JPH0353484B2 - - Google Patents

Info

Publication number
JPH0353484B2
JPH0353484B2 JP9827583A JP9827583A JPH0353484B2 JP H0353484 B2 JPH0353484 B2 JP H0353484B2 JP 9827583 A JP9827583 A JP 9827583A JP 9827583 A JP9827583 A JP 9827583A JP H0353484 B2 JPH0353484 B2 JP H0353484B2
Authority
JP
Japan
Prior art keywords
grid
length
flow
square
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9827583A
Other languages
Japanese (ja)
Other versions
JPS59222606A (en
Inventor
Yoshinori Hisakado
Junichiro Okamoto
Junichi Myamoto
Takashi Matsutani
Jujiro Sakamoto
Minoru Kato
Yukihide Nosaka
Haruo Asami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9827583A priority Critical patent/JPS59222606A/en
Publication of JPS59222606A publication Critical patent/JPS59222606A/en
Publication of JPH0353484B2 publication Critical patent/JPH0353484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipe Accessories (AREA)

Description

【発明の詳細な説明】 本発明は、タービン、軸流ポンプあるいはター
ボ圧縮機の吐出側に接続した流体輸送管の流動に
よる振動を抑制する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for suppressing vibrations due to flow in a fluid transport pipe connected to the discharge side of a turbine, an axial pump, or a turbo compressor.

タービン、軸流ポンプ、ターボ圧縮機からの吐
出流は激しく旋回しており、殊にエルボーにおい
て渦流中心が動いて、管の振動が異常に大きくな
る。そこで、管内に網等の整流具を設けて、旋回
流動を抑えようと考えたが、単純に整流具を設け
るだけでは、ある程度の効果を奏するものの未だ
十分ではなく、いかにすれば、効果的に振動を抑
制でき、圧力損失を可及的に抑えられ、整流具の
破損を防止できるかという定量的な解析が、実用
的技術としては望ましい。
The discharge flow from the turbine, axial pump, or turbo compressor swirls violently, and the center of the vortex moves, especially at the elbow, causing abnormally large vibrations in the pipe. Therefore, we thought of installing a rectifier such as a net inside the pipe to suppress the swirling flow, but although simply installing a rectifier has some effect, it is still not sufficient. Quantitative analysis of whether vibration can be suppressed, pressure loss can be suppressed as much as possible, and damage to the rectifier can be prevented is desirable as a practical technology.

本発明の目的は、上記実情に鑑みて、整流具を
いかなる形状及び寸法にすれば、タービン、軸流
ポンプ及びターボ圧縮機の吐出流に対して、管の
異常振動を、十分かつ確実に、さらには、圧力損
失を可及的に抑えると共に、整流具の破損を防止
した状態で抑制できるかを、定量的に解析して、
性能の良い流体輸送設備を容易確実に得られるよ
うにする点にある。
In view of the above-mentioned circumstances, an object of the present invention is to sufficiently and reliably suppress abnormal vibrations of pipes with respect to discharge flows of turbines, axial flow pumps, and turbo compressors, by making the rectifier of any shape and size. Furthermore, we quantitatively analyzed whether pressure loss could be suppressed as much as possible while preventing damage to the rectifier.
The object is to easily and reliably obtain fluid transport equipment with good performance.

本発明による防振方法の特徴手段は、タービ
ン、軸流ポンプあるいはターボ圧縮機の吐出側に
接続した管内に、平板状体を互に管軸芯に対しほ
ぼ平行に並べた形状の正方形状格子を横断配置
し、その正方形状格子において、流れ方向の長さ
と格子の一辺の長さとの相関を、 0.5a<l<1.5a に設定し、前記管の内径と前記格子の一辺の長さ
との相関を、 a<D/5 に設定することにあり、その作用効果は、次の通
りである。
The characteristic means of the vibration isolation method according to the present invention is a square grid in which flat plate bodies are arranged substantially parallel to the axis of the tube in a pipe connected to the discharge side of a turbine, an axial pump, or a turbo compressor. are arranged crosswise, and in the square grid, the correlation between the length in the flow direction and the length of one side of the grid is set to 0.5a<l<1.5a, and the relationship between the inner diameter of the pipe and the length of one side of the grid is set to 0.5a<l<1.5a. The purpose is to set the correlation to a<D/5, and its effects are as follows.

つまり、各種形状の整流具を試作して、それら
整流効果、圧力損失、及び流動に対する強度を調
べたところ、第1図に示すような平板状体9を互
に管軸芯に対しほぼ平行に並べた形状の正方形状
格子Bが優れていることが判明した。
In other words, when we prototyped flow straighteners of various shapes and investigated their flow straightening effects, pressure loss, and strength against flow, we found that flat plates 9 as shown in Figure 1 were aligned approximately parallel to the tube axis. It has been found that the square lattice B having an arrayed shape is superior.

そこで、正方形状格子Bの流れ方向の長さlと
格子の一辺の長さaとの相関、及び、管8の内径
Dと格子の一辺の長さaとの相関について、流出
角係数、圧力損失及び流動に対する強度への影響
について調べたところ、 0.5a<l<1.5a a<D/5 の条件の時に、流出角係数が0.4〜0.8になつて、
十分かつ良好な整流効果が得られると共に、圧力
損失を実用上問題とならない程度に抑えられ、か
つ、格子Bの流動による変形や破壊を確実に防止
できることが判明した。
Therefore, regarding the correlation between the length l of the square grid B in the flow direction and the length a of one side of the grid, and the correlation between the inner diameter D of the pipe 8 and the length a of one side of the grid, the flow angle coefficient, pressure When we investigated the influence of loss and flow on strength, we found that under the conditions of 0.5a<l<1.5a a<D/5, the outflow angle coefficient was 0.4 to 0.8.
It has been found that a sufficient and good rectifying effect can be obtained, pressure loss can be suppressed to an extent that does not pose a practical problem, and deformation and destruction of the grid B due to flow can be reliably prevented.

尚、流出角係数とは、第2図に示すように、格
子Bの上流側及び下流側夫々における軸方向流速
ベクトルv1と周方向流速ベクトルv2の成す角度
φ1,φ2の比φ2/φ1である。
The outflow angle coefficient is the ratio φ of the angles φ 1 and φ 2 formed by the axial flow velocity vector v 1 and the circumferential flow velocity vector v 2 on the upstream and downstream sides of the grid B, respectively, as shown in FIG . 2 / φ1 .

他方、格子Bの流出角係数と配管の振巾との相
関を、最大流量が150Ton/Hrの求心型タービン
の吐出側において、かつ、流量を変化させて調べ
たところ、第3図に示す結果が得られた。
On the other hand, when we investigated the correlation between the outflow angle coefficient of grid B and the pipe width on the discharge side of a centripetal turbine with a maximum flow rate of 150Ton/Hr and by varying the flow rate, we obtained the results shown in Figure 3. was gotten.

尚、実線が格子Bの無い場合であり、点線が格
子B1個の場合であり、一点鎖線が格子B複数個
の場合であり、複数個の格子Bの場合の流出角係
数は格子B夫々の流出角係数の積である。
In addition, the solid line is the case where there is no grid B, the dotted line is the case where there is one grid B, and the dashed line is the case where there are multiple grids B. In the case of multiple grids B, the outflow angle coefficient is for each grid B. It is the product of the outflow angle coefficients.

第3図から格子Bの流出角係数を0.4〜0.8にす
ると、1個の格子Bだけでも、望ましくは複数個
の格子Bを全体としての流出角係数が0.4以下に
なるように並設すると、十分に配管の振巾を減小
できることが判明した。
From Fig. 3, if the outflow angle coefficient of the grid B is set to 0.4 to 0.8, even if only one grid B is used, preferably multiple grids B are arranged in parallel so that the outflow angle coefficient as a whole is 0.4 or less. It has been found that the width of the piping can be sufficiently reduced.

ちなみに、格子B1個当りの流出角係数を0.4以
下にすると、格子Bの上流側に別の不安定流動が
発生して、かえつて防振効果が損われ、かつ、格
子Bによる圧力損失増大が顕著になる欠点があつ
た。また、流れ方向の長さlを格子Bの一辺の長
さaに対して0.5倍以下にすると格子Bの強度上
のトラブルを生じやすかつた。
By the way, if the outflow angle coefficient per grid B is set to 0.4 or less, another unstable flow will occur on the upstream side of grid B, which will actually impair the vibration isolation effect and increase the pressure loss due to grid B. There were some noticeable drawbacks. In addition, if the length l in the flow direction is set to less than 0.5 times the length a of one side of the grid B, problems with the strength of the grid B tend to occur.

以上要するに、前述のように整流具の形状及び
寸法を設定することによつて、タービン、軸流ポ
ンプ及びターボ圧縮機からの旋回吐出流に起因す
る管の異常振動を、状況に応じた適度の範囲に容
易確実に抑制でき、また、そのために、実害があ
る程の圧力損失増大を生じたり、あるいは、構造
的トラブルを生じたりすることも防止でき、全体
として、良好な流体輸送を容易確実に行えるよう
になつた。
In summary, by setting the shape and dimensions of the flow straightener as described above, abnormal vibrations in the pipes caused by swirling discharge flows from turbines, axial pumps, and turbo compressors can be suppressed to an appropriate level according to the situation. It can be easily and reliably suppressed within the range, and it can also prevent an increase in pressure loss that would cause actual damage or cause structural trouble, and overall, it can easily and reliably ensure good fluid transport. Now I can do it.

次に、第4図ないし第6図により実施例を示
す。
Next, an embodiment will be shown with reference to FIGS. 4 to 6.

液化天然ガスをタンク1から冷熱回収装置2に
ポンプ3で供給し、発電機4を駆動する求心型ガ
スタービン5に冷熱回収装置2で気化された天然
ガスを供給し、タービン5からの天然ガスをガス
昇温装置6から適宜設備へのガス供給用パイプラ
イン7に送る。タービン5の吐出側に接続した管
8内に、バルブやベント部等の渦流により振動発
生源となる箇所の上流側に位置させて防振装置A
を設けて、タービンから吐出される旋回流による
流体輸送管の異常振動を防止する。
The liquefied natural gas is supplied from the tank 1 to the cold recovery device 2 by the pump 3, the natural gas vaporized by the cold recovery device 2 is supplied to the centripetal gas turbine 5 that drives the generator 4, and the natural gas from the turbine 5 is is sent from the gas temperature raising device 6 to a gas supply pipeline 7 to appropriate equipment. A vibration isolator A is installed in a pipe 8 connected to the discharge side of the turbine 5, upstream of a point where vibration is generated due to a vortex flow such as a valve or a vent.
is provided to prevent abnormal vibration of the fluid transport pipe due to the swirling flow discharged from the turbine.

防振装置Aを構成するに、連結用フランジ8
a,8bを備えた管8に、平板状体9を互に管軸
芯に対しほぼ平行に並べた形状の正方形状格子B
の2個を横断配置し、正方形状格子B夫々におい
て、流れ方向の長さlと格子の一辺の長さaの相
関を、 0.5a<l<1.5a に設定し、管8の内径Dと格子の一辺の長さaと
の相関を、 a<D/5 に設定し、平板状体9を上流側に向かつて尖つた
断面形状に形成して、圧力損失を小に、かつ、渦
流等の流動乱れを少くする。
To configure the vibration isolator A, the connecting flange 8
A square lattice B having a shape in which flat plate bodies 9 are arranged substantially parallel to the tube axis on a tube 8 having tubes a and 8b.
In each square grid B, the correlation between the length l in the flow direction and the length a of one side of the grid is set to 0.5a<l<1.5a, and the inner diameter D of the tube 8 and The correlation with the length a of one side of the grid is set to a<D/5, and the flat plate 9 is formed to have a sharp cross-sectional shape toward the upstream side, thereby minimizing pressure loss and reducing vortex flow etc. Reduce flow disturbance.

次に、別の実施例を示す。 Next, another example will be shown.

正方形状格子Bの設置箇所は、各種流体輸送管
のタービン5、軸流ポンプ、ターボ圧縮機の吐出
側に接続した管8内であればいずれでもよく、ま
た、正方形状格子Bの設置個数は状況に応じて1
個でも3個以上でもよい。
The square grids B may be installed anywhere within the pipes 8 connected to the discharge side of the turbine 5, axial pump, or turbo compressor of various fluid transport pipes, and the number of square grids B to be installed may vary. 1 depending on the situation
It may be one piece or three or more pieces.

正方形状格子Bを形成するに、一辺の長さa1
それに隣る辺の長さa2がa1/a2=1/1〜1/
1.5の範囲で相違してもよく、その場合は一辺の
長さaはa1+a2/2とすればよい。
To form a square lattice B, the length of one side a 1 and the length of the adjacent side a 2 are a 1 /a 2 = 1/1 to 1/
The difference may be within the range of 1.5, in which case the length a of one side may be set to a 1 +a 2 /2.

また、平板状体9の厚みはa/20〜a/5の範囲で
適宜設定すると良い。
Further, the thickness of the flat plate-shaped body 9 may be appropriately set in the range of a/20 to a/5.

対象となる流体は気体でも液体でもよく、ま
た、その種類は不問である。
The target fluid may be gas or liquid, and its type is not limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は正方形状格子の概念図、第2図は流出
角係数の説明図、第3図は実験結果を示すグラフ
である。第4図ないし第6図は本発明の実施例を
示し、第4図はフローシート、第5図は要部断面
図、第6図は第5図の−線矢視図である。 5……タービン、8……管、9……平板状体、
B……正方形状格子。
FIG. 1 is a conceptual diagram of a square grid, FIG. 2 is an explanatory diagram of the outflow angle coefficient, and FIG. 3 is a graph showing experimental results. 4 to 6 show examples of the present invention, in which FIG. 4 is a flow sheet, FIG. 5 is a sectional view of a main part, and FIG. 6 is a view taken along the line - in FIG. 5. 5... Turbine, 8... Tube, 9... Flat plate-shaped body,
B...Square grid.

Claims (1)

【特許請求の範囲】 1 タービン5、軸流ポンプあるいはターボ圧縮
機の吐出側に接続した管8内に、平板状体9を互
に管軸芯に対しほぼ平行に並べた形状の正方形状
格子Bを横断配置し、その正方形状格子Bにおい
て、流れ方向の長さlと格子の一辺の長さaとの
相関を、 0.5a<l<1.5a に設定し、前記管8の内径Dと前記格子の一辺の
長さaとの相関を、 a<D/5 に設定する流体輸送管の防振方法。 2 前記正方形状格子Bの複数個を並べて、それ
ら正方形状格子B群全体としての流出角係数を
0.4以下にする特許請求の範囲第1項に記載の方
法。
[Claims] 1. A square lattice in which flat plate bodies 9 are arranged substantially parallel to the axis of the tube in a tube 8 connected to the discharge side of a turbine 5, an axial pump, or a turbo compressor. In the square grid B, the correlation between the length l in the flow direction and the length a of one side of the grid is set to 0.5a<l<1.5a, and the inner diameter D of the pipe 8 and A vibration isolation method for a fluid transport pipe, in which the correlation with the length a of one side of the grid is set to be a<D/5. 2 Arrange a plurality of square grids B and calculate the outflow angle coefficient for the group of square grids B as a whole.
0.4 or less, the method according to claim 1.
JP9827583A 1983-05-31 1983-05-31 Vibration preventive method for fluid conveyor pipe Granted JPS59222606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9827583A JPS59222606A (en) 1983-05-31 1983-05-31 Vibration preventive method for fluid conveyor pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9827583A JPS59222606A (en) 1983-05-31 1983-05-31 Vibration preventive method for fluid conveyor pipe

Publications (2)

Publication Number Publication Date
JPS59222606A JPS59222606A (en) 1984-12-14
JPH0353484B2 true JPH0353484B2 (en) 1991-08-15

Family

ID=14215383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9827583A Granted JPS59222606A (en) 1983-05-31 1983-05-31 Vibration preventive method for fluid conveyor pipe

Country Status (1)

Country Link
JP (1) JPS59222606A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4201677C1 (en) * 1992-01-23 1992-12-03 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH0735091A (en) * 1993-07-16 1995-02-03 Shinpei Mizuki Device for preventing swirl in delivery pipe of centrifugal turbo machinery
FR2920472B1 (en) * 2007-09-04 2010-02-19 Renault Sas THERMAL ENGINE EXHAUST DEVICE.
JP6870417B2 (en) * 2017-03-27 2021-05-12 株式会社オンダ製作所 Fittings

Also Published As

Publication number Publication date
JPS59222606A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
US5323661A (en) Laminar flow elbow system and method
Baldwin et al. Flow-induced vibration in safety relief valves
US2873098A (en) Heat exchange apparatus
US4316435A (en) Boiler tube silencer
US20080023086A1 (en) Fluid Pressure Reduction Device for High Pressure-Drop Ratios
US20050023075A1 (en) Reduced noise valve stack connection
US20160031290A1 (en) Aircraft turbomachine comprising a deflector
JPH0353484B2 (en)
US2879861A (en) Flow control unit
Izuchi et al. Combining Acoustic Induced Vibration and Flow Induced Vibration
CN109815549B (en) Design method of single-pair supersonic flow direction vortex generating device
US3320729A (en) Apparatus for removing liquid from a liquid laden gas stream
CN109563959B (en) Pipe system
JPH0448970B2 (en)
JP3782769B2 (en) Steam control valve
Ng Control valve noise
WO2006034623A1 (en) A device of reducing pulsating airflow and vibration
Izuchi et al. Size and Wall Thickness Effect on Evaluation for Acoustically Induced Vibration (AIV)
CN107461964A (en) The blast pipe and air conditioner of compressor
RU119062U1 (en) DEVICE FOR EXTINGUISHING THE PRESSURE PULSATION
US3237687A (en) Heat transfer chamber
JPH09210120A (en) Vibration control structure of cylindrical structure
JP6933538B2 (en) Steam valve gear and steam turbine plant equipped with it
CN207815799U (en) A kind of mute cut-off throttle valve
CN116045213A (en) Flange type throttle orifice plate