JPH0735091A - Device for preventing swirl in delivery pipe of centrifugal turbo machinery - Google Patents

Device for preventing swirl in delivery pipe of centrifugal turbo machinery

Info

Publication number
JPH0735091A
JPH0735091A JP5199132A JP19913293A JPH0735091A JP H0735091 A JPH0735091 A JP H0735091A JP 5199132 A JP5199132 A JP 5199132A JP 19913293 A JP19913293 A JP 19913293A JP H0735091 A JPH0735091 A JP H0735091A
Authority
JP
Japan
Prior art keywords
discharge pipe
centrifugal
flow
delivery pipe
swirl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5199132A
Other languages
Japanese (ja)
Inventor
Shinpei Mizuki
新平 水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5199132A priority Critical patent/JPH0735091A/en
Publication of JPH0735091A publication Critical patent/JPH0735091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To enhance the performance of a centrifugal compressor by straightening a pressurized fluid inside a delivery pipe that is delivered from the centrifugal turbo machinery, thus preventing swirl. CONSTITUTION:An inward straightening vane 21 for regulating the swirl of compressed air is provided on the inner peripheral surface of a delivery pipe 2 connected to the swirl-chamber outlet of centrifugal turbo machinery, to constitute a device for preventing swirl in the delivery pipe of the centrifugal compressor. The straightening vane 21 may be provided to partition the inside of the delivery pipe 2 radially.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は遠心圧縮機,遠心ポンプ
等ターボ機械の吐出管内に整流板を設けて流体の渦流を
規制する遠心式ターボ機械における渦流防止装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current preventive device for a centrifugal turbomachine which regulates an eddy current of a fluid by providing a straightening plate in a discharge pipe of a turbomachine such as a centrifugal compressor or a centrifugal pump.

【0002】[0002]

【従来の技術】従来、例えば渦巻室型の遠心圧縮機は産
業用及び自動車用エンジンのターボチャージャー等に多
用されており、この種の遠心圧縮機はエンジンの排気風
を利用したタービン羽根あるいは電動機等の駆動源を用
いて同軸上に設けられた羽根車をケーシング内で高速回
転させるように設置されている。
2. Description of the Related Art Conventionally, for example, a centrifugal chamber type centrifugal compressor has been widely used for turbochargers of industrial and automobile engines, and this type of centrifugal compressor is a turbine blade or an electric motor utilizing exhaust air of the engine. It is installed so that the impeller provided coaxially using a drive source such as the above can be rotated at high speed in the casing.

【0003】[0003]

【発明が解決しようとする課題】しかし渦巻室を有する
遠心圧縮機等のターボ機械では一般に渦巻室内部で旋回
流が生じ(図4参照),この旋回により生ずる損失のた
めに、設計点以上の大流量域における全圧力上昇及び達
成される最大流量が低下する。加えて従来の遠心圧縮機
は低速回転時或いは急激な過負荷等の際、低流量域にな
ると、ターボ機械特有の旋回失速や、脈動によるサージ
ング等の非定常現象が発生し、遠心圧縮機を含む管路系
に激しい異常振動を生じて安定な運転が不能になるた
め、この領域での運転は避けねばならず低流量域におけ
る運転を規制される問題がある。これに対し、従来遠心
圧縮機の羽根車並びに渦巻室の形状等の改良が種々試み
られ効率の向上が図られたが、全作動範囲にわたる全圧
力上昇と最大流量の増加及び低流量域におけるサージン
グ限界点を改善するには到らなかった。
However, in a turbomachine such as a centrifugal compressor having a swirl chamber, a swirling flow is generally generated in the swirl chamber (see FIG. 4), and the loss caused by this swirling causes the swirling flow to exceed the design point. The total pressure rise and the maximum flow rate achieved in the large flow range are reduced. In addition, in the conventional centrifugal compressor, at low flow rate during low speed rotation or sudden overload, unsteady phenomena such as rotating stall peculiar to turbomachinery and surging due to pulsation occur, and the centrifugal compressor is Since severe abnormal vibration is generated in the pipeline system including it and stable operation becomes impossible, operation in this area must be avoided and there is a problem that operation in the low flow rate area is restricted. On the other hand, various attempts have been made to improve the shape of the impeller and the spiral chamber of the conventional centrifugal compressor to improve the efficiency, but the total pressure rise over the entire operating range, the maximum flow rate increase, and the surging in the low flow rate region have been attempted. It did not reach the limit.

【0004】そこで本発明は、遠心圧縮機並びに該遠心
圧縮機と下流に設置された作業機器とを接続する吐出管
について実験装置によりその性能特性を把握し、吐出管
内に圧縮された流体の渦流を規制する整流板を設けるこ
とにより、上記従来の問題を解消し全流量域における運
転をより有効に可能にするとともに、高性能で廉価に製
作できる遠心式ターボ機械にすることのできる吐出管の
渦流防止装置の提供を目的とするものである。
Therefore, in the present invention, the performance characteristics of the centrifugal compressor and the discharge pipe connecting the centrifugal compressor and the working equipment installed downstream are grasped by an experimental apparatus, and the vortex flow of the fluid compressed in the discharge pipe is grasped. By providing a straightening plate that regulates the above, it is possible to eliminate the above-mentioned conventional problems, enable more effective operation in the entire flow rate range, and improve the performance of a centrifugal turbomachine that can be manufactured at low cost. It is intended to provide an eddy current prevention device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明による遠心式ターボ機械における吐出管の渦
流防止装置は、遠心式ターボ機械3の渦巻室8出口に接
続される吐出管2の内周面側に、圧縮された流体の渦流
を規制する内向きの整流板21,22,23を設けてい
る。また吐出管2にその内部を放射状に仕切る整流板2
1を設けることもできる。
In order to achieve the above object, a vortex flow preventer for a discharge pipe in a centrifugal turbomachine according to the present invention is a discharge pipe 2 connected to an outlet of a spiral chamber 8 of a centrifugal turbomachine 3. On the inner peripheral surface side, inward rectifying plates 21, 22 and 23 for restricting the vortex flow of the compressed fluid are provided. A straightening plate 2 that radially divides the inside of the discharge pipe 2 is provided.
It is also possible to provide 1.

【0006】[0006]

【作用】上記のように構成した遠心式ターボ機械におけ
る吐出管の渦流防止装置は、遠心式ターボ機械3から旋
回しながら送出される渦流状の流体を吐出管2内に設け
た整流板21,22,23が規制するように案内して整
流し、渦流を防止した状態で送出する。これにより圧縮
空気等の流体の内部損失が減少しエネルギー効率を増大
させることができるとともに、サージング限界をより低
流量域側にすることができる。
The vortex flow preventer for the discharge pipe in the centrifugal turbomachine constructed as described above is provided with a rectifying plate 21 provided in the discharge pipe 2 with a vortex-like fluid sent out while being swirled from the centrifugal turbomachine 3. 22 and 23 are guided so as to be regulated and rectified, and are delivered in a state where eddy currents are prevented. As a result, the internal loss of fluid such as compressed air can be reduced, energy efficiency can be increased, and the surging limit can be set to the lower flow rate side.

【0007】[0007]

【実施例】本発明の実施例を図面に基づき説明する。図
1において1は遠心式ターボ機械3の性能特性を確認す
る実験装置であり、該実験装置1は上記遠心式ターボ機
械3の吐出口3bに接続した吐出管2に、絞り弁6を有
する測定用吐出管7を接続するとともに、遠心式ターボ
機械3の羽根車3aと同軸で回転するタービン羽根4a
を内装したタービン4の吸込口4b側に後述する送気調
整装置5を設けて構成している。
Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 is an experimental apparatus for confirming the performance characteristics of the centrifugal turbomachine 3, and the experimental apparatus 1 has a metering valve 6 in a discharge pipe 2 connected to a discharge port 3b of the centrifugal turbomachine 3. Turbine blade 4a that is connected to the discharge pipe 7 and that rotates coaxially with the impeller 3a of the centrifugal turbomachine 3.
An air supply adjusting device 5 to be described later is provided on the suction port 4b side of the turbine 4 in which is installed.

【0008】上記実験装置1に用いる遠心式ターボ機械
3は自動車用のターボチャージャーを示し、図2,図3
に示すように、羽根車3aがディフューザー8aと連な
る渦巻室8を形成したケーシング8b内で回転されるこ
とにより、吸込口8cに接続される吸込管9から外気を
吸い込み、渦巻室8で加圧して圧縮空気Wとして吐出口
3bから吐出管2へ送出するものである。
The centrifugal turbomachine 3 used in the experimental apparatus 1 is a turbocharger for an automobile, and is shown in FIGS.
As shown in Fig. 4, the impeller 3a is rotated in the casing 8b that forms the spiral chamber 8 that is continuous with the diffuser 8a, so that the outside air is sucked from the suction pipe 9 connected to the suction port 8c and is pressurized in the spiral chamber 8. The compressed air W is discharged from the discharge port 3b to the discharge pipe 2.

【0009】上記吐出管2は図6(a),(b)に示す
ように、その両側に固着されたフランジ2aを吐出口3
bと測定用吐出管7端に設けたフランジ間に介挿し、ボ
ルト2bで締着し着脱交換可能に構成している。そして
遠心式ターボ機械3及び吐出管2の各測定箇所には、圧
力検出器(測定用吐出管)A,ピトー管P,風速計H,
温度計T等が取り付けられ、これらセンサーで検出され
たデーターはモニター機器(不図示)に表示されるよう
にしている。
As shown in FIGS. 6 (a) and 6 (b), the discharge pipe 2 has flanges 2a fixed on both sides thereof and a discharge port 3 formed therein.
b and a flange provided at the end of the discharge pipe for measurement 7 are interposed and fastened with a bolt 2b so as to be detachable and replaceable. At each measurement point of the centrifugal turbomachine 3 and the discharge pipe 2, a pressure detector (measurement discharge pipe) A, a pitot pipe P, an anemometer H,
A thermometer T and the like are attached, and the data detected by these sensors are displayed on a monitor device (not shown).

【0010】また送気調整装置5はサージタンク10に
電動機11で駆動されるルーツ型の送風機12を安全弁
13を介して管路10aで接続するとともに、上記サー
ジタンク10から流量調節弁14,14a,14bを有
する分配管15を設け、流量調節弁14側を前述タービ
ン4の吸込口4bに接続し、サージタンク10内の圧縮
空気を前記流量調節弁14で送気調節することによりタ
ービン羽根車4aを回転させ、同軸に設けられた遠心式
ターボ機械3の羽根車3aを任意の回転数に設定調節可
能に構成している。
The air supply adjusting device 5 connects the surge tank 10 with a roots-type blower 12 driven by an electric motor 11 via a safety valve 13 through a pipe line 10a, and the surge tank 10 has flow control valves 14, 14a. , 14b are provided, the flow control valve 14 side is connected to the suction port 4b of the turbine 4, and the compressed air in the surge tank 10 is regulated by the flow control valve 14 so that the turbine impeller can be controlled. 4a is rotated, and the impeller 3a of the centrifugal turbomachine 3 provided coaxially can be set and adjusted to an arbitrary rotation speed.

【0011】次に上記のように構成した実験装置1によ
り、図2に示す従来のものと同様な中空円筒の吐出管2
を遠心式ターボ機械3に装着した実験例について説明す
る。電動機11を駆動させ送風機12でサージタンク1
0内へ圧縮空気を貯溜したのち、流量調節弁14を羽根
車3aが所定回転(本実験では羽根車3aの回転を汎用
回転域の10,000rpmに設定した。)となるよう
に開く。これにより遠心式ターボ機械3は羽根車3a
が、図2矢印方向に回転して吸込口8cから外気を吸い
込み、ディフューザー8aで誘導しながら渦巻室8で圧
縮し吐出口3bから圧縮空気Wを吐出管2側に送出す
る。
Next, by using the experimental apparatus 1 configured as described above, a hollow cylindrical discharge pipe 2 similar to the conventional one shown in FIG.
An example of an experiment in which the centrifugal turbomachine 3 is mounted will be described. Drive the electric motor 11 and blower 12 to surge tank 1
After storing the compressed air in 0, the flow rate control valve 14 is opened so that the impeller 3a makes a predetermined rotation (in this experiment, the rotation of the impeller 3a is set to 10,000 rpm which is a general-purpose rotation range). As a result, the centrifugal turbomachine 3 has the impeller 3a.
2 rotates in the direction of the arrow in FIG. 2, sucks the outside air from the suction port 8c, compresses it in the spiral chamber 8 while guiding it by the diffuser 8a, and sends the compressed air W from the discharge port 3b to the discharge pipe 2 side.

【0012】このとき測定用吐出管7の後端に設けた絞
り弁6の開度を調節して遠心式ターボ機械3への負荷調
節を行い、羽根車3aの周速度U2 に対する羽根車出口
半径方向の風速度C2rの比から求められる流量係数Φ=
C2r/U2 を変化させる。そして上記流量係数Φの変化
毎に、吐出管2に装備した圧力検出器Aで検出される吐
出管2内に生ずる全圧Pt を測定し、該全圧Pt と大気
圧Pa との比から得られる全圧力比Pt /Pa を、図7
に示すように横軸に流量係数Φをとり縦軸に全圧力比P
t /Pa をとって、グラフにプロットすると特性曲線a
が得られた。
At this time, the opening of the throttle valve 6 provided at the rear end of the measuring discharge pipe 7 is adjusted to adjust the load on the centrifugal turbomachine 3, and the impeller outlet radius with respect to the peripheral speed U2 of the impeller 3a. Flow coefficient Φ = calculated from the ratio of wind velocity C2r
Change C2r / U2. Then, every time the flow coefficient Φ changes, the total pressure Pt generated in the discharge pipe 2 detected by the pressure detector A mounted on the discharge pipe 2 is measured, and obtained from the ratio of the total pressure Pt and the atmospheric pressure Pa. Fig. 7 shows the total pressure ratio Pt / Pa
As shown in, the horizontal axis is the flow coefficient Φ and the vertical axis is the total pressure ratio P.
Characteristic curve a is obtained by plotting t / Pa on a graph.
was gotten.

【0013】これによれば、最大全圧力比Pt/Paは
流量係数Φ=0.10で1.032から1.035に上
昇し、最大流量範囲も0.17から0.18まで増加し
ている。さらにサージング限界(運転可能な最小の流
量)は流量係数Φが0.06付近であり、このときの全
圧力比Pt /Pa は1.034程度である。そして上記
流量係数Φ以下では遠心式ターボ機械3及び管路系に異
常振動が発生して実用運転は不能となった。さらにケー
シング8bに装備して渦巻室8内に設けた各センサーに
より、渦巻室8内の圧縮空気Wは図4に示すように流れ
ていることが把握できた。即ち白抜きの矢印は羽根車3
aから放出された直後の圧縮空気Wの流れであり、黒塗
りの矢印は羽根車3aの回転で圧縮され吐出口3bから
送出されようとするものであり、これらは渦巻室8内の
形状にそって捻られた圧縮空気W1 となって送出され
る。
According to this, the maximum total pressure ratio Pt / Pa increases from 1.032 to 1.035 with the flow coefficient Φ = 0.10, and the maximum flow range also increases from 0.17 to 0.18. There is. Further, the surging limit (minimum operable flow rate) is such that the flow coefficient Φ is around 0.06, and the total pressure ratio Pt / Pa at this time is about 1.034. If the flow coefficient is less than Φ, abnormal vibration occurs in the centrifugal turbomachine 3 and the pipe system, and the practical operation cannot be performed. Further, it was possible to understand that the compressed air W in the swirl chamber 8 was flowing as shown in FIG. 4 by the sensors provided in the casing 8b and provided in the swirl chamber 8. That is, the white arrow indicates the impeller 3
It is the flow of the compressed air W immediately after being discharged from a, and the black arrow indicates that it is compressed by the rotation of the impeller 3a and is sent out from the discharge port 3b. The compressed compressed air W1 is then sent out.

【0014】また上記圧縮空気Wの流れを吐出管2内に
おいて確認するため、吐出管2を透明な中空円筒に取り
換えるとともに、風上側の2点からオイルペイントを注
入した。 上記オイルペイントは図5に示すように圧縮
空気Wの流れにより、吐出管2内面で螺旋状に2筋の曲
線Kとして画かれ、圧縮空気Wは吐出管2内において旋
回しながら渦流となって送出されることを可視化し得
た。
In order to confirm the flow of the compressed air W in the discharge pipe 2, the discharge pipe 2 was replaced with a transparent hollow cylinder, and oil paint was injected from two points on the windward side. As shown in FIG. 5, the oil paint is drawn by the flow of the compressed air W in a spiral shape on the inner surface of the discharge pipe 2 as a curve K of two lines, and the compressed air W swirls in the discharge pipe 2 while swirling. It could be visualized to be delivered.

【0015】そこで吐出管2を図6(e)に示す(仮想
線を除く)ように吐出管2内で通路2cを有して中心部
に丸棒材2dを介入させた状態で、前述した実験と同様
な方法で流量係数Φ毎に全圧を測定したところ、図7に
示す特性曲線bが得られた。これによれば全圧力比Pt
/Pa の最高値は前述した円筒の吐出管2による特性曲
線aの最高値よりやや増大しこの点での効率はよくなる
が、サージング限界の流量係数Φは0.08とより小さ
な値となり実用的には不充分であることを示した。尚絞
り弁6の全開レベルによる流量係数Φ0.17付近での
全圧力比Pt/Pa は上記2例とも略同程度である。
Therefore, the discharge pipe 2 has the passage 2c in the discharge pipe 2 as shown in FIG. 6 (e) (excluding the phantom line), and the round bar 2d is interposed in the central portion of the discharge pipe 2 as described above. When the total pressure was measured for each flow coefficient Φ by the same method as the experiment, the characteristic curve b shown in FIG. 7 was obtained. According to this, the total pressure ratio Pt
The maximum value of / Pa is slightly higher than the maximum value of the characteristic curve a due to the cylindrical discharge pipe 2 described above and the efficiency at this point is improved, but the flow coefficient Φ at the surging limit is a small value of 0.08 and is practical. Has been shown to be insufficient. The total pressure ratio Pt / Pa in the vicinity of the flow coefficient Φ0.17 depending on the fully open level of the throttle valve 6 is substantially the same in the above two examples.

【0016】以上の実験から丸棒内装円筒管とした吐出
管2は円筒に丸棒2dを入れたことにより、通路2c内
における全圧は高まるものの圧縮空気Wの旋回が促進さ
れ、渦流となってエネルギーの内部損失が多いことが推
定される。また上記実験例による吐出管2内の圧縮空気
Wの流れは、上述の如く旋回して流量の低下による軸流
速度の減少により、低流量域では旋回の影響が性能特性
に大きく関与している。そして大流量域では軸流速度が
大きく旋回と軸流速度の合成からなる絶対速度が増加
し、一般には絶対速度の略2乗に比例する摩擦損失を生
じ性能特性を低下させているものとみられる。
From the above-mentioned experiment, the discharge pipe 2 which is a cylindrical pipe with a round rod inside has a round rod 2d in the cylinder, so that although the total pressure in the passage 2c increases, the swirling of the compressed air W is promoted and it becomes a vortex. It is estimated that there is a lot of internal loss of energy. Further, the flow of the compressed air W in the discharge pipe 2 according to the above experimental example swirls as described above, and the axial flow velocity decreases due to the decrease in the flow rate, so that the effect of swirling greatly contributes to the performance characteristics in the low flow rate region. . In the large flow rate region, the axial velocity is large, and the absolute velocity, which is a combination of the swirl and the axial velocity, increases, and in general, it is considered that friction loss proportional to approximately the square of the absolute velocity occurs and the performance characteristics are deteriorated. .

【0017】従って渦巻室8の吐出口3bから吐出管2
にかけて上記圧縮空気Wの渦流を防止する整流装置を設
けることにより、複雑で高価な遠心式ターボ機械3に格
別な手を加えることなく問題点を解消しその性能の改善
が期待できる。そこで図6(a),(b)に示すよう
に、吐出管2を中空円筒の内周面側に圧縮空気の渦流を
規制する内向きの整流板21を内部を十字状(放射状)
に仕切るように設けて、既述の吐出管2と交換し前述と
同様な方法で実験すると、図7に示す性能特性曲線cを
得た。これによれば低流量域におけるサージング限界は
0.04付近となり従来の性能特性曲線aより大幅に低
流量域側に改善でき、また最大流量域から最高全圧力比
Pt /Pa が1.037付近に至る流量全範囲において
全圧力比Pt /Pa が略均等に上昇し、全体効率を格段
に増大することが確認できた。
Therefore, from the discharge port 3b of the spiral chamber 8 to the discharge pipe 2
By providing the rectifying device for preventing the swirling flow of the compressed air W, it is possible to solve the problems and improve the performance thereof without adding any special action to the complicated and expensive centrifugal turbomachine 3. Therefore, as shown in FIGS. 6A and 6B, the inward flow straightening plate 21 that restricts the vortex flow of the compressed air to the inner peripheral surface side of the discharge pipe 2 is a cross shape (radial shape) inside.
The performance characteristic curve c shown in FIG. 7 was obtained by performing a test in the same manner as described above by replacing the discharge pipe 2 with the discharge pipe 2 described above. According to this, the surging limit in the low flow rate region is around 0.04, which can be greatly improved from the conventional performance characteristic curve a to the low flow rate region, and the maximum total pressure ratio Pt / Pa from the maximum flow region is around 1.037. It has been confirmed that the total pressure ratio Pt / Pa rises substantially evenly in the entire flow rate range up to and the overall efficiency is remarkably increased.

【0018】また本整流板の効果を再確認するため、図
1に示す装置に別のターボチャージャーを装着し、遠心
圧縮機の特性を求めたところ、図8に示すように図7に
おけるのと同様な結果が得られた。但し、a′,b′
(共に50,000rpm)及びa″,b″(共に4
0,000rpm)は図7の円管a,十字管cに対応し
ている。
In order to reconfirm the effect of the current plate, another turbocharger was attached to the apparatus shown in FIG. 1 and the characteristics of the centrifugal compressor were determined. As shown in FIG. Similar results were obtained. However, a ', b'
(Both 50,000 rpm) and a ″, b ″ (both 4
(10,000 rpm) corresponds to the circular pipe a and the cross pipe c in FIG. 7.

【0019】従って遠心式ターボ機械3の運転範囲を大
流量側に大幅に増加させ、さらに全圧力上昇も増加させ
ることが可能になった。そして、低流量域側では僅かに
性能特性の低下が見られるが、この種ターボ型の圧縮機
で最も重要な未解決の問題であるサージング開始点をよ
り低流量域までシフトさせることができる。それ故従来
の渦巻室8を有する遠心式ターボ機械3で運転流量範囲
を大幅に拡大し、且つ高い性能で運転することが可能と
なる。
Therefore, it has become possible to greatly increase the operating range of the centrifugal turbomachine 3 toward the large flow rate side and further increase the total pressure rise. Although the performance characteristics are slightly degraded on the low flow rate side, the surging start point, which is the most important unsolved problem in this type of turbo compressor, can be shifted to a lower flow rate range. Therefore, the centrifugal turbomachine 3 having the conventional swirl chamber 8 can greatly expand the operating flow rate range and operate with high performance.

【0020】また吐出管2に圧縮空気Wの渦流を規制す
る内向きの整流板21を設ける他の実施例として、図6
(c)に示すように吐出管2の内周面側に吐出管の内面
側に突出する4枚の整流板22を突設した吐出管2、及
び同図(d)に示すように吐出管2の内部を断面の法線
に沿って2室に仕切る整流板23を有する吐出管2を得
ることも可能であり、これらの機構によっても前述の吐
出管2における曲線cと同様の効果が得られることは容
易に推論できる。また上記整流板21,22,23は流
体旋回方向と逆向きの螺旋状に曲折した状態で吐出管2
内の長手方向に設けてもよく、また前記した図6(e)
の丸棒2dに整流板を仮想線に示すように植設した構成
としてもよい。
As another embodiment in which the discharge pipe 2 is provided with an inward rectifying plate 21 for restricting the vortex flow of the compressed air W, FIG.
As shown in (c), the discharge pipe 2 is provided with four straightening vanes 22 protruding toward the inner surface of the discharge pipe 2 on the inner peripheral surface side of the discharge pipe 2, and the discharge pipe as shown in FIG. It is also possible to obtain a discharge pipe 2 having a rectifying plate 23 that divides the inside of 2 into two chambers along the normal line of the cross section, and these mechanisms also have the same effect as the curve c in the discharge pipe 2 described above. It can be easily inferred that it will be done. Further, the flow straightening plates 21, 22, and 23 are bent in a spiral shape opposite to the fluid swirling direction, and the discharge pipe 2 is provided.
It may be provided in the longitudinal direction of the inside of FIG. 6 (e).
A straightening plate may be installed in the round bar 2d as shown in phantom.

【0021】上記の実験により確認した整流板21付の
吐出管2を、自動車用エンジンのターボーチャージャー
の遠心式ターボ機械3に用いた場合、エンジンの燃焼効
率を向上することができ、また発生熱エネルギーを増加
させることができてエンジンを高性能に且つ小型化する
ことができる。またサージング限界をより低流量域にし
得たので、エンジンの低速回転時における遠心式ターボ
機械3及び管路系の異常振動の発生が抑制でき、機関の
関連部品や部材を簡潔な構成で製作できるとともに軽量
化を図ることが可能となる。尚、上記実施例は自動車用
エンジンの遠心圧縮機について説明したが、本発明によ
る渦流防止装置は、上記実施例のケースに限られること
なく、空気以外の流体を対象とするポンプ等を含め、吐
出管側に渦流が発生する遠心式ターボ機械全般に適用さ
れるものである。
When the discharge pipe 2 with the current plate 21 confirmed by the above-mentioned experiment is used in the centrifugal turbomachine 3 of the turbocharger of the automobile engine, the combustion efficiency of the engine can be improved and the generated heat can be increased. Energy can be increased and the engine can be made highly efficient and compact. Further, since the surging limit can be set to a lower flow rate range, it is possible to suppress the occurrence of abnormal vibration of the centrifugal turbomachine 3 and the pipeline system at the time of low speed rotation of the engine, and it is possible to manufacture the related parts and members of the engine with a simple structure. At the same time, it is possible to reduce the weight. In addition, although the above-mentioned embodiment explained the centrifugal compressor of the engine for automobiles, the eddy current prevention device according to the present invention is not limited to the case of the above-mentioned embodiment, and includes a pump or the like for a fluid other than air, It is applied to all centrifugal turbomachines in which a vortex is generated on the discharge pipe side.

【0022】[0022]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。 (1)遠心式ターボ機械から送出される加圧された流体
は、吐出管内に設けた整流板で整流され渦流を防止され
た状態で送出されるので、流体の内部損失が減ってエネ
ルギー効率を増大することができる。 (2)またサージング限界をより低流量域に改善できる
ので、遠心式ターボ機械並びにエンジン等の下流側作動
機器の異常振動を抑制でき、運転が静粛且つスムースに
行われるとともに、各関連部品や部材の小型軽量化を可
能として低コストな作動機器及び遠心式ターボ機械を提
供することができる。
Since the present invention is constructed as described above, it has the following effects. (1) The pressurized fluid delivered from the centrifugal turbomachine is delivered in a state in which it is rectified by a rectifying plate provided in the discharge pipe and vortex flow is prevented, so internal loss of the fluid is reduced and energy efficiency is reduced. Can be increased. (2) Further, since the surging limit can be improved to a lower flow rate region, abnormal vibrations of the downstream turbomachines and engines such as engines can be suppressed, the operation can be performed quietly and smoothly, and each related component or member. It is possible to provide a low-cost actuating device and a centrifugal turbomachine that can be reduced in size and weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】遠心圧縮機の実験装置を示す平面図。FIG. 1 is a plan view showing an experimental device of a centrifugal compressor.

【図2】遠心圧縮機を一部破断して示す側面図。FIG. 2 is a side view showing a centrifugal compressor partially broken away.

【図3】図2のAーA線断面図。3 is a sectional view taken along the line AA of FIG.

【図4】遠心圧縮機内の圧縮空気の流れを示す模式図。FIG. 4 is a schematic diagram showing a flow of compressed air in a centrifugal compressor.

【図5】透明な吐出管内におけるオイルペイントの記録
図。
FIG. 5 is a recording diagram of oil paint in a transparent discharge pipe.

【図6】(a)は本発明実施例に係わる吐出管の正断面
図。(b)はその側面図。(c)は第2実施例に係わる
吐出管の側断面図。(d)は第3実施例に係わる吐出管
の側断面図。(e)は中空円筒吐出管に丸棒を挿入した
側断面図。
FIG. 6A is a front sectional view of a discharge pipe according to an embodiment of the present invention. (B) is the side view. FIG. 7C is a side sectional view of the discharge pipe according to the second embodiment. FIG. 6D is a side sectional view of the discharge pipe according to the third embodiment. (E) is a side sectional view in which a round bar is inserted into a hollow cylindrical discharge pipe.

【図7】図1の実験装置により各種の吐出管を用いた遠
心圧縮機の性能特性曲線を示すグラフ。
7 is a graph showing performance characteristic curves of a centrifugal compressor using various discharge pipes by the experimental apparatus of FIG.

【図8】同じく他の遠心圧縮機を用いた実験の性能特性
曲線を示すグラフ。
FIG. 8 is a graph showing a performance characteristic curve of an experiment using another centrifugal compressor.

【符号の説明】[Explanation of symbols]

1 実験装置 2 吐出管 3 遠心式ターボ機械 3a 羽根車 3b 吐出口 4 タービン 5 送気調節装置 6 絞り弁 8 渦巻室 8c 吸込口 9 吸込管 21,22,23 整流板 W 圧縮空気 1 Experimental Device 2 Discharge Pipe 3 Centrifugal Turbomachine 3a Impeller 3b Discharge Port 4 Turbine 5 Air Supply Control Device 6 Throttle Valve 8 Whirlpool Chamber 8c Suction Port 9 Suction Pipe 21, 22, 23 Rectifier Plate W Compressed Air

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 遠心式ターボ機械(3)の渦巻室(8)
出口に接続される吐出管(2)の内周面側に、流体の渦
流を規制する内向きの整流板(21),(22),(2
3)を設けたことを特徴とする遠心式ターボ機械におけ
る吐出管の渦流防止装置。
1. A swirl chamber (8) of a centrifugal turbomachine (3)
On the inner peripheral surface side of the discharge pipe (2) connected to the outlet, the inward flow straightening plates (21), (22), (2) that restrict the vortex flow of the fluid.
3) is provided, a device for preventing vortex flow of a discharge pipe in a centrifugal turbomachine.
【請求項2】 吐出管(2)にその内部を放射状に仕切
る整流板(21)を設けた請求項1の遠心式ターボ機械
における吐出管の渦流防止装置。
2. A vortex flow preventer for a discharge pipe in a centrifugal turbomachine according to claim 1, wherein the discharge pipe (2) is provided with a straightening plate (21) for radially partitioning the inside thereof.
JP5199132A 1993-07-16 1993-07-16 Device for preventing swirl in delivery pipe of centrifugal turbo machinery Pending JPH0735091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199132A JPH0735091A (en) 1993-07-16 1993-07-16 Device for preventing swirl in delivery pipe of centrifugal turbo machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199132A JPH0735091A (en) 1993-07-16 1993-07-16 Device for preventing swirl in delivery pipe of centrifugal turbo machinery

Publications (1)

Publication Number Publication Date
JPH0735091A true JPH0735091A (en) 1995-02-03

Family

ID=16402681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199132A Pending JPH0735091A (en) 1993-07-16 1993-07-16 Device for preventing swirl in delivery pipe of centrifugal turbo machinery

Country Status (1)

Country Link
JP (1) JPH0735091A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739352B1 (en) 2003-04-15 2004-05-25 General Motors Of Canada Limited Self-piercing radiator drain valve
JP2007534895A (en) * 2003-05-12 2007-11-29 株式会社堀場製作所 rectifier
JP2010151126A (en) * 2008-11-21 2010-07-08 Hitachi Plant Technologies Ltd Centrifugal compressor and method for designing the same
WO2017138035A1 (en) * 2016-02-09 2017-08-17 三菱重工コンプレッサ株式会社 Gas expander
KR102317907B1 (en) * 2021-06-07 2021-10-28 (유)일도엔지니어링 Turbulence reduction type disaster prevention submersible pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222606A (en) * 1983-05-31 1984-12-14 Osaka Gas Co Ltd Vibration preventive method for fluid conveyor pipe
JPH0367097A (en) * 1989-05-26 1991-03-22 Taiheiyo Kiko Kk Impeller for turbo pump for water-jet propeller and turbo pump provided with same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222606A (en) * 1983-05-31 1984-12-14 Osaka Gas Co Ltd Vibration preventive method for fluid conveyor pipe
JPH0367097A (en) * 1989-05-26 1991-03-22 Taiheiyo Kiko Kk Impeller for turbo pump for water-jet propeller and turbo pump provided with same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739352B1 (en) 2003-04-15 2004-05-25 General Motors Of Canada Limited Self-piercing radiator drain valve
JP2007534895A (en) * 2003-05-12 2007-11-29 株式会社堀場製作所 rectifier
JP4658059B2 (en) * 2003-05-12 2011-03-23 株式会社堀場製作所 rectifier
JP2010151126A (en) * 2008-11-21 2010-07-08 Hitachi Plant Technologies Ltd Centrifugal compressor and method for designing the same
WO2017138035A1 (en) * 2016-02-09 2017-08-17 三菱重工コンプレッサ株式会社 Gas expander
US10767508B2 (en) 2016-02-09 2020-09-08 Mitsubishi Heavy Industries Compressor Corporation Gas expander
KR102317907B1 (en) * 2021-06-07 2021-10-28 (유)일도엔지니어링 Turbulence reduction type disaster prevention submersible pump

Similar Documents

Publication Publication Date Title
US7775759B2 (en) Centrifugal compressor with surge control, and associated method
EP1566549B1 (en) Compressor
US8287233B2 (en) Centrifugal compressor with a re-circulation venturi in ported shroud
US7942625B2 (en) Compressor and compressor housing
US7083379B2 (en) Compressor
US7229243B2 (en) Compressor
JP4636287B2 (en) Turbine wheel of exhaust gas turbocharger
US9140267B2 (en) Compressor
US20050263199A1 (en) Flow laminarizing device
JP2975008B2 (en) Free rotor
EP3536972B1 (en) Centrifugal compressor and turbocharger
US20150285134A1 (en) Compressor stage of a turbocharger with flow amplifier
JP2006336558A (en) Multiblade fan for air-cooled internal combustion engine
US11808283B2 (en) Turbocharger having adjustable-trim centrifugal compressor including air inlet wall having cavities for suppression of noise and flow fluctuations
JPH11117898A (en) Turbo machine
JP2012149588A (en) Controller for internal combustion engine
JPH0735091A (en) Device for preventing swirl in delivery pipe of centrifugal turbo machinery
JP5656164B2 (en) Turbo pump
EP0044564A1 (en) Turbo compressor having a surge suppressing arrangement
JP2008286039A (en) Supercharger
JP3145622B2 (en) Fluid machinery with variable guide vanes
JPH04301200A (en) Control method of surging of fluid machinery
JP5747472B2 (en) Turbo compressor
Messele et al. Assessing the performance of three different type of diffusers for a centrifugal compressor applications
JP3095210B2 (en) Fluid machinery with variable guide vanes