JPH04262191A - Low noise type pressure reduction structure - Google Patents
Low noise type pressure reduction structureInfo
- Publication number
- JPH04262191A JPH04262191A JP3045763A JP4576391A JPH04262191A JP H04262191 A JPH04262191 A JP H04262191A JP 3045763 A JP3045763 A JP 3045763A JP 4576391 A JP4576391 A JP 4576391A JP H04262191 A JPH04262191 A JP H04262191A
- Authority
- JP
- Japan
- Prior art keywords
- orifice plate
- porous
- porous metal
- pressure
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 24
- 230000006837 decompression Effects 0.000 claims description 11
- 239000012530 fluid Substances 0.000 abstract description 13
- 230000003628 erosive effect Effects 0.000 abstract description 7
- 230000035939 shock Effects 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Pipe Accessories (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は火力発電所、化学プラン
トのドレン配管・ガス放出配管・放風配管等の超高圧力
の液体・気体の減圧配管系に適応される低騒音多段減圧
装置の低騒音減圧構造に関する。[Industrial Application Field] The present invention is a low-noise multi-stage decompression device that is applied to ultra-high pressure liquid/gas depressurization piping systems such as drain piping, gas discharge piping, and air blowing piping in thermal power plants and chemical plants. Regarding low noise pressure reduction structure.
【0002】0002
【従来の技術】従来の配管における減圧構造は、図6に
示すように、減圧配管1の途中のフランジ2で単孔オリ
フィス板3を挟み込み、単孔オリフィス板3の開口比を
減圧量に応じて選択するようにしている。[Prior Art] As shown in FIG. 6, the conventional pressure reduction structure in piping is such that a single-hole orifice plate 3 is sandwiched between a flange 2 in the middle of a pressure-reduction pipe 1, and the opening ratio of the single-hole orifice plate 3 is adjusted according to the amount of pressure reduction. I try to choose accordingly.
【0003】さらに、超高圧力での適用のように、一段
で必要な減圧量が得られない場合は、図7に示すように
、単孔オリフィス板3を、流体の流れ方向にスペーサ4
を介して多段に設置する減圧構造が多い。以上の減圧構
造は、減圧のみを目的として設計されるため、減圧に伴
うキャビテーション音の発生、あるいは衝撃波による強
烈な騒音の発生を伴う問題があった。Furthermore, when the required amount of pressure reduction cannot be obtained in one step, such as when applying ultra-high pressure, the single-hole orifice plate 3 is moved by spacers 4 in the fluid flow direction, as shown in FIG.
There are many depressurizing structures that are installed in multiple stages. Since the above-described pressure reduction structure is designed solely for the purpose of pressure reduction, there is a problem in that cavitation noise is generated due to pressure reduction, or intense noise is generated due to shock waves.
【0004】そこで本発明者らは、図8に示すような抵
抗体としての多数の孔を有する多孔オリフィス板5,6
と、高速流れの整流用として非常に抵抗が小さい気孔率
の大きな多孔質金属7の組合せを多段化することで、1
段当りの圧力差の低減化を図り、また、多段構造化によ
って次段の多孔オリフィス板5,6で多孔質金属を面支
持することにより、部材強度の増加と構造の簡略化とを
可能とした構造で、流れの過膨張を防ぎ、減圧と衝撃波
音発生の防止機構とを合せ持つ低騒音多段減圧構造を提
唱した。Therefore, the present inventors developed a multi-hole orifice plate 5, 6 having a large number of holes as a resistor as shown in FIG.
By making the combination of a porous metal 7 with very low resistance and high porosity for rectifying high-speed flow into multiple stages, 1
By reducing the pressure difference between each stage and by supporting the porous metal surface with the next-stage porous orifice plates 5 and 6 by creating a multi-stage structure, it is possible to increase the strength of the member and simplify the structure. We proposed a low-noise, multi-stage decompression structure that prevents over-expansion of the flow and has a mechanism for reducing pressure and preventing the generation of shock waves.
【0005】[0005]
【発明が解決しようとする課題】最近の技術の高度化に
伴う超高圧化により、図8に示す低騒音多段減圧構造で
は負荷される圧力差の増加に応じて、段数が増加し、流
れ方向の寸法が長くなるので、スペース上の問題がある
。また、オリフィス孔出口部分では高速の流れにより、
多孔質金属自体のエロージョンによる摩耗のおそれがあ
るため、超高圧化に対応するには強度上の問題があった
。本発明は上記事情にかんがみてなされたもので、その
ような問題点を解消した低騒音減圧構造を提供すること
を目的とする。[Problems to be Solved by the Invention] Due to the ultra-high pressure that has come with recent advancements in technology, in the low-noise multi-stage decompression structure shown in Fig. 8, the number of stages increases as the applied pressure difference increases. There are space problems due to the increased dimensions. In addition, due to the high-speed flow at the orifice hole exit,
Since there is a risk of wear due to erosion of the porous metal itself, there are problems in terms of strength when dealing with ultra-high pressures. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a low-noise pressure reduction structure that eliminates such problems.
【0006】[0006]
【課題を解決するための手段】本発明によれば、オリフ
ィス板の直後に微小な間隔をおいて、オリフィス板より
開口面積の大きな多孔オリフィス板を設置し、その後に
多孔質金属を設置した構造で、オリフィス板と多孔オリ
フィス板との間隔を、オリフィス孔径の0.3〜0.6
倍とすることで、衝撃波の発生位置をオリフィス板間に
固定し、大きな衝撃波の発生を防止している。また、本
発明によれば、オリフィス板の孔と多孔オリフィス板の
孔の配置は、互いに見通せない位置の半径方向に離し、
かつ衝撃波下流の減圧された位置に開口させて、高速の
流れによる多孔質金属自体のエロージョンを回避してい
る。[Means for Solving the Problems] According to the present invention, a porous orifice plate having a larger opening area than the orifice plate is installed immediately after the orifice plate at a minute interval, and a porous metal is installed after that. Then, the distance between the orifice plate and the porous orifice plate is set to 0.3 to 0.6 of the orifice hole diameter.
By doubling the size, the shock wave generation position is fixed between the orifice plates and the generation of large shock waves is prevented. Further, according to the present invention, the holes in the orifice plate and the holes in the porous orifice plate are arranged radially apart at positions where they cannot be seen from each other.
In addition, it is opened at a position where the pressure is reduced downstream of the shock wave to avoid erosion of the porous metal itself due to high-speed flow.
【0007】[0007]
【作用】上記手段によれば、減圧配管系を流れる流体は
、まず低騒音減圧構造のオリフィス板の孔を通過する際
に衝撃波による騒音を発生するが、その衝撃波は2枚の
オリフィスに挟まれた部分に拘束されて大きな騒音の発
生が抑制される。さらに、多孔質金属が流体の流れを整
流して騒音の発生を防止している。[Operation] According to the above means, the fluid flowing through the pressure reduction piping system first generates noise due to shock waves when it passes through the hole in the orifice plate of the low noise pressure reduction structure, but the shock waves are sandwiched between the two orifices. This suppresses the generation of loud noise. Additionally, the porous metal rectifies fluid flow and prevents noise generation.
【0008】[0008]
【実施例】本発明を適用した減圧装置の一実施例を図1
により説明する。図1において、図8に示したものと同
一の部分には同一の参照符号を付してある。[Example] Fig. 1 shows an example of a pressure reducing device to which the present invention is applied.
This is explained by: In FIG. 1, the same parts as shown in FIG. 8 are given the same reference numerals.
【0009】図1において、多孔オリフィス板8は、オ
リフィス板3の直後の近接した位置に配置されている。
その後流には、スペーサ4内に充填された多孔質金属7
が配置され、さらに保持用多孔板9を介して、下流側の
配管1のフランジ2に固定されている。高圧力の流体は
、減圧配管1の内部を矢印の方向に流れており、オリフ
ィス板3の孔を通過する際に減圧膨張するが、この時、
発生する衝撃波はオリフィス板3と多孔オリフィス板8
との2枚のオリフィスで挟まれた部分に拘束されること
になる。このため、その部分に大きな衝撃波を形成する
ことはできず、これによって騒音発生の原因となる流体
の強く大きな渦・乱れの発生が防止される。このように
、超高圧の流体は、オリフィス板3と多孔オリフィス板
8とによって低騒音で減圧されるが、さらに多孔オリフ
ィス板8の孔を通過する際にも同じように流体は減圧膨
張し、騒音を発生する。これに対しては、その直後に配
置された多孔質金属7が有する海綿状の立体的に細かな
網目状の骨格によって、超高圧の流体の大きな渦・乱れ
が整流され、多孔オリフィス板8の孔での騒音の発生が
防止されるのである。In FIG. 1, the porous orifice plate 8 is located immediately behind and adjacent to the orifice plate 3. As shown in FIG. A porous metal 7 filled in the spacer 4 is disposed downstream of the spacer 4.
is arranged and further fixed to the flange 2 of the downstream piping 1 via the holding porous plate 9. The high-pressure fluid is flowing inside the decompression pipe 1 in the direction of the arrow, and expands under reduced pressure when passing through the hole in the orifice plate 3.
The generated shock wave is caused by the orifice plate 3 and the porous orifice plate 8.
It will be restrained by the part sandwiched between the two orifices. Therefore, a large shock wave cannot be formed in that portion, thereby preventing the generation of strong and large vortices and turbulence of the fluid that cause noise generation. In this way, the ultra-high pressure fluid is depressurized by the orifice plate 3 and the porous orifice plate 8 with low noise, but when it passes through the holes of the porous orifice plate 8, the fluid is similarly depressurized and expanded. Generates noise. In contrast, the large vortices and turbulence of the ultra-high pressure fluid are rectified by the spongy three-dimensionally fine mesh-like skeleton of the porous metal 7 placed immediately after the porous metal 7, and the porous orifice plate 8 is rectified. This prevents noise from being generated in the holes.
【0010】さらに、超高圧の流体をオリフィス板3と
多孔オリフィス板8とによって、多孔質金属が十分な強
度を持つ圧力まで減圧させ、そして最終的な減圧と低騒
音化とを多孔質金属に受持たせているので、低騒音減圧
構造自体はコンパクト化され、かつ耐エロージョン性能
は大幅に改善される。Furthermore, the ultra-high pressure fluid is reduced in pressure by the orifice plate 3 and the porous orifice plate 8 to a pressure at which the porous metal has sufficient strength, and the final pressure reduction and noise reduction are applied to the porous metal. As a result, the low-noise decompression structure itself can be made compact, and the erosion resistance performance can be greatly improved.
【0011】ここで、オリフィス板3と多孔オリフィス
板8との間隔h及びオリフィス孔径dの関係において、
これらの比h/dを違えて制作した多数の供試体を試験
した結果、オリフィス板3と多孔オリフィス板8との間
隔hは、オリフィス孔径dの0.3〜0.6倍の範囲で
特に低騒音減圧効果が大きいことがわっかった。Here, regarding the relationship between the distance h between the orifice plate 3 and the porous orifice plate 8 and the orifice hole diameter d,
As a result of testing a large number of specimens produced with different ratios h/d, it was found that the distance h between the orifice plate 3 and the porous orifice plate 8 was particularly within the range of 0.3 to 0.6 times the orifice hole diameter d. It was found that the low-noise decompression effect is significant.
【0012】図2〜図4はオリフィス板3、多孔オリフ
ィス板8及び保持用多孔板9をそれぞれ流体の流れ方向
から見た図である。図2のオリフィス板3の孔は多孔オ
リフィス板8の孔とは半径方向に離れて互いに見通せな
い位置に開口した千鳥配置で形成されており、オリフィ
ス板3の孔からの高速の流れは多孔オリフィス板8の板
の部分でブロックされる。したがて、下流側の多孔質金
属7に直接高速の流れが作用することがないので、多孔
質金属7に対するエロージョンの問題が回避される。多
孔質金属7を保持する保持用多孔板9は、図4に示すよ
うに、流体の渦・乱れの発生を防止するに十分な開口部
を有している。FIGS. 2 to 4 are views of the orifice plate 3, the porous orifice plate 8, and the holding porous plate 9, respectively, as viewed from the fluid flow direction. The holes in the orifice plate 3 in FIG. 2 are radially separated from the holes in the porous orifice plate 8 and are formed in a staggered arrangement so that they cannot be seen from each other. It is blocked by the plate part of plate 8. Therefore, since a high-speed flow does not directly act on the porous metal 7 on the downstream side, the problem of erosion of the porous metal 7 is avoided. As shown in FIG. 4, the holding porous plate 9 that holds the porous metal 7 has openings sufficient to prevent the occurrence of fluid eddies and turbulence.
【0013】図5に、上流側圧力が10MPa以上の過
熱蒸気を大気圧まで減圧した場合の騒音の低下の一例を
示す。図5によれば、本発明による低騒音減圧構造の場
合、30「dBA]以上もの減音効果が得られ、かつ多
孔質金属の破損も皆無という結果が得られている。この
場合、流量はオリフィス板のみで減圧した場合と変化が
なく、本発明が流量・減圧特性に影響を及ぼさずに、発
生音のみ大幅に減音できる非常に有効な減圧構造である
ことがわかる。FIG. 5 shows an example of noise reduction when superheated steam whose upstream pressure is 10 MPa or more is reduced to atmospheric pressure. According to FIG. 5, in the case of the low-noise pressure reduction structure according to the present invention, a sound reduction effect of 30 dBA or more was obtained, and there was no damage to the porous metal. In this case, the flow rate was There is no difference from the case where the pressure is reduced using only the orifice plate, and it can be seen that the present invention is a very effective pressure reduction structure that can significantly reduce only the generated sound without affecting the flow rate and pressure reduction characteristics.
【0014】[0014]
【発明の効果】本発明によれば、従来の技術として図8
に示した低騒音多段減圧構造では、超高圧化により負荷
される圧力差の増加に応じて段数が増加し、寸法が長く
なるスペース状の問題と、オリフィス高出口部分での高
速の流れにより、多孔質金属自体のエロージョンによる
摩耗のおそれがあったが、本発明では超高圧の流体を2
枚のオリフィス板によって、多孔質金属が十分な強度を
持つ圧力まで減圧させ、最終的な減圧と低騒音化とを多
孔質金属に受持たせることで、コンパクト化及び耐エロ
ージョン性能を大幅に向上できたのである。なお、本発
明による減圧構造では、流れは常に上流側のオリフィス
でチョークしたままであるので、その流量特性はオリフ
ィス1段で減圧する場合と何ら変らない。[Effects of the Invention] According to the present invention, as shown in FIG.
In the low-noise multi-stage depressurization structure shown in Figure 1, the number of stages increases as the pressure difference increases due to ultra-high pressure, resulting in space-related problems such as lengthening of the dimensions, and high-speed flow at the high-outlet part of the orifice. There was a risk of wear due to erosion of the porous metal itself, but in the present invention, ultra-high pressure fluid is
By using two orifice plates, the pressure is reduced to a pressure where the porous metal has sufficient strength, and the porous metal is responsible for the final pressure reduction and noise reduction, which greatly improves compactness and erosion resistance. It was done. In the pressure reduction structure according to the present invention, the flow is always choked at the upstream orifice, so the flow rate characteristics are no different from those in the case of pressure reduction using one orifice stage.
【図1】本発明による低騒音減圧構造を実施した低騒音
多段減圧装置の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a low-noise multi-stage pressure reduction device implementing a low-noise pressure reduction structure according to the present invention.
【図2】図1に示したオリフィス板の正面図である。FIG. 2 is a front view of the orifice plate shown in FIG. 1.
【図3】図1に示した多孔オリフィス板の正面図である
。FIG. 3 is a front view of the porous orifice plate shown in FIG. 1;
【図4】図1に示した保持用多孔板の正面図である。4 is a front view of the holding porous plate shown in FIG. 1. FIG.
【図5】本発明の実施例に係る減圧・減音性能を示す説
明図である。FIG. 5 is an explanatory diagram showing pressure reduction and sound reduction performance according to an example of the present invention.
【図6】従来のオリフィス単段減圧装置を示す縦断面図
である。FIG. 6 is a longitudinal cross-sectional view showing a conventional orifice single-stage decompression device.
【図7】従来のオリフィス多段減圧装置を示す縦断面図
である。FIG. 7 is a longitudinal cross-sectional view showing a conventional orifice multi-stage decompression device.
【図8】従来の低騒音多段減圧構造を示したもので(a
)はその縦断面図、(b)は上流側多孔オリフィス板8
の正面図、(c)は下流側多孔オリフィスの正面図であ
る。Fig. 8 shows a conventional low-noise multi-stage decompression structure (a
) is a longitudinal sectional view thereof, and (b) is the upstream side porous orifice plate 8.
(c) is a front view of the downstream porous orifice.
1 配管 2 フランジ 3 オリフィス板 4 スペーサ 5 上流側の多孔オリフィス板 6 下流側の多孔オリフィス板 7 多孔金属板 8 多孔オリフィス板 9 保持用多孔板 1 Piping 2 Flange 3 Orifice plate 4 Spacer 5 Upstream porous orifice plate 6 Downstream side porous orifice plate 7 Porous metal plate 8 Porous orifice plate 9 Porous plate for holding
Claims (3)
、オリフィス板より開口面積の大きな多孔オリフィス板
を設置し、その後に多孔質金属を設置してなる低騒音減
圧構造。1. A low-noise decompression structure comprising a porous orifice plate having a larger opening area than the orifice plate installed at a small distance immediately behind the orifice plate, followed by a porous metal.
を、オリフィス孔径の0.3〜0.6倍とした請求項1
記載の低騒音減圧構造。Claim 2: Claim 1, wherein the distance between the orifice plate and the porous orifice plate is 0.3 to 0.6 times the orifice hole diameter.
Low noise decompression structure as described.
の配置は、互いに見通せない位置に開口した千鳥配置と
した請求項1記載の低騒音減圧構造。3. The low-noise pressure reducing structure according to claim 1, wherein the holes in the orifice plate and the holes in the porous orifice plate are arranged in a staggered manner so that the holes cannot be seen from each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3045763A JP2502202B2 (en) | 1991-02-18 | 1991-02-18 | Low noise decompression structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3045763A JP2502202B2 (en) | 1991-02-18 | 1991-02-18 | Low noise decompression structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04262191A true JPH04262191A (en) | 1992-09-17 |
JP2502202B2 JP2502202B2 (en) | 1996-05-29 |
Family
ID=12728334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3045763A Expired - Lifetime JP2502202B2 (en) | 1991-02-18 | 1991-02-18 | Low noise decompression structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2502202B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005521014A (en) * | 2002-03-22 | 2005-07-14 | ドレッサ、インク | Noise reduction device for fluid flow system |
JP2006057719A (en) * | 2004-08-19 | 2006-03-02 | Psc Kk | Nozzle flapper valve |
JP2007032776A (en) * | 2005-07-29 | 2007-02-08 | Technoflex & Tola Inc | Noise reducing structure for joint portion of flexible metal hose, and flexible metal hose |
JP2009174574A (en) * | 2008-01-22 | 2009-08-06 | Fukushima Nobuyuki | Flow regulation valve and connection fitting using the same |
JP2010053917A (en) * | 2008-08-27 | 2010-03-11 | Rix Corp | Rotary joint |
JP6295385B1 (en) * | 2017-04-07 | 2018-03-14 | 清 高浦 | Compressed air pressure stabilizer in air cylinder exhaust chamber |
DE102006016937B4 (en) | 2006-04-11 | 2018-07-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Hydraulic pulsation damper |
CN113280204A (en) * | 2021-04-09 | 2021-08-20 | 山东电力工程咨询院有限公司 | Single-stage porous throttling orifice plate and throttling device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593434A (en) * | 1982-06-11 | 1984-01-10 | イ−ストマン・コダツク・カンパニ− | Photographic recording material |
JPS63145892A (en) * | 1986-12-08 | 1988-06-17 | ニイガタ・メ−ソンネ−ラン株式会社 | Low-noise decompression device in duct |
-
1991
- 1991-02-18 JP JP3045763A patent/JP2502202B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593434A (en) * | 1982-06-11 | 1984-01-10 | イ−ストマン・コダツク・カンパニ− | Photographic recording material |
JPS63145892A (en) * | 1986-12-08 | 1988-06-17 | ニイガタ・メ−ソンネ−ラン株式会社 | Low-noise decompression device in duct |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005521014A (en) * | 2002-03-22 | 2005-07-14 | ドレッサ、インク | Noise reduction device for fluid flow system |
JP2006057719A (en) * | 2004-08-19 | 2006-03-02 | Psc Kk | Nozzle flapper valve |
JP2007032776A (en) * | 2005-07-29 | 2007-02-08 | Technoflex & Tola Inc | Noise reducing structure for joint portion of flexible metal hose, and flexible metal hose |
DE102006016937B4 (en) | 2006-04-11 | 2018-07-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Hydraulic pulsation damper |
JP2009174574A (en) * | 2008-01-22 | 2009-08-06 | Fukushima Nobuyuki | Flow regulation valve and connection fitting using the same |
JP2010053917A (en) * | 2008-08-27 | 2010-03-11 | Rix Corp | Rotary joint |
JP6295385B1 (en) * | 2017-04-07 | 2018-03-14 | 清 高浦 | Compressed air pressure stabilizer in air cylinder exhaust chamber |
JP2018179277A (en) * | 2017-04-07 | 2018-11-15 | 清 高浦 | Compressed air pressure stabilizing device in air cylinder exhaust chamber |
CN113280204A (en) * | 2021-04-09 | 2021-08-20 | 山东电力工程咨询院有限公司 | Single-stage porous throttling orifice plate and throttling device |
CN113280204B (en) * | 2021-04-09 | 2023-09-22 | 山东电力工程咨询院有限公司 | Single-stage porous throttling orifice plate and throttling device |
Also Published As
Publication number | Publication date |
---|---|
JP2502202B2 (en) | 1996-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5390896A (en) | Energy loss device | |
US4559275A (en) | Perforated plate for evening out the velocity distribution | |
CA1249762A (en) | Flow stabilizing valve, method and pressure reducer | |
US4105048A (en) | High energy loss device | |
WO1982004470A1 (en) | Eccentrically nested tube gas line silencer | |
JPS6353421B2 (en) | ||
JPH04262191A (en) | Low noise type pressure reduction structure | |
JPS5830582A (en) | Control valve | |
US4375841A (en) | Fluid flow apparatus for accommodating a pressure drop | |
US6739426B2 (en) | Low-noise pressure reduction system | |
US4067361A (en) | Silent self-controlled orificial restrictor | |
JPS5918588B2 (en) | Vibration resistant valve | |
JP3821918B2 (en) | Control valve cage, control valve and piping silencer | |
GB2132269A (en) | Silencer for high velocity gas flow | |
JP2004028195A (en) | Steam valve | |
JPH075357Y2 (en) | Low noise multi-stage depressurizer | |
JPH0633917A (en) | Liquid pressure reducing device | |
JPS63145892A (en) | Low-noise decompression device in duct | |
US7416050B2 (en) | Gas expansion silencer | |
JPH05149472A (en) | Cage type valve | |
JPH06300179A (en) | Pipe line structure | |
JPS6249094A (en) | Decompression device | |
JPS61256082A (en) | Valve with fluid buffering part | |
CA1079198A (en) | High frequency diffusion muffler for gas jets | |
Mates et al. | A flow visualization study of the gas dynamics of liquid metal atomization nozzles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960130 |