℃から1050
℃までは約20分間(昇温速度:約750℃/hr)で
昇温した。その結果を次の第3表に示す。
[Table] Example 2 Molten steel containing 7.6% Si, 0.08% Mn, and 0.05% Al, with the remainder essentially Fe, was processed to a thickness of 80 μm using a twin roll method.
A thick thin strip was created. 8% of this thin strip at 75℃
The oxide layer was removed by immersion in an aqueous H 2 SO 4 solution for 10 seconds, and after ultrasonic cleaning, vacuum annealing was performed for various times. Vacuum degree is 5×10 -3 to 8×10 -4 Torr
The temperature was 1180°C. 800℃ to 1050
The temperature was raised to ℃ in about 20 minutes (heating rate: about 750℃/hr). The results are shown in Table 3 below.

【表】 以上本発明により得られる薄帯に必要に応じて
絶縁のためのコーチング処理等を施して電気機器
用鉄心材料として用いることができる。
[Table] The ribbon obtained by the present invention can be subjected to a coating treatment for insulation, if necessary, and used as an iron core material for electrical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1),(2),(3)はそれぞれ代表的薄帯製造装
置である単ロール、双ロール、ドラムを用いる装
置の斜視説明図、第2図は真空度(Torr)と焼
鈍温度℃との関係が傾きが面法線より10゜以内の
平均的なX線強度に及ぼす影響を示す図、第3図
は本発明の研究において真空焼鈍した際の各種ヒ
ートパターンを示す図である。
Figure 1 (1), (2), and (3) are perspective illustrations of typical ribbon manufacturing equipment that uses single rolls, twin rolls, and drums, respectively, and Figure 2 shows the degree of vacuum (Torr) and annealing. A diagram showing the influence of the relationship with temperature °C on the average X-ray intensity within 10° from the surface normal. Figure 3 is a diagram showing various heat patterns during vacuum annealing in the research of the present invention. be.

Claims (1)

【特許請求の範囲】 1 Si2.0〜8.0%、 Mn0.1%以下 を含有し、残部は実質的にFeの組成になる溶鋼
をノズルから高速移動する移動体の移動冷却面上
に噴出させ、急冷、凝固させて連続的に薄帯とな
し、次に焼鈍を施す珪素鋼薄帯の製造方法におい
て、焼鈍に先立つて急冷凝固後の薄帯に、酸洗、
クリーニング、電解脱脂および超音波洗浄のうち
から選ばれる少なくとも何れか1つの表面洗浄処
理を施し、しかるのち焼鈍を施すに際し、少なく
とも800℃から1050℃までを100℃/hr以上の平均
昇温速度で昇温し、引続き1050〜1300℃の温度範
囲内で、この薄帯の少なくとも片面を1×10-2
5×10-7Torrの真空中に3分間以上裸出させつ
つ、焼鈍を施すことを特徴とする磁気特性の優れ
た無方向性珪素鋼薄帯の製造方法。 2 Si2.0〜8.0%、 Mn0.1%以下 を含有し、残部は実質的にFeの組成になる溶鋼
をノズルから高速移動する移動体の移動冷却面上
に噴出させ、急冷、凝固させて連続的に薄帯とな
し、次に焼鈍を施す珪素鋼薄帯の製造方法におい
て、焼鈍に先立つて急冷凝固後の薄帯に圧延を施
したのち、酸洗、クリーニング、電解脱脂および
超音波洗浄のうちから選ばれる少なくとも何れか
1つの表面洗浄処理を施し、しかるのち焼鈍を施
すに際し、少なくとも800℃から1050℃までを100
℃/hr以上の平均昇温速度で昇温し、引続き1050
〜1300℃の温度範囲内で、この薄帯の少なくとも
片面を1×10-2〜5×10-7Torrの真空中に3分間
以上裸出させつつ、焼鈍を施すことを特徴とする
磁気特性の優れた無方向性珪素鋼薄帯の製造方
法。 3 Si2.0〜8.0%、 Mn0.1%以下および Al0.1%以下 を含有し、残部は実質的にFeの組成になる溶鋼
をノズルから高速移動する移動体の移動冷却面上
に噴出させ、急冷、凝固させて連続的に薄帯とな
し、次に焼鈍を施す珪素鋼薄帯の製造方法におい
て、焼鈍に先立つて急冷凝固後の薄帯に、酸洗、
クリーニング、電解脱脂および超音波洗浄のうち
から選ばれる少なくとも何れか1つの表面洗浄処
理を施し、しかるのち焼鈍を施すに際し、少なく
とも800℃から1050℃までを100℃/hr以上の平均
昇温速度で昇温し、引続き1050〜1300℃の温度範
囲内で、この薄帯の少なくとも片面を1×10-2
5×10-7Torrの真空中に3分間以上裸出させつ
つ、焼鈍を施すことを特徴とする磁気特性の優れ
た無方向性珪素鋼薄帯の製造方法。 4 Si2.0〜8.0%、 Mn0.1%および Al0.1%以下 を含有し、残部は実質的にFeの組成になる溶鋼
をノズルから高速移動する移動体の移動冷却面上
に噴出させ、急冷、凝固させて連続的に薄帯とな
し、次に焼鈍を施す珪素鋼薄帯の製造方法におい
て、焼鈍に先立つて急冷凝固後の薄帯に圧延を施
したのち、酸洗、クリーニング、電解脱脂および
超音波洗浄のうちから選ばれる少なくとも何れか
1つの表面洗浄処理を施し、しかるのち焼鈍を施
すに際し、少なくとも800℃から1050℃までを100
℃/hr以上の平均昇温速度で昇温し、引続き1050
〜1300℃の温度範囲内で、この薄帯の少なくとも
片面を1×10-2〜5×10-7Torrの真空中に3分間
以上裸出させつつ、焼鈍を施すことを特徴とする
磁気特性の優れた無方向性珪素鋼薄帯の製造方
法。
[Claims] 1. Molten steel containing 2.0 to 8.0% Si, 0.1% or less Mn, and the remainder being substantially Fe is spouted from a nozzle onto the moving cooling surface of a moving body moving at high speed. , in a method for producing silicon steel ribbon in which the ribbon is continuously formed by rapid cooling and solidification, and then annealed, the ribbon after rapid solidification is pickled and then annealed.
At least one surface cleaning treatment selected from cleaning, electrolytic degreasing, and ultrasonic cleaning is performed, and then annealing is performed from at least 800°C to 1050°C at an average heating rate of 100°C/hr or more. The temperature is increased, and then at least one side of this ribbon is heated at 1×10 -2 to
A method for manufacturing a non-oriented silicon steel ribbon with excellent magnetic properties, which comprises annealing the ribbon while exposing it in a vacuum of 5×10 -7 Torr for 3 minutes or more. 2. Molten steel containing 2.0 to 8.0% Si, 0.1% or less Mn, and the remainder being essentially Fe is jetted from a nozzle onto the moving cooling surface of a moving object that moves at high speed, and is rapidly cooled and solidified. In the manufacturing method of silicon steel ribbon that is continuously formed into a ribbon and then annealed, the ribbon is rapidly solidified and rolled prior to annealing, followed by pickling, cleaning, electrolytic degreasing, and ultrasonic cleaning. At least one surface cleaning treatment selected from the above is applied, and then annealing is performed at least 100°C from 800°C to 1050°C.
Raise the temperature at an average heating rate of ℃/hr or more, and continue to 1050℃.
Magnetic properties characterized by annealing within a temperature range of ~1300°C while exposing at least one side of the ribbon in a vacuum of 1 × 10 -2 to 5 × 10 -7 Torr for 3 minutes or more. An excellent method for producing non-oriented silicon steel ribbon. 3. Molten steel containing 2.0 to 8.0% Si, 0.1% or less Mn, and 0.1% or less Al, with the remainder being substantially Fe, is spouted from a nozzle onto the moving cooling surface of a moving body that moves at high speed. , in a method for producing silicon steel ribbon in which the ribbon is continuously formed by rapid cooling and solidification, and then annealed, the ribbon after rapid solidification is pickled and then annealed.
At least one surface cleaning treatment selected from cleaning, electrolytic degreasing, and ultrasonic cleaning is performed, and then annealing is performed from at least 800°C to 1050°C at an average heating rate of 100°C/hr or more. The temperature is increased, and then at least one side of this ribbon is heated at 1×10 -2 to
A method for manufacturing a non-oriented silicon steel ribbon with excellent magnetic properties, which comprises annealing the ribbon while exposing it in a vacuum of 5×10 -7 Torr for 3 minutes or more. 4. Spraying molten steel containing 2.0 to 8.0% Si, 0.1% Mn, and 0.1% or less Al, with the remainder essentially having a composition of Fe from a nozzle onto the moving cooling surface of a moving body moving at high speed, In the manufacturing method of silicon steel ribbon, which involves rapid cooling and solidification to continuously form a ribbon and then annealing, the ribbon after rapid solidification is rolled prior to annealing, and then pickled, cleaned, and electrolyzed. At least one surface cleaning treatment selected from degreasing and ultrasonic cleaning is performed, and then annealing is performed at least 100°C from 800°C to 1050°C.
Raise the temperature at an average heating rate of ℃/hr or more, and continue to 1050℃.
Magnetic properties characterized by annealing within a temperature range of ~1300°C while exposing at least one side of the ribbon in a vacuum of 1 × 10 -2 to 5 × 10 -7 Torr for 3 minutes or more. An excellent method for producing non-oriented silicon steel ribbon.
JP16469379A 1979-12-20 1979-12-20 Production of nondirectional silicon steel thin strip of superior of magnetic characteristics Granted JPS5687627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16469379A JPS5687627A (en) 1979-12-20 1979-12-20 Production of nondirectional silicon steel thin strip of superior of magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16469379A JPS5687627A (en) 1979-12-20 1979-12-20 Production of nondirectional silicon steel thin strip of superior of magnetic characteristics

Publications (2)

Publication Number Publication Date
JPS5687627A JPS5687627A (en) 1981-07-16
JPS6256202B2 true JPS6256202B2 (en) 1987-11-25

Family

ID=15798060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16469379A Granted JPS5687627A (en) 1979-12-20 1979-12-20 Production of nondirectional silicon steel thin strip of superior of magnetic characteristics

Country Status (1)

Country Link
JP (1) JPS5687627A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980725A (en) * 1982-10-28 1984-05-10 Kawasaki Steel Corp Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic
JPS59223145A (en) * 1983-06-01 1984-12-14 Kawasaki Steel Corp Production of quickly cooled light-gage strip of high silicon iron for iron core of rotating machine
JPS6179724A (en) * 1984-09-28 1986-04-23 Nippon Kokan Kk <Nkk> Manufacture of thin plate of high-silicon iron alloy
JPS6179723A (en) * 1984-09-28 1986-04-23 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip having superior magnetic characteristic
JPS62227075A (en) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel material

Also Published As

Publication number Publication date
JPS5687627A (en) 1981-07-16

Similar Documents

Publication Publication Date Title
JP4272573B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JPS6032705B2 (en) In-plane non-oriented high-silicon steel ribbon with extremely low coercive force (100) and its manufacturing method
JPS6256202B2 (en)
JPH0665724B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
Littmann Development of improved cube-on-edge texture from strand cast 3pct silicon-iron
JPS6038462B2 (en) Silicon iron ribbon and its manufacturing method
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JP3387962B2 (en) Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPS627261B2 (en)
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
JPS6372824A (en) Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel
JPS5810445B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent core loss
JPS6256203B2 (en)
JPS5853694B2 (en) Method for manufacturing in-plane non-oriented high silicon steel ribbon with excellent magnetic properties
JPS58113319A (en) Manufacture of high-silicon light-gauge steel strip superior in magnetic characteristic
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JPH0665723B2 (en) Method for producing directional high-silicon iron ribbon
JPS6319257B2 (en)
JP2588635B2 (en) Thin slabs for manufacturing unidirectional electrical steel sheets
JPH06128642A (en) Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property
JPH0582451B2 (en)
JPS5928559A (en) Quenched high silicon steel thin strip excellent in magnetic characteristics