JPS6249094A - Decompression device - Google Patents

Decompression device

Info

Publication number
JPS6249094A
JPS6249094A JP18910285A JP18910285A JPS6249094A JP S6249094 A JPS6249094 A JP S6249094A JP 18910285 A JP18910285 A JP 18910285A JP 18910285 A JP18910285 A JP 18910285A JP S6249094 A JPS6249094 A JP S6249094A
Authority
JP
Japan
Prior art keywords
orifice
pressure
pressure reducing
plate
shock wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18910285A
Other languages
Japanese (ja)
Inventor
小西 恵三
三宅 俊也
坂本 雄二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18910285A priority Critical patent/JPS6249094A/en
Publication of JPS6249094A publication Critical patent/JPS6249094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipe Accessories (AREA)
  • Details Of Valves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体の減圧装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a gas decompression device.

〔従来の技術とその問題点〕[Conventional technology and its problems]

気体を減圧するための装置としては減圧弁が知られてい
るが、一般的に用いられる減圧弁は臨界圧力比以上すな
わち超音速の流れを考慮していない場合が多い。特にパ
イロット式の減圧弁などでは流量調整はボート面積で対
処するものであり、臨界圧力比以上の減圧が全く不可能
とは言えないが、構造が複雑となり、弁自体でどの程度
の減圧ができるかその効果も判然としない。
Although pressure reducing valves are known as devices for reducing the pressure of gas, commonly used pressure reducing valves often do not take into account flow at a pressure ratio higher than the critical pressure ratio, that is, at supersonic speed. In particular, with pilot-operated pressure reducing valves, flow rate adjustment is handled by the area of the boat, and although it is not impossible to reduce pressure above the critical pressure ratio, the structure is complex, and the amount of pressure reduction that can be achieved with the valve itself is limited. Its effect is also unclear.

これに対し騒音対策用の特殊減圧弁として、2重構造に
して少な(とも外側を多数の孔を設けたケージで覆い、
このケージを消音器として利用することにより減圧効果
が得られるものや、母管から多数の枝管を分枝させてこ
の枝管の圧損で減圧を行うものなどもある。
On the other hand, as a special pressure reducing valve for noise countermeasures, it has a double structure and has a small structure (the outside is covered with a cage with many holes).
Some systems use this cage as a muffler to achieve a pressure reduction effect, while others have many branch pipes branching off from the main pipe and reduce the pressure by the pressure loss of these branch pipes.

しかし、このような弁による減圧装置ではいずれも弁本
体が鋳物であることや弁内部の流れが複雑であることそ
の他の理由から大口径のものの製造が困難であり、大容
量の気体を一度に減圧するには)&シない。
However, for pressure reducing devices using such valves, it is difficult to manufacture large-diameter ones due to the fact that the valve body is cast, the flow inside the valve is complicated, and other reasons, and it is difficult to manufacture large-diameter devices that can handle large volumes of gas at once. To decompress) & shi.

一方、第8図のごとく多孔板1を使用する減圧技術も公
知であるが、これも多孔板1の吹き出し直1kが亜音速
であるのが普通である。図中2は衝撃波を示すが、吹き
出し直後が超音速く減圧比が臨界圧力比以上〉になる状
態で使用すると振動が発生してしまう。、〕れは臨界圧
力比以上の減圧は(h撃波で行われ、この衝撃波は前圧
変化等により非常に敏感に変化しかつ互に干渉すること
による。
On the other hand, a pressure reduction technique using a perforated plate 1 as shown in FIG. 8 is also known, but in this case, the straight line 1k of the perforated plate 1 is usually subsonic. 2 in the figure shows a shock wave, but if it is used in a state where the pressure reduction ratio is supersonically fast immediately after blowing out and the pressure reduction ratio is higher than the critical pressure ratio, vibrations will occur. This is because depressurization above the critical pressure ratio is carried out by shock waves, and these shock waves change very sensitively due to changes in front pressure and interfere with each other.

また、前記多孔板1を間隔を存して複数枚多段に配設す
る方法も考えられなくはないが、これでは−Jz流側で
超音速下流側で亜音速の場合や、その逆の場合が生じ、
上流、下流の多孔板で同時にチョークさせるのが困難で
あり、また衝撃波の不安定干渉により多孔板間の中圧部
圧力が変化しやすく、しかも多孔板1枚の場合よりも振
動が発生しやすい。
Also, it is possible to consider a method of arranging a plurality of perforated plates 1 in multiple stages with intervals, but this would allow for supersonic flow on the -Jz flow side and subsonic flow on the downstream side, or vice versa. occurs,
It is difficult to choke the upstream and downstream perforated plates at the same time, and the pressure in the intermediate pressure area between the perforated plates tends to change due to unstable interference of shock waves, and vibration is more likely to occur than with a single perforated plate. .

本発明の目的は前記従来例の不都合を解消し、構造が簡
単でかつ高度な製造技術を必要とせず、しかも大容量の
気体を無振動、無騒音で確実に減圧できる減圧装置を提
供することにある。
An object of the present invention is to provide a pressure reducing device which eliminates the disadvantages of the conventional example, has a simple structure, does not require advanced manufacturing technology, and can reliably reduce the pressure of a large volume of gas without vibration or noise. It is in.

し問題点をIW決するだめの手段] 本発明は前記目的を達成するため、減圧管の入口と出口
にオリフィスを設け、これにより減圧管内に衝撃波を封
じ込めることを要旨とするものである。
Means to Solve the Problems] In order to achieve the above object, the present invention provides orifices at the inlet and outlet of the pressure reducing tube, thereby sealing the shock wave within the pressure reducing tube.

〔作用〕[Effect]

本発明によれば、衝撃波は減圧管内のみで安定して発生
し、この衝撃波で臨界圧力比以上の減圧作用が確実に得
られ、しかも騒音や振動もこの(h撃波が外へ出ないの
でほとんどない。また、かかる減圧管を多数本並列させ
ることで大容量の気体の減圧が可能となる。
According to the present invention, shock waves are stably generated only within the pressure reducing pipe, and a pressure reduction effect greater than the critical pressure ratio can be reliably obtained with this shock wave.Moreover, noise and vibration are also prevented because the shock waves do not go outside. In addition, by arranging a large number of such pressure reducing pipes in parallel, it is possible to reduce the pressure of a large volume of gas.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、第6図について本発明の原理を先に説明すると、
図中3は減圧管であり、その入口に入口オリフィス4を
、出口に出口オリフィス5を設けるものとする。図中6
,7はこの減圧管3の前後に連通ずる配管を示す。
First, the principle of the present invention will be explained with reference to FIG. 6.
In the figure, numeral 3 is a pressure reducing pipe, and an inlet orifice 4 is provided at its inlet, and an outlet orifice 5 is provided at its outlet. 6 in the diagram
, 7 indicate piping that communicates before and after the pressure reducing pipe 3.

このようにして、高圧の気体は配管6から入口オリフィ
ス4を通過する際にチョークし、減圧管3内で超音速膨
張し、超音速状態となる。次に衝撃波2が発生し、亜音
速に遷移する。そして気体は管3内を流れ出口オリフィ
ス5を通過して配管7へ流出し、外気に混入する。
In this way, the high-pressure gas is choked when passing through the inlet orifice 4 from the pipe 6, expands at supersonic speed within the pressure reducing pipe 3, and enters a supersonic state. Shock wave 2 is then generated and transitions to subsonic speed. The gas then flows through the pipe 3, passes through the outlet orifice 5, flows out into the pipe 7, and mixes with the outside air.

この場合、入口オリフィス4を通過した気体が超音速に
なる条件としては、オリフィス4の前後の圧力比が臨界
圧力比以上で、かつ流路面積が縮少後拡大することが必
要である。かかる高圧力比によると超音速膨張している
部分は静圧が非常に低くなり一方周囲の圧力は例えば大
気圧という高いものであるため圧力のアンバランスが生
じ、このギャップを埋めようとして衝撃波2が発生する
In this case, the conditions for the gas passing through the inlet orifice 4 to become supersonic are that the pressure ratio before and after the orifice 4 is greater than or equal to the critical pressure ratio, and that the flow path area expands after being contracted. With such a high pressure ratio, the static pressure in the part undergoing supersonic expansion becomes very low, while the surrounding pressure is high, such as atmospheric pressure, so a pressure imbalance occurs, and in an attempt to fill this gap, a shock wave 2 is generated. occurs.

例えば、入口オリフィス4のみを直管に設け、かつ圧力
比が大きな場合の衝撃波の発生状態を第9図に、また、
圧力比を減じた場合を第10図、第11図に示す。該f
Ji撃波2としては斜め衝撃波2a、垂直衝撃波2b、
擬似衝撃波2Cがある。これは入1コ側の圧力Paと出
口側の圧力Pの比Pa/Pによっても異なり、これがか
なり大きくないと、前記ごとき斜め衝撃波2a、擬似衝
撃波2Cは発生しない。なお[株]で示す部分はスロー
ト23である。
For example, FIG. 9 shows the state of shock wave generation when only the inlet orifice 4 is provided in a straight pipe and the pressure ratio is large.
The case where the pressure ratio is reduced is shown in FIGS. 10 and 11. The f
The Ji shock waves 2 include an oblique shock wave 2a, a vertical shock wave 2b,
There is a pseudo shock wave 2C. This also depends on the ratio Pa/P of the pressure Pa on the inlet side and the pressure P on the outlet side, and unless this is considerably large, the oblique shock wave 2a and pseudo shock wave 2C as described above will not occur. Note that the part indicated by [stock] is the throat 23.

ところで、擬似衝撃波2C1又は垂直衝撃波2bの後流
は必ず亜音速であり、すなわら、この擬似衝撃波2c、
又は垂直衝撃波2bまでが超音速の部分となり、その背
後で減圧が行われる。そして、斜め衝撃波2aについて
言えば、これは超音速流れにおける摩擦損失が主であり
、斜め衝撃波による減圧はほとんどない。また、擬似衝
撃波2Cの全体での減圧は完全な垂直衝撃波2bの1つ
で減圧できる量とほぼ同じか若しくは大きくても10%
増程度である。従って、斜め衝撃波、擬似衝撃波が存在
する場合でも斜め衝撃波2aは無視し、超音速流れの摩
擦損失、多数の擬似街!β波を1つの垂直衝撃波2に置
きかえた計算で設計可能であり、本発明に通用される。
By the way, the wake of the pseudo shock wave 2C1 or the vertical shock wave 2b is always subsonic, that is, the pseudo shock wave 2c,
Alternatively, the part up to the vertical shock wave 2b becomes a supersonic part, and the pressure is reduced behind it. As for the oblique shock wave 2a, this is mainly caused by friction loss due to supersonic flow, and there is almost no pressure reduction due to the oblique shock wave. In addition, the overall pressure reduction of the pseudo shock wave 2C is approximately the same as the amount that can be reduced by one of the complete vertical shock waves 2b, or at most 10%.
It is a slight increase. Therefore, even if oblique shock waves and pseudo shock waves exist, the oblique shock wave 2a is ignored, and the friction loss of supersonic flow and the large number of pseudo shock waves! It can be designed by calculation in which the β wave is replaced with one vertical shock wave 2, and is applicable to the present invention.

また、垂直衝撃波2b、擬似fili撃波2cの発生位
置は非常に不安定で、圧力比変化により、第6図に示す
バレルショックの状態から第11図、第10図、第9図
および図示していないが衝撃波が吹き抜けた状態まで変
化する。
In addition, the positions where the vertical shock wave 2b and the pseudo fili shock wave 2c are generated are very unstable, and due to changes in the pressure ratio, the barrel shock state shown in FIG. 6 changes from the state shown in FIGS. Although it is not, it changes to a state where a shock wave blows through.

このため、本発明では衝撃波2の発生位置が容易に既定
できるバレルショック8の状態を得るようにした。
Therefore, in the present invention, a state of the barrel shock 8 is obtained in which the generation position of the shock wave 2 can be easily determined.

一方、出口オリフィス5の効果について述べると、これ
が全くなく、大圧力比の減圧を行う場合、擬似衝撃波2
0等が管3内にとどまらず吹き抜けてしまうおそれがあ
り、これは管3での減圧が得られない。
On the other hand, regarding the effect of the exit orifice 5, if there is no effect at all and depressurization is performed at a large pressure ratio, the pseudo shock wave 2
There is a risk that the 0 etc. will not remain in the tube 3 but will blow through, and the pressure reduction in the tube 3 will not be achieved.

また、出口オリフィス5の口径が大きすぎても吹き抜は
効果で擬似衝撃波20等が管3外にも発生してしまい、
減圧管3での減圧はある程度できるものの不充分であり
、しかも衝撃波が管外にあるために騒音や弱い振動を発
生するおそれがある。
Furthermore, even if the diameter of the exit orifice 5 is too large, the effect of the blowout will cause pseudo shock waves 20 etc. to be generated outside the pipe 3.
Although the pressure can be reduced to some extent in the pressure reducing tube 3, it is insufficient, and since the shock waves are outside the tube, there is a risk that noise and weak vibrations will be generated.

これに対し出ロオIIフィス5の口径を絞りすぎると出
口オリフィス5でチョークし、入口オリフィス4と同じ
くこの出口オリフィス5の流出側にも第10図、第11
図に示す超音速膨張部が生じ、減圧管としての減圧効果
が得られない。
On the other hand, if the diameter of the outlet II orifice 5 is narrowed too much, the outlet orifice 5 will be choked, and the outlet orifice 5 will be choked on the outflow side as well as the inlet orifice 4 as shown in FIGS.
The supersonic expansion part shown in the figure occurs, and the pressure reducing effect as a pressure reducing tube cannot be obtained.

以上オリフィスが薄刃の場合について述べたが、オリフ
ィス板を厚板にした場合、より大きな減圧が可能となる
。この時の流動様相は第12図に示すものとなり、厚板
オリフィス24の入口で流体はチョークし、オリフィス
内は超音速となる。オリフィス板の板厚が適正、即ち、
オリフィス口径diの10倍程度以下の板厚であれば、
オリフィス出口でチョーク又は超音速状態となり、減圧
管内で超音速膨張し、薄刃オリフィスの場合と同じ流動
状況となる。この時の圧力比Po/Pは、Po/P=P
a /P1xp1 /Pとなり、薄刃オリフィスで減圧
可能な圧力比? 1 / PよりPo/Pxだけ大きな
減圧比が可能となる。次に、厚板オリフィス板24の板
厚を必要以上に厚くすると、第13図に示すごとく、オ
リフィス板内で衝撃波が発生し、オリフィス板出口で圧
力が高い状態での亜音速流れとなり、減圧管内での減圧
ができず、減圧管出口でバレルショックを発生し、庫圧
を行う。この場合のオリフィス板を含めた減圧管内の減
圧能力は、オリフィス板、減圧管等各々の長さにもよる
が、圧力比P o / P 2で通常1.3〜3程度で
あり、大きな減圧はできない。
The case where the orifice has a thin blade has been described above, but if the orifice plate is made thick, a larger reduction in pressure becomes possible. The flow state at this time is as shown in FIG. 12, where the fluid chokes at the inlet of the thick plate orifice 24 and becomes supersonic inside the orifice. The thickness of the orifice plate is appropriate, i.e.
If the plate thickness is about 10 times or less than the orifice diameter di,
It becomes choked or supersonic at the orifice exit and expands supersonically in the vacuum tube, resulting in the same flow situation as in the case of a thin-bladed orifice. The pressure ratio Po/P at this time is Po/P=P
a /P1xp1 /P, which is the pressure ratio that can be reduced with a thin-blade orifice? A pressure reduction ratio greater than 1/P by Po/Px becomes possible. Next, if the thickness of the thick orifice plate 24 is made thicker than necessary, a shock wave is generated within the orifice plate as shown in Fig. 13, and a subsonic flow with high pressure occurs at the outlet of the orifice plate, resulting in a depressurization. The pressure inside the pipe cannot be reduced, and a barrel shock occurs at the outlet of the pressure reducing pipe to reduce the chamber pressure. In this case, the pressure reduction capacity in the pressure reduction tube including the orifice plate is usually about 1.3 to 3 at the pressure ratio P o / P 2, although it depends on the length of the orifice plate, pressure reduction tube, etc. I can't.

そこで、本発明では衝撃波はすべて入口オリフィス4と
出口オリフィス5内の減圧管3内に封じ込めるように設
計した。かかる衝撃波の封じ込めは、入口オリフィス4
に続く減圧管3の長さと相関関係のある径の出口オリフ
ィス5を設けることで実現されるが、封じ込めに必要と
される減圧管3の長さは(■i撃波2の形によっても異
なる。管3の断面積と入口オリフィス4の面禎比を適宜
に選択すれば、前記のバレルショック8及びマツハディ
スク9が容易にilられ、これにより管3の必要長も短
くすることが可能である。
Therefore, in the present invention, all shock waves are designed to be contained within the pressure reducing pipe 3 within the inlet orifice 4 and the outlet orifice 5. Containment of such shock waves is achieved through the entrance orifice 4.
This is achieved by providing an exit orifice 5 with a diameter that correlates with the length of the decompression pipe 3 following By appropriately selecting the cross-sectional area of the tube 3 and the surface area ratio of the inlet orifice 4, the barrel shock 8 and Matsuha disk 9 can be easily installed, thereby making it possible to shorten the required length of the tube 3. be.

このような設計にあたり、減圧管3の前後圧Po/PO
oが定まっていれば、この値から入口オリフィス4の口
径diと管3の径りの関係di/Dが決り、減圧管3の
長さしを決めると出口オリフィス50口径deが決めら
れる。
In such a design, the front and rear pressures Po/PO of the pressure reducing pipe 3
If o is determined, the relationship di/D between the diameter di of the inlet orifice 4 and the diameter of the pipe 3 is determined from this value, and when the length of the pressure reducing pipe 3 is determined, the diameter de of the outlet orifice 50 is determined.

これらは一定の計算手法で求められるが、減圧すべき気
体が空気で、薄刃オリフィスを用いた場合のチャートを
第7図に示す。
These are determined by a certain calculation method, and a chart in the case where the gas to be depressurized is air and a thin-blade orifice is used is shown in FIG.

その使用法を示すと、圧力比(減圧比)Po/P■、減
圧管径り、減圧管長さ6or6/Dが既知の場合、例え
ばPo /Pw−406/D =19が与えられるとこ
のチャートからdi/ D = 0.20de/ D 
= 0.88が得られ、減圧管形状が定まる。
To show how to use it, if the pressure ratio (reduction ratio) Po/P■, pressure reduction pipe diameter, and pressure reduction pipe length 6or6/D are known, for example, given Po /Pw-406/D = 19, this chart From di/D = 0.20de/D
= 0.88 is obtained, and the shape of the pressure reducing pipe is determined.

一方、Po / PoQ、 D、 di既知の場合は、
例えばPo / Poo−=50   di/D =0
.183が与えられると、第7図においてdi/ D 
= 0.175とdi7’D=0.20の間を内挿して
di/ D = 0.183のラインを求める。このラ
インP o / P■−50の交点を求めると、e /
 D = 30   de/ D = 0.895が求
められ、管形状が定まる。
On the other hand, if Po/PoQ, D, di are known,
For example Po/Poo-=50 di/D=0
.. 183, in Fig. 7 di/D
= 0.175 and di7'D = 0.20 to find the line di/D = 0.183. When finding the intersection of this line P o / P -50, e /
D = 30 de/D = 0.895 is determined, and the tube shape is determined.

なお、厚板オリフィス板を用いる場合は実際に減圧し7
ようとする圧力比に0.8を乗じた値をPO/P■とし
て、同様の手法により減圧管形状を求めることができる
In addition, when using a thick orifice plate, actually reduce the pressure.
By multiplying the desired pressure ratio by 0.8 and setting the value as PO/P■, the shape of the pressure reducing pipe can be determined using the same method.

次に以上のごとき原理の減圧管3を用いた本発明の具体
的な実施例について説明する。
Next, a specific embodiment of the present invention using the pressure reducing tube 3 based on the principle described above will be described.

第1図は本発明の1実施例を示す縦断側面図で減圧管3
はこれを複数本、本体胴10内に並列に配設し、その前
後を管Fj、lL12で支承した。また、これら多数の
減圧管3の前端及びf& 6Nには入口オリフィス4及
び出口オリフィス5を形成するためオリフィス板13.
14を当接させる。これらオリフィス板13.14は前
記本体胴10の径とほぼ同程度の一枚板に円形の小孔を
設けたもので、特にオリフィス板13は厚板を用いてト
ンネル状の入口オリフィス4を形成するようにした。こ
のように、各減圧管3のオリフィス4,5を一枚の板で
共通させて形成すれば製作の手間が大巾に軽減され、か
つ入口オリフィス4に関しては大きな差圧に耐えられる
強度のあるものが形成できる。なお、入口。
FIG. 1 is a longitudinal sectional side view showing one embodiment of the present invention.
A plurality of these were arranged in parallel inside the main body shell 10, and the front and rear thereof were supported by tubes Fj and 1L12. Further, an orifice plate 13 is provided to form an inlet orifice 4 and an outlet orifice 5 at the front ends and f&6N of the large number of pressure reducing pipes 3.
14. These orifice plates 13 and 14 are a single plate with a circular hole approximately the same diameter as the main body 10, and in particular, the orifice plate 13 is a thick plate to form a tunnel-shaped entrance orifice 4. I decided to do so. In this way, if the orifices 4 and 5 of each pressure reducing tube 3 are formed in common with one plate, the manufacturing effort is greatly reduced, and the inlet orifice 4 is strong enough to withstand a large pressure difference. Things can be formed. In addition, the entrance.

出口オリフィス板13.14は管板11.12と同様、
フランジ止めしてもよい。
The outlet orifice plate 13.14 is similar to the tube plate 11.12;
It may be fixed with a flange.

そして、これらオリフィス板13.14の前後には本体
胴10と同径の配管6.7が設けられるが、特に下後流
れ配管7はその前端に嵌合フランジ15を取付けてこれ
により本体胴10に摺動自在に嵌着させる。図中16は
この本体胴10とフランジ15管に介在される伸縮性の
パツキン、17は本体用10の外周に固着した止め板で
、該止め板17と配管7側の嵌合フランジ15とはボル
トナンド18により固定位置調節可能に連結される。図
中αばこのボルトナツト18の調節によ?/)得られる
伸び代である。
Pipes 6.7 having the same diameter as the main body shell 10 are provided before and after these orifice plates 13.14, and in particular, the lower rear flow pipe 7 has a fitting flange 15 attached to its front end. It is slidably fitted into the In the figure, 16 is an elastic packing interposed between the main body 10 and the flange 15 pipe, 17 is a stop plate fixed to the outer periphery of the main body 10, and the stop plate 17 and the fitting flange 15 on the piping 7 side are The fixed position can be adjusted and connected by a bolt nut 18. By adjusting the bolt nut 18 of the α bag in the figure? /) is the amount of elongation obtained.

このようにして、配管6からの気体は本体胴10内の各
減圧管3で減圧されて配管7へと流出するが、流す気体
の流量、圧力(減圧装置の前圧)及びオリフィスプレー
トの孔径により前記減圧管3の必要本数が決定される。
In this way, the gas from the piping 6 is depressurized by each pressure reducing pipe 3 in the main body shell 10 and flows out to the piping 7. The required number of pressure reducing pipes 3 is determined by the following.

また、気体の温度が高い場合は、減圧管3自体も温度上
昇し伸びる場合がある。前記ボルトナツト18による連
結手段は、かかる場合の調整を行うものである。
Moreover, when the temperature of the gas is high, the pressure reducing tube 3 itself may also increase in temperature and expand. The connection means using the bolt/nut 18 is used to make adjustments in such cases.

第3図、第4図は本発明の第2実施例を示すもので、入
口側のオリフィス板13の更に前面上流側にこのオリフ
ィス板13に沿って移動可能な仕切板19を設け、これ
により減圧管3を通過する流量を制御できるようにした
。この仕切板19はオリフィス板13とその外側のフラ
ンジ20の間にパツキン21を介在させて配設される。
3 and 4 show a second embodiment of the present invention, in which a partition plate 19 movable along the orifice plate 13 is provided on the front upstream side of the orifice plate 13 on the inlet side. The flow rate passing through the pressure reducing pipe 3 can be controlled. This partition plate 19 is arranged with a packing 21 interposed between the orifice plate 13 and a flange 20 on the outside thereof.

第5図は本発明の第3実施例を示すもので、このように
第1実施例若しくは第2実施例で示した本発明の減圧装
置の上流側にさらにオリフィス22を設けるようにした
。このようにすれば、該オリフィス22により大きな減
圧を達成することができる。
FIG. 5 shows a third embodiment of the present invention, in which an orifice 22 is further provided upstream of the pressure reducing device of the present invention shown in the first or second embodiment. In this way, a greater pressure reduction can be achieved through the orifice 22.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の減圧装置は、簡単な管体構造
を用いるもので、高度な型造技術を必要とせず安価に製
作でき、しかも臨界圧力比以」二の減圧が無振動、低騒
音で確実に得られ、また、単体となる減圧管を必要本併
用することにより大容量の気体を減圧できるものである
As described above, the pressure reducing device of the present invention uses a simple tube structure, can be manufactured at low cost without requiring advanced molding technology, and can reduce pressure below the critical pressure ratio without vibration and with low vibration. This can be achieved reliably with no noise, and a large volume of gas can be decompressed by using the required number of single decompression tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の減圧装置の第1実施例を示す縦断側面
図、第2図は同上要部の拡大縦断側面図、第3図は第2
実施例を示す要部の縦断側面図、第4図は第3図のA−
A線矢視図、第5図は第3実施例を示す1部切欠いた側
面図、第6図は本発明装置の原理を示す説明図、第7図
は、オリフィス径と管長の相関関係図、第8図は従来例
を示す縦断側面図、第9図〜第13図はそれぞれ種々の
形状の入口オリフィスのみを設けた場合の気体の流れを
示す説明図である。 1・・・多孔板     2・・・衝撃波2a・・・斜
め衝撃波  2b・・・垂直衝撃波2c・・・擬似衝撃
波  3・・・減圧管4・・・入口オリフィス 5・・
・出口オリフィス6.7・・・配管    8・・・バ
レルショック9・・・マツハディスク 10・・・本体
胴lL12・・・管板    13.14・・・オリフ
ィス板15・・・嵌合フランジ  16・・・パツキン
17・・・止め板     18・・・ボルトナツト1
9・・・仕切板     20・・・フランジ21・・
・パツキン    22・・・オリフィス出願人   
株式会社神戸製鋼所 第2図 笑3図 第4 ; 2] 第 5図 8     5   1Q    7 第6図 第7 図 烈々え4ざ R/D
FIG. 1 is a longitudinal sectional side view showing a first embodiment of the pressure reducing device of the present invention, FIG. 2 is an enlarged longitudinal sectional side view of the main parts of the same, and FIG.
FIG. 4 is a longitudinal cross-sectional side view of the main part showing the embodiment, and FIG.
A view taken along line A, FIG. 5 is a partially cutaway side view showing the third embodiment, FIG. 6 is an explanatory diagram showing the principle of the device of the present invention, and FIG. 7 is a diagram showing the correlation between orifice diameter and pipe length. , FIG. 8 is a longitudinal sectional side view showing a conventional example, and FIGS. 9 to 13 are explanatory diagrams showing gas flows when only inlet orifices of various shapes are provided. 1... Porous plate 2... Shock wave 2a... Oblique shock wave 2b... Vertical shock wave 2c... Pseudo shock wave 3... Decompression tube 4... Inlet orifice 5...
・Exit orifice 6.7...Piping 8...Barrel shock 9...Matsuha disk 10...Main body barrel lL12...Tube plate 13.14...Orifice plate 15...Fitting flange 16 ...Packskin 17...Stopping plate 18...Bolt nut 1
9... Partition plate 20... Flange 21...
・Patsukin 22...Orifice applicant
Kobe Steel, Ltd. Figure 2 Figure 3 Figure 4; 2] Figure 5 8 5 1Q 7 Figure 6 Figure 7 Retsue 4za R/D

Claims (4)

【特許請求の範囲】[Claims] (1)減圧管の入口と出口にオリフィスを設け、これに
より減圧管内に衝撃波を封じ込めることを特徴とした減
圧装置。
(1) A decompression device characterized by providing orifices at the inlet and outlet of the decompression tube, thereby sealing shock waves within the decompression tube.
(2)入口オリフィス、出口オリフィスを設けた減圧管
を複数本並列させて本体胴内に配設したことを特徴とす
る減圧装置。
(2) A decompression device characterized by a plurality of decompression tubes each provided with an inlet orifice and an outlet orifice arranged in parallel inside the main body.
(3)入口オリフィスを形成するオリフィス板を厚板と
し、減圧をオリフィス板と減圧管の両者で行うことを特
徴とする特許請求の範囲第1項及び第2項記載の減圧装
置。
(3) The pressure reducing device according to claims 1 and 2, characterized in that the orifice plate forming the inlet orifice is a thick plate, and the pressure is reduced by both the orifice plate and the pressure reducing pipe.
(4)並列する減圧管の各入口オリフィスは一枚のオリ
フィス板を共用して形成し、該オリフィス板に沿って移
動可能な仕切板を設けたことを特徴とする特許請求の範
囲第2項及び第3項記載の減圧装置。
(4) Each inlet orifice of the parallel decompression tubes is formed using a single orifice plate, and a partition plate movable along the orifice plate is provided. and the pressure reducing device according to item 3.
JP18910285A 1985-08-27 1985-08-27 Decompression device Pending JPS6249094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18910285A JPS6249094A (en) 1985-08-27 1985-08-27 Decompression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18910285A JPS6249094A (en) 1985-08-27 1985-08-27 Decompression device

Publications (1)

Publication Number Publication Date
JPS6249094A true JPS6249094A (en) 1987-03-03

Family

ID=16235388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18910285A Pending JPS6249094A (en) 1985-08-27 1985-08-27 Decompression device

Country Status (1)

Country Link
JP (1) JPS6249094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045563A (en) * 2006-08-10 2008-02-28 Aisin Seiki Co Ltd Pipe joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045563A (en) * 2006-08-10 2008-02-28 Aisin Seiki Co Ltd Pipe joint

Similar Documents

Publication Publication Date Title
US4113050A (en) Fluid-flow noise reduction systems
US4130173A (en) Apparatus and method for reducing flow disturbances in a flowing stream of compressible fluid
JPS61136065A (en) Operating valve
US6739426B2 (en) Low-noise pressure reduction system
US4174734A (en) Fluid flow metering tube with minimum pressure energy loss
CN103968149A (en) Axial-flow type maze throttling structure
US2490493A (en) Attenuation pulsation dampener
JPH0626738A (en) Air conditioning apparatus
CN111369961A (en) High-temperature high-pressure gas (or gas) small-hole injection throttling decompression discharge composite muffler
JPS6249094A (en) Decompression device
JPH04262191A (en) Low noise type pressure reduction structure
CN210118237U (en) Noise elimination structure of compressor
US7416050B2 (en) Gas expansion silencer
US4258822A (en) Muffler plug for gas turbine power plant
US2570241A (en) Pulsation dampener
US5711350A (en) Piping systems providing minimal acoustically-induced structural vibrations and fatigue
US4109756A (en) High frequency diffusion muffler for gas jets
CN213150331U (en) High-temperature high-pressure steam or gas small-hole injection throttling decompression discharge composite muffler
JPS59190587A (en) High differential pressure control valve
GB1032854A (en) Improvements relating to exhaust silencer systems
RU2186341C1 (en) Gas flowmeter
CN211578361U (en) Ultra-high pressure steam/gas discharge small hole injection throttling decompression composite emptying silencer
JPH06185691A (en) Control device for suppressing sound and vibration of liquid for liquid pipe line
JPH0650527A (en) Multi-stage pressure reducing device
JPH0353484B2 (en)