JPS5980725A - Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic - Google Patents

Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic

Info

Publication number
JPS5980725A
JPS5980725A JP18993782A JP18993782A JPS5980725A JP S5980725 A JPS5980725 A JP S5980725A JP 18993782 A JP18993782 A JP 18993782A JP 18993782 A JP18993782 A JP 18993782A JP S5980725 A JPS5980725 A JP S5980725A
Authority
JP
Japan
Prior art keywords
silicon steel
ribbon
thin
strip
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18993782A
Other languages
Japanese (ja)
Inventor
Satoshi Goto
聡志 後藤
「しし」戸 浩
Hiroshi Shishido
Takahiro Suga
菅 孝宏
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18993782A priority Critical patent/JPS5980725A/en
Publication of JPS5980725A publication Critical patent/JPS5980725A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture stably a nondirectional silicon steel sheet having superior magnetic characteristics by solidifying a molter high Si steel by rapid cooling, regulating the average surface roughness of the resulting rapidly cooled thin strip to a specified value or below, and annealing the strip. CONSTITUTION:A molten steel contg. 2.0-8.0wt% Si is continuously fed onto a cooling body whose cooling surface is moved at high speed, and it is solidified by rapid cooling. The average surface roughness of the resulting rapidly cooled thin strip is regulated to <=0.4mum by pickling or chemical polishing, and the strip is annealed at 1,050-1,300 deg.C to manufacture a thin silicon steel strip. By this method a thin nondirectional silicon steel strip having superior magnetic characteristics, especially iron loss characteristics can be obtd.

Description

【発明の詳細な説明】 この発明は、磁気特性に優れた無方向性珪素鋼薄帯の製
造方法に関し、とくに該珪素鋼薄帯の表面粗度調整によ
って焼鈍時における3次再結晶を発達させて(100)
面が板面に平行となる結晶粒の集積度を高めることによ
り、磁気特性中でも鉄損特性の有利な改善を図ろうとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-oriented silicon steel ribbon with excellent magnetic properties, and in particular, to develop tertiary recrystallization during annealing by adjusting the surface roughness of the silicon steel ribbon. Te (100)
By increasing the degree of integration of crystal grains whose surfaces are parallel to the plate surface, it is intended to advantageously improve iron loss characteristics among magnetic properties.

8iを8重量%程度含有する珪素鋼板は、トランスやモ
ータ、発電機などの電気機器の鉄心材料として広く使用
されている。かような珪素鋼板は、通常熱間および冷間
圧延ならびに焼鈍処理を経て製造されるが、とくに高品
質のものについては、圧延工程は言5に及ばず複雑でか
つ精密な焼鈍工程を必要とし、従ってその製造コストは
他の鋼種に比べ格段に亮い不利があった。
Silicon steel sheets containing about 8% by weight of 8i are widely used as core materials for electrical equipment such as transformers, motors, and generators. Such silicon steel sheets are usually manufactured through hot and cold rolling and annealing, but especially for high quality ones, the rolling process is far more complex and requires a more precise annealing process. Therefore, its production cost was significantly higher than other steel types.

ところで最近、金属溶融体を、円孔状またはスリット状
ノズルから、冷却面が高速で更新移動する冷却体たとえ
ばローラなどの表面に連続して供給し、急冷凝固させる
ことにより金属薄帯を製造する方法が開発された。
Recently, metal ribbons have been manufactured by continuously supplying a molten metal from a circular hole-shaped or slit-shaped nozzle to the surface of a cooling body, such as a roller, whose cooling surface is updated and moved at high speed, and rapidly solidifying it. A method was developed.

この急冷薄帯製造法を利用することにより、従来、脆性
が大きいため従来の如き圧延処理では薄板とすることが
できず、従って工業的規模での製造は不可能とされた、
Slを5重量%(以下単に%で示す)程度以上含有する
高珪素鋼についても、容易に薄帯とすることができるよ
うになった。しかもこの製造法では、繁雑な圧延工程を
すべて省略できるので、製造コストを大幅に低減できる
利点もある。
By using this quenched ribbon manufacturing method, it was previously impossible to make thin sheets by conventional rolling treatment due to their high brittleness, and therefore it was considered impossible to manufacture them on an industrial scale.
High-silicon steel containing about 5% by weight or more of Sl (hereinafter simply expressed as %) can now be easily made into a ribbon. Furthermore, this manufacturing method has the advantage of significantly reducing manufacturing costs, since all complicated rolling processes can be omitted.

しかしながら、上記の製造法によって得られる薄帯は、
急冷化されたままの状態では歪が大きく、また集合組織
的にも良好な状態を呈していないので、磁気特性は従来
法により得られた珪素鋼板に比べ一般に劣っていた。
However, the ribbon obtained by the above manufacturing method is
In the rapidly cooled state, the strain is large and the texture is not in good condition, so the magnetic properties are generally inferior to silicon steel sheets obtained by conventional methods.

この点発明者らは完に、特開昭56−87627号公報
において、急冷化後の薄帯に、1×10〜5 X 10
−7Torr程度の真空中で、1050〜1300℃、
3分間以上の焼鈍を施すことにより、磁気特性を有利に
改善し得る無方向性珪素鋼板の製造方法を提案した。
In this regard, the inventors have completely explained in Japanese Patent Application Laid-Open No. 56-87627 that a thin film of 1 x 10 to 5 x 10
1050~1300℃ in a vacuum of about -7 Torr,
We have proposed a method for producing a non-oriented silicon steel sheet whose magnetic properties can be advantageously improved by annealing for 3 minutes or more.

この製造法により、板面と平行となる(100)面の集
積度が高まって磁気特性はかなり改善されたけれども、
その特性はまだ十分とはいい難く、しかもかような(1
00)方位の集合組織が安定して得られないところに問
題を残していたのである。
Although this manufacturing method increased the degree of integration of (100) planes parallel to the plate surface and considerably improved magnetic properties,
It is difficult to say that its characteristics are sufficient, and moreover, it is difficult to say that its characteristics are sufficient (1
00) orientation remained in that the texture could not be stably obtained.

この発明は、上記した特開昭56−87627号公報に
開示した無方向性珪素鋼板の製造法の改良に係り、磁気
特性に一層優れた無方向性珪素鋼板の安定した製造を可
能ならしめる方法を提案することを目的とする。
This invention relates to an improvement in the manufacturing method for non-oriented silicon steel sheets disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 56-87627, and is a method that enables stable manufacturing of non-oriented silicon steel sheets with even better magnetic properties. The purpose is to propose.

発明者らは上記の目的を達成すべ(鋭意研究を重ねた結
果、磁気特性は焼鈍前の急冷薄帯の表面粗度と密接な関
係にあることを新たに究明し、この新規知見に基いてこ
の発明を完成させたのである。
The inventors aimed to achieve the above objective (as a result of intensive research, they newly discovered that the magnetic properties are closely related to the surface roughness of the rapidly solidified ribbon before annealing, and based on this new knowledge, He completed this invention.

すなわちこの発明は、Siを2.0〜8.0%含有する
溶鋼を、冷却面が高速で更新移動する冷却体上に連続し
て供給し、急冷凝固させて薄帯化したのち、得られた急
冷薄帯に1050〜1300℃の温度範囲で焼鈍を施し
て珪素鋼薄帯を製造するに当り、上記焼鈍に先立って急
冷薄帯の表面の平均粗さを0.4μm以下に調整するを
もって、上記課題の解決手段とするものである。
That is, in this invention, molten steel containing 2.0 to 8.0% Si is continuously supplied onto a cooling body whose cooling surface is updated and moved at high speed, and is rapidly solidified into a thin ribbon. When producing a silicon steel ribbon by annealing the quenched ribbon at a temperature range of 1050 to 1300°C, the average roughness of the surface of the quenched ribbon is adjusted to 0.4 μm or less prior to the annealing. , is a solution to the above problem.

この発明において急冷薄帯の表面粗度を調整するには酸
洗や化学研磨処理がとくに有利に適合する。
In this invention, pickling and chemical polishing treatments are particularly advantageous for adjusting the surface roughness of the quenched ribbon.

以下この発明を具体的に説明する。This invention will be specifically explained below.

さて珪素鋼薄帯を1050〜1300℃の高温で焼鈍す
ると、表面が(100)面となる結晶粒が異常成長する
ことが一般に知られていて、この現象は3次再結晶と呼
ばれている。この3次再結晶は、真空などの条件下では
(100)面の表面エネルギーが他の方位面の表面エネ
ルギーに比べて低くなる結果、(100)面を持つ結晶
粒が主としてこの表面エネルギーの差を駆動力として他
の方位面の結晶粒を蚕食することによって起きるものと
考えられている。
It is generally known that when a silicon steel ribbon is annealed at a high temperature of 1050 to 1300°C, crystal grains with (100) surfaces grow abnormally, and this phenomenon is called tertiary recrystallization. . This tertiary recrystallization occurs because under conditions such as vacuum, the surface energy of the (100) plane becomes lower than the surface energy of other oriented planes. It is thought that this phenomenon occurs due to the erosion of crystal grains in other orientation planes using the driving force.

従ってかような8次再結晶を生起させるためには、薄帯
表面を清浄にしておく必要があり、この点前掲特開昭5
6−87627号公報に記載の方法においても、焼鈍前
に酸洗や、クリーニング、電解脱脂または超音波洗浄を
施して、表面の付着物を除去することを提案している。
Therefore, in order to cause such eighth-order recrystallization, it is necessary to keep the surface of the ribbon clean, and in this regard, the above-mentioned Japanese Patent Application Laid-open No. 5
The method described in Japanese Patent No. 6-87627 also proposes to perform pickling, cleaning, electrolytic degreasing, or ultrasonic cleaning before annealing to remove deposits on the surface.

しかしながら上述した如き清浄化処理を施した場合であ
っても、所期した磁気特性が得られない場合がしばしば
生じたのである。
However, even when the above-mentioned cleaning treatment was performed, the desired magnetic properties were often not obtained.

そこで発明者らは上記の問題を解決すべく数多くの実験
と検討を重ねた結果、急冷薄帯の表面性状をできる限り
平滑にすることが、優れた磁気特性を安定して得るのに
極めて有効であることを試行錯誤の末新たに見出し、こ
の発明に想倒するに至ったのである。
Therefore, the inventors conducted numerous experiments and studies to solve the above problem, and found that making the surface texture of the quenched ribbon as smooth as possible is extremely effective in stably obtaining excellent magnetic properties. Through trial and error, he discovered that this was the case, and came up with this invention.

前掲特開昭56−87627号公報に記載の方法におい
ても、急冷薄帯の表面状態と磁気特性の1列係について
考察されているが、該方法にお(・てレマ薄帯表面の清
浄化すなわち表面付着物の単なる除去に止まり、薄帯表
面の平均粗さと磁気特性との関係は、この発明ではじめ
て知見された新規事実である。
In the method described in the above-mentioned Japanese Patent Application Laid-Open No. 56-87627, the relationship between the surface condition of the quenched ribbon and the magnetic properties is also considered. That is, the relationship between the average roughness of the surface of the ribbon and the magnetic properties, which is not just a simple removal of surface deposits, is a new fact discovered for the first time in this invention.

第1図に、焼鈍前の急冷薄帯の表面平均粗さRaと、焼
鈍後の薄帯表面内における3次再結晶粒の面積割合すな
わち3次再結晶率との関係を示す。
FIG. 1 shows the relationship between the surface average roughness Ra of the rapidly solidified ribbon before annealing and the area ratio of tertiary recrystallized grains in the ribbon surface after annealing, that is, the tertiary recrystallization rate.

同図より明らかなように、急冷薄帯表面の平均粗さRa
が0.4μm以下になると安定して8次再結晶が生起す
るすなわち(100)〔OKe〕方位の結晶粒が高度に
集積した(100)面内無方向性の集合組織が得られた
のである。
As is clear from the figure, the average roughness Ra of the surface of the quenched ribbon
When the crystal grains were less than 0.4 μm, 8th order recrystallization occurred stably, that is, a (100) in-plane non-directional texture was obtained in which crystal grains with the (100) [OKe] orientation were highly concentrated. .

なお参考までに、前掲特開昭56−87627号記載の
方法に従って洗浄処理した薄帯の表面粗度について調べ
てみたところ、平均粗さRaは0.4〜1.0μmの範
囲で大きくばらついており、従って上記の方法では(1
00)面内無方向性組織を安定して得ることができなか
ったのであろうと考えられる。
For reference, when we investigated the surface roughness of ribbons cleaned according to the method described in JP-A-56-87627, we found that the average roughness Ra varied widely in the range of 0.4 to 1.0 μm. Therefore, in the above method, (1
00) It is considered that it was not possible to stably obtain an in-plane non-directional structure.

次にこの発明の実施例について説明する。Next, embodiments of the invention will be described.

Si : 6.5%を含み残部実質的にFeの組成にな
る溶鋼を、双ロール法によって急冷化し、厚さ150μ
mの薄帯を作成した。次にこの薄帯を、80℃の10%
T(、So、水溶液、およびりん酸と30%H2O2水
溶液を1=2の割合で混合した溶液中に5〜60秒間浸
漬することにより、またブラシ素線の直径が0.45m
mのナイブラツド材でアルミナ砥石入りのブラシロール
で研削することによって、薄帯表面の付着物を除去する
と共に表面粗度を調整した。各薄帯表面の平均粗さRa
は、表1に示したとおり0.18〜1.80μmの範囲
であった。ついでこれらの薄帯に、はく離剤を塗布して
コイル状にしたのち、I X 10”−8Torrの真
空中で、1200℃、3時間の焼鈍を施した。
Molten steel containing 6.5% Si and the remainder essentially having a composition of Fe is rapidly cooled by a twin roll method to a thickness of 150 μm.
A thin ribbon of m was made. Next, this ribbon was heated to 10% at 80°C.
By immersing T(, So, aqueous solution, and a solution of phosphoric acid and 30% H2O2 aqueous solution in a ratio of 1=2 for 5 to 60 seconds, the diameter of the brush wire was 0.45 m.
The deposits on the surface of the ribbon were removed and the surface roughness was adjusted by grinding with a brush roll containing an alumina grindstone using Nibrad material. Average roughness Ra of each ribbon surface
was in the range of 0.18 to 1.80 μm as shown in Table 1. These ribbons were then coated with a release agent to form a coil, and then annealed at 1200°C for 3 hours in a vacuum of I x 10''-8 Torr.

得られた各薄帯の3次再結晶率および1.25 T 。The tertiary recrystallization rate and 1.25 T of each obtained ribbon.

50Hzでの鉄損w12°515oについて調べた結果
を表1に併せて示す。
Table 1 also shows the results of investigating the iron loss w12°515o at 50Hz.

表1 表1より明らかなように、この発明に従い表面の平均粗
さを0.4μm以下としたものはいずれも、8次再結晶
率は90%以上で、比較例に比べ鉄損が著しく低減して
いる。
Table 1 As is clear from Table 1, in all cases where the average surface roughness is 0.4 μm or less according to the present invention, the 8th recrystallization rate is 90% or more, and the iron loss is significantly reduced compared to the comparative example. are doing.

実施例4〜5 8i : 6.5%を含み残部実質的にFeの組成にな
る溶鋼を、双ロール法によって急冷化し、厚さ130μ
mの薄帯を作成した。次にこの薄帯を、80℃の10%
H2So、水溶液に5秒、10秒および30秒間浸漬し
て、表面の付着物、吸着物および酸化物を除去すると共
に表面粗度を調整した。各薄帯の表面平均粗さRaは、
表2に示したとおり0.13〜0.99μmの範囲であ
った。ついでこれらの各薄帯にはく離剤を塗布してコイ
ル状にしたのち、真空度5 x 10”−8Torrの
真空中で、1180’C5時間の焼鈍を施した。
Examples 4 to 5 8i: Molten steel containing 6.5% and the remainder substantially Fe was rapidly cooled by a twin roll method to a thickness of 130 μm.
A thin ribbon of m was made. Next, this ribbon was heated to 10% at 80°C.
It was immersed in H2So and aqueous solutions for 5 seconds, 10 seconds, and 30 seconds to remove deposits, adsorbates, and oxides on the surface, and to adjust the surface roughness. The surface average roughness Ra of each ribbon is
As shown in Table 2, it was in the range of 0.13 to 0.99 μm. Each of these ribbons was then coated with a release agent to form a coil, and then annealed at 1180'C for 5 hours in a vacuum of 5 x 10''-8 Torr.

得られた各薄帯の3次再結晶率および鉄損W12・%0
について調べた結果を、表2に併せて示す。
Tertiary recrystallization rate and iron loss W12・%0 of each obtained ribbon
The results of the investigation are also shown in Table 2.

表2 同表より明らかなように、表面の平均粗さが0.4μm
以下の薄帯は、W12.l/、が約0.5′W/kgに
も低い従来比類のない優れた鉄損特性がイ4Iられてい
る。
Table 2 As is clear from the table, the average surface roughness is 0.4μm
The following ribbons are W12. It exhibits excellent iron loss characteristics unparalleled in the past, with l/, as low as about 0.5'W/kg.

以上述べたようにこの発明によれは、焼鈍前の急冷薄帯
の表面粗さを0.4μm以下に調整することにより、す
ぐれた磁気特性をそなえる無方向性珪素鋼薄帯を安定し
て製造することができ、有利である。
As described above, the present invention enables stable production of non-oriented silicon steel ribbon with excellent magnetic properties by adjusting the surface roughness of the rapidly cooled ribbon before annealing to 0.4 μm or less. It is possible and advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄帯の表面平均粗さRaと8次再結晶率との関
係を示したグラフである。
FIG. 1 is a graph showing the relationship between the surface average roughness Ra of the ribbon and the 8th order recrystallization rate.

Claims (1)

【特許請求の範囲】[Claims] LSi:2.0〜8.0重量%を含有する溶鋼を、冷却
面が高速で更新移動する冷却体上に連続して供給し、急
冷凝固させて薄帯化したのち、得られた急冷薄帯に10
50〜1300℃の温度範囲で焼鈍を施して珪素鋼薄帯
を製造するに当り、上記焼鈍に先立って急冷薄帯の表面
の平均粗さを0.4μm以下に調整することを特徴とす
る、磁気特性に優れた無方向性珪素鋼板の製造方法。
Molten steel containing LSi: 2.0 to 8.0% by weight is continuously supplied onto a cooling body whose cooling surface is updated and moved at high speed, and is rapidly solidified into a thin ribbon. 10 on the obi
When producing a silicon steel ribbon by annealing at a temperature range of 50 to 1300°C, the average roughness of the surface of the quenched ribbon is adjusted to 0.4 μm or less prior to the annealing. A method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties.
JP18993782A 1982-10-28 1982-10-28 Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic Pending JPS5980725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18993782A JPS5980725A (en) 1982-10-28 1982-10-28 Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18993782A JPS5980725A (en) 1982-10-28 1982-10-28 Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS5980725A true JPS5980725A (en) 1984-05-10

Family

ID=16249698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18993782A Pending JPS5980725A (en) 1982-10-28 1982-10-28 Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS5980725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946746A (en) * 1987-12-08 1990-08-07 Toyo Boseki Kabushikia Kaisha Novel metal fiber and process for producing the same
JP2006329989A (en) * 2005-05-26 2006-12-07 Mettler-Toledo Ag Parallel guide mechanism for compact weighting system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687627A (en) * 1979-12-20 1981-07-16 Kawasaki Steel Corp Production of nondirectional silicon steel thin strip of superior of magnetic characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687627A (en) * 1979-12-20 1981-07-16 Kawasaki Steel Corp Production of nondirectional silicon steel thin strip of superior of magnetic characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946746A (en) * 1987-12-08 1990-08-07 Toyo Boseki Kabushikia Kaisha Novel metal fiber and process for producing the same
JP2006329989A (en) * 2005-05-26 2006-12-07 Mettler-Toledo Ag Parallel guide mechanism for compact weighting system

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
US4975127A (en) Method of producing grain oriented silicon steel sheets having magnetic properties
JPS62240714A (en) Production of electrical steel sheet having excellent magnetic characteristic
JPS5980725A (en) Manufacture of thin nondirectional silicon steel strip having superior magnetic characteristic
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPS6256202B2 (en)
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JPS5996219A (en) Manufacture of rapidly cooled nondirectionally oriented thin silicon steel strip with superior magnetic characteristic
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH03294468A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPS63277718A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS6324035A (en) Production of steel sheet
JPH0453084B2 (en)
JPS6056020A (en) Production of light-gauge strip of silicon steel non- oriented in (100) face
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS6318087A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH0347957A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH01132718A (en) Production of non-oriented electrical steel sheet
JPH04120215A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS6347333A (en) Manufacture of nonoriented electrical steel sheet having remarkably small iron loss
JPH03294470A (en) Production of grain-oriented silicon steel sheet having small iron loss