JPS6247974B2 - - Google Patents

Info

Publication number
JPS6247974B2
JPS6247974B2 JP14455583A JP14455583A JPS6247974B2 JP S6247974 B2 JPS6247974 B2 JP S6247974B2 JP 14455583 A JP14455583 A JP 14455583A JP 14455583 A JP14455583 A JP 14455583A JP S6247974 B2 JPS6247974 B2 JP S6247974B2
Authority
JP
Japan
Prior art keywords
rotor
wall
channel
collection surface
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14455583A
Other languages
Japanese (ja)
Other versions
JPS6039414A (en
Inventor
Susumu Kawabata
Hiroshi Niimi
Tetsuzo Inoe
Isao Watanabe
Noriaki Myamoto
Masanobu Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Daiwa Boseki KK
Toyota Central R&D Labs Inc
Original Assignee
Daiwa Boseki KK
Toyota Central R&D Labs Inc
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK, Toyota Central R&D Labs Inc, Toyoda Jidoshokki Seisakusho KK filed Critical Daiwa Boseki KK
Priority to JP14455583A priority Critical patent/JPS6039414A/en
Priority to DE19843427811 priority patent/DE3427811A1/en
Priority to CH368884A priority patent/CH670259A5/de
Publication of JPS6039414A publication Critical patent/JPS6039414A/en
Publication of JPS6247974B2 publication Critical patent/JPS6247974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/10Rotors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/38Channels for feeding fibres to the yarn forming region

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 この発明はロータ式オープンエンド精紡機にお
ける紡糸装置に関するものである。 従来技術 一般にロータ式オープンエンド精紡機において
は第1図に示すように、スピニングユニツト1の
供給口2から供給されたスライバ3がフイードロ
ーラ4とプレツサ5との共同作用によりコーミン
グローラ6へ輸送され、該コーミングローラ6に
よりバラバラに開繊されて葉カス、実カス等のご
みが排出口7から排出された後、開繊された繊維
はロータ8内の負圧に基づいて搬送チヤンネル9
内に生じる空気流によりロータ8内に送り込まれ
る。ロータ8内に送り込まれた繊維は高速回転す
るロータ8の作用により生じるロータ8内の旋回
気流に乗つてロータ8の内壁面8aに付着した
後、最大内径部に形成された繊維集束溝10に向
かつて滑動して該繊維集束溝10でリボン状に集
束され、ロータ8の回転によつて加撚されながら
ネーブル11の糸引出し孔12を経て引出しロー
ラ13によつて引出され巻取りローラ14によつ
てパツケージ15に巻き取られる。 この種の従来装置において、ロータ8に対する
空気の出入りについて考えると、開繊された繊維
をロータ8内へ輸送するために不可欠な高速空気
流の発生方法として、第1図などに示すように排
気孔21をもつた自己排気方式がある。この自己
排気方式はロータ8の回転によつて生じる遠心力
の作用により該排気孔21によりロータ8内の空
気がロータ8外へ排出され、ロータ8内が負圧に
なることによつてチヤンネル9及び糸引出し孔1
2を通つてロータ8内へ空気が流入する。一方、
第1図とは異なり排気孔21をもたない強制排気
方式がある(第8図)。この方式はサクシヨンブ
ロアを使用することによつて、チヤンネル9を有
する開繊装置1のボス部19とロータ8の入口間
の環状の間隙よりロータ8内の空気を吸い出すた
め、ロータ8内が負圧になりチヤンネル9及び糸
引出し孔12を通つてロータ8内へ空気が流入す
る。又、これら自己排気方式及び強制排気方式を
組み合わせた併用方式がある。 いずれの方式においてもロータ8内の負圧に基
づいてチヤンネル9内に生じる空気流によりロー
タ8内に送り込まれた繊維は、高速回転するロー
タ8の作用により生じるロータ8内の旋回気流に
乗つてロータ8の内壁面8aに付着する。ここで
ロータ8内の旋回流とチヤンネル9内を流れる気
流の速さについて比べると、ロータ8内の旋回流
は高速回転しているロータ内壁面8aにひきづら
れて生じる随伴気流であるので、ロータ内壁面8
a近傍は非常に速く内壁面8aから離れるほど遅
くなつている。一方チヤンネル9内を流れる空気
流はコーミングローラ6の周速(20〜30m/s)
以上のかなりの速さ持つてロータ8内へ流入して
おり、従来装置においてはチヤンネル9の出口と
ロータ内壁面8aとの距離が遠く、ロータ8内の
旋回流が遅いところにチヤンネル9の出口があつ
たために、ロータ8内へ入つた空気流及び繊維
は、ロータ8内へ入つて急激に拡がるとともに減
速し、繊維の先端部が折れ曲つたり、又チヤンネ
ル9の出口をロータ内壁面8aに近接させて配設
してもチヤンネル9の出口付近の流れを乱したり
して、先端部が折れ曲つた状態で旋回し、フツク
繊維となつてロータ内壁面8aに付着したため
に、糸の強力が低くなるという欠点があつた。
又、強制排気方式及び自己・強制併用方式では、
ロータ8内の旋回流はロータ内壁面8aとボス部
19との間の環状の隙間を通つて外部へ排出され
るため、チヤンネル9内よりロータ8内に入つた
繊維の一部は旋回流に乗つて旋回しながらロータ
内壁面8aに付着する前にロータ8外へ排出され
るという不都合があつた。 この問題を解消するため、昭和57年9月28日公
告の実公昭57−43904号公報には第2図に示すよ
うに、ロータ8の内壁面8aを前記チヤンネル9
からロータ8内に輸送された繊維Fが大体最初に
接触する面を延長して形成される円錐の頂角αが
大きくなるように形成するとともに繊維集束溝1
0に連続する残りの壁面が作る頂角が徐々に小さ
くなるように形成したものが提案されている。こ
の装置ではロータ8内に輸送され内壁面8aに付
着した繊維Fを内壁面8aに沿つて摺動させる力
が、内壁面8a上の繊維Fに働く力とロータ8外
への排気流による流力よりも大きくなり、有効な
繊維が排気空気流とともにロータ8外へ同伴され
ることが防止される。ところがこの装置において
はチヤンネル9はロータ開放端付近の内壁面8a
に沿う方向に配設されているため、チヤンネル9
からロータ8内に送り込まれた繊維Fの到達する
位置が特定されず広い範囲に及ぶため、ロータ内
壁面8aへの繊維の着地姿勢がまちまちとなり、
繊維Fがロータ内壁面8aを摺動する過程で繊維
F相互のからみ合いが発生したり、チヤンネル9
を出た繊維Fが直接糸に衝突して巻き付いてしま
うという不都合が生じるおそれがある。又、ロー
タ内壁面8aが湾曲しており、繊維集束溝10に
近づくに従つて、内壁面8aの傾斜角がロータ8
の回転軸に直交する平面に対して大きくなるの
で、繊維の摺動力が低下し、ロータ内壁面8a上
で繊維が集まり繊維相互のからみ合いを発生させ
る不都合が生じる虞れもある。 発明の目的 この発明は前記従来の問題点を解消するために
なされたものであつて、その目的はチヤンネル出
口からロータ内へ入つた空気流を減速させないで
ロータ内壁の随伴旋回流に滑らかに合流させ、繊
維を空気流及び旋回流に真真ぐの状態で乗せるる
ことにより、その先端から速やかにロータ内壁に
付着させることによつて繊維相互のからみ合いを
防ぎ、紡止糸の太さ斑、糸欠点を減らすととも
に、糸を構成する繊維の有効繊維長を長くし、糸
の強力を向上させることができるロータ式オープ
ンエンド精紡機における紡糸装置を提供すること
にある。 発明の構成 前記の目的を達成するため本発明者らは、系統
的実験解析及び、ロータ、搬送チヤンネルの改良
を繰り返した結果、以下の知見に到達した。 ロータ式オープンエンド精紡機において最も重
要なことのひとつは開繊装置により1本1本に分
離され、空気流によりロータ内へ送り込まれた繊
維にフツクを作らず、真直ぐな姿勢のままロータ
内壁に付着させ、糸を構成する繊維の有効繊維長
を長くし、糸の強力をできる限り低下させないよ
うにすることである。それを実現するための基本
的な考え方としては、チヤンネルに近い位置に充
分な旋回流を形成するとともに、まずチヤンネル
内からロータ内へ至る空気流れにおいて、減速流
れや乱流を作らないで滑らかに上記旋回流に合流
させることで、チヤンネル内からロータ内壁面近
傍へ向けて滑らかに流れ込む増速流れに繊維を乗
せて、繊維にフツクを作らず真直ぐな状態のまま
で、しかも繊維をすみやかにロータ内壁へ近づけ
ることが必要で、これが実現できればロータ内壁
に近づいた繊維は本来有しているロータ半径方向
の慣性力に加え、ロータ内壁面近傍に流れる非常
に速い随伴気流に乗つて旋回しながら遠心力の作
用を受けてロータ内壁面に付着する。この考えを
実現するための基本構成は第1に、チヤンネル出
口に近いところにロータ内の旋回流の最も速い部
分を充分な長さに亘り設けることである。すなわ
ち開繊装置のコーミングローラの周速は20〜30
m/sと速く、チヤンネル内の空気流はコーミン
グローラの周速と同等かそれ以上の速さで流れて
おり、チヤンネル内ではロータへ近づくに従つて
断面積が狭く増速流れになるように設計されてい
るので、チヤンネル内よりロータ内へ流入する空
気流はかなりの速さを保つている。そのため、チ
ヤンネル出口に近いところにロータ内の旋回流が
できる限り速いところを設け、チヤンネルからの
空気流が急激に拡がつたり、減速しないようにす
ることが望ましい。次に、チヤンネル内よりロー
タ内へ空気が流入することによつてチヤンネル出
口付近一帯に乱流をつくらないことが必要であ
る。このことを実現するために、乱流ができる理
由を考えると、チヤンネル内へ流入する空気が滑
らかにロータ内の旋回流に合流すれば問題ないの
であるが、チヤンネル出口をロータ内壁面に必要
以上に近接させて配設した場合、チヤンネル内か
らロータ内へ流入する空気がロータ内壁面に激し
く衝突してはね返り、チヤンネル出口付近一帯に
乱流を作ることとなり、ロータ内へ流入する繊維
をその乱流に巻き込み、一部はロータ外へ排出さ
せたり、フツク繊維となつてロータ内壁に付着
し、糸の強力を低下させる原因となる。 上述のように、チヤンネルからの空気流がロー
タ内壁へ衝突したり、必要以上に減速しないで滑
らかにロータ内の随伴旋回流に合流させるために
は、繊維が最初にロータに捕えられる捕集面のロ
ータ軸方向の長さがある程度以上必要であり、か
つロータ内壁とチヤンネル出口との距離を近接し
て一定の範囲内でおさめる必要があることが判明
した。この距離の範囲は、ロータの回転によつて
形成される旋回流の厚さ及び速度分布、チヤンネ
ル出口における空気流の速度及びその後の減速度
合によつて決定される。 本発明者等は、上述の知見に基づき本発明に到
達した。 本発明のロータ式オープエンド精紡機における
紡糸装置は、円錐形内壁面の小径部に形成した所
定の長さを有し、回転軸に直交する平面に対して
小さな角度を有する直線状捕集面と、大径部に形
成した回転軸に直交する平面に対して大きな角度
を有する直線状滑動面とを有するロータと、捕集
面に指向させるとともに、捕集面までの距離が近
接した所定の範囲内におさまるように出口部を形
成した搬送チヤンネルとから成る。 上述の構成より成る本発明装置は、ロータ内壁
において直線状滑動面に対してロータ軸に直交す
る平面に対して小さな角度を有するる直線状捕集
面を形成することにより、搬送チヤンネル出口部
付近にロータの回転に伴う捕集面による随伴旋回
流を有効に近づけるとともに、捕集面が所定の長
さを有することにより搬送チヤンネル出口部から
の空気流及び繊維を滑らかに合流するに足るロー
タ軸方向の長さにわたり予め捕集面により随伴旋
回流を形成するとともに、旋回流に乗つた繊維の
殆どを捕集面に付着できるようにするものであ
る。 さらに、本発明装置は、搬送チヤンネルの出口
部を前記捕集面に指向させるとともに、捕集面に
対して搬送チヤンネルの出口部からの空気流が激
しく衝突するほどには近くなく、かつ拡がつた
り、減速する程には遠くない所定範囲内の位置に
配設したので、搬送チヤンネルの出口部からの空
気流がロータ内壁の捕集面により形成される随伴
旋回流に滑らかに合流することにより、搬送チヤ
ンネル内を空気流とともに搬送された繊維が搬送
チヤンネル出口部からロータ内壁の捕集面に向か
う空気流及びロータ内壁の捕集面が形成する随伴
旋回流に真直ぐな状態で乗ることにより、繊維が
搬送チヤンネル出口部で本来有していたロータ半
径方向の慣性力に加え、ロータの回転に伴う随伴
旋回流に乗つて旋回する際に作用にする遠心力に
より、速やかにロータ内壁捕集面に付着させるも
のである。 発明の効果 従つて、本発明装置は、繊維の折れ曲がりに起
因するフツク繊維の発生や、繊維相互のからみ合
いを防止して紡出糸の太さ斑、糸欠点を減少させ
るとともに、糸を構成する繊維の有効繊維長を長
くし、糸の強力を向上させるという効果を奏す
る。 本発明の態様 次に本発明の態様について説明する。本発明の
第1の態様のロータ式オープンエンド精紡機にお
ける紡糸装置は、前記搬送チヤンネルの出口部を
ロータ内壁の捕集面のロータ軸方向のほぼ中央位
置に指向させるとともに、搬送チヤンネルの出口
部の中心軸上の前記ロータ内壁の捕集面までの距
離lが次に示す範囲内(Lは繊維長) (1/20)L≦l≦L に収まるように配置するものである。上述の構成
より成る本発明の第1の態様の紡糸装置は、本発
明の作用効果を一層顕著なものにする。 本発明の第2の態様のロータ式オープンエンド
精紡機における紡糸装置は、前記ロータ内壁の捕
集面の回転軸に直交する平面に対してなす角度θ
11を30゜≦θ11≦60゜とし、ロータ内壁の滑動面
の回転軸に直交する平面に対してなす角度θ12
60゜≦θ12≦80゜とするとともに、前記捕集面の
ロータ軸方向長さh2をロータ開放端から底面まで
のロータ軸方向長さh1に対して次の関係 1/4≦h2/h1≦1/1.5 を満足するようにしたものである。 本第2の態様の紡糸装置は、ロータ内壁の捕集
面の長さを最適にするものである。すなわち、本
第2の態様において、作用効果を有効に生かすた
めには、捕集面の長さを十分長く保つことが必要
となる。すなわち、捕集面が短かいと搬送チヤン
ネル内よりロータ内へ流入する空気流を合流させ
るに足る旋回流が形成されないとともに、空気流
の一部は捕集面に付着せず直接滑動面へ向けて流
入するため、前記作用効果が発揮されなくなる。
この意味から搬送チヤンネル内よりロータ内へ流
入する空気の大部分が捕集面に向かつて流入する
ように、捕集面の長さを十分長くする。しかし、
捕集面を長くとり過ぎると、ロータ最大内径を一
定に保つてロータを形成するために、滑動面の角
度θ12(第3図参照)が大きくなり過ぎ、摺動力
低下による弊害が生じるおそれがあり望ましくな
い。第5図に示すように捕集面の長さを実験によ
り調べると、捕集面の長さをロータ軸方向の長さ
で表現し、捕集面のロータ軸方向長さをh2、ロー
タ開放端より繊維集束溝までのロータ軸方向長さ
をh1とするとき、h2/h1の比が1/4より1/
1.5の範囲にあることが適切であることがわかつ
た。この捕集面の長さは本発明において、重要な
要件の1つである。本発明の第2の態様の作用効
果は自己及び強制の排気方式によらず有効であ
る。 又、本第2の態様においては、捕集面の角度θ
11を実質的に30゜からら60゜と小さい範囲にする
ため、捕集面の繊維摺動力が大きく、捕集面に付
着した繊維が強制排気方式及び自己・強制併用方
式で生じるロータ開放端よりロータ外へ排出され
る空気の影響を受けて、ロータ内壁面より離れ、
ロータ外へ空気とともに排出されることはない。
さらに捕集面の角度θ11を小さくするため、ロー
タ開放端付近のロータ捕集面とボス部とでできる
環状の隙間はロータ開放端へ向かうに従つて急激
に狭くなる関係にあり、搬送チヤンネル内よりロ
ータ内へ送り込また繊維がロータ外部へ向かう流
れに乗つてロータ開放端へ向けて飛走したとして
も該環状の隙間がロータ開放端へ向けて急激に狭
くなつていることから、繊維が捕集面に付着する
確率が高く、ロータ外への繊維の排出を防止する
効果を奏する。 本発明の第3の態様のロータ式オープンエンド
精紡機における紡糸装置は、前記第2の態様にお
いて前記搬送チヤンネル出口部よりロータ内へ流
入する主流の中心軸線とロータ内壁の捕集面との
なす角βを次の範囲内5゜<β<40゜にするもの
である。本発明者等は、搬送チヤンネル出口から
の空気流の中心流線とロータ内壁の捕集面とのな
す角の最適範囲を把握するため、搬送チヤンネル
の形成角度、搬送チヤンネルの出口部を平行に形
成した場合の長さを色々変えて実験を行つた結
果、望ましい空気流の形成範囲として上述の範囲
に到達したのである。 ここで、角度βの定義について具体的に説明す
る。第3図に示すような直線的なチヤンネル形状
の場合には、搬送チヤンネルを流れる空気流の中
心流線は、実質的に搬送チヤンネルの中心軸と同
じと考えることができ、前記角度βは搬送チヤン
ネルの中心軸とローラの内壁の捕集面とのなす角
度とみなす。また、第6図に示すように搬送チヤ
ンネル9の出口部がロータ8の回転軸に直交する
平面とほぼ平行となるように屈曲させてある場合
は、その平行部の流さが数mm以内であれば、搬送
チヤンネル9内を流れる空気流の中心流線は、平
行部で若干平行に曲げられるが、出口部を出ると
ころでは前記屈曲部でほとんど屈曲することなく
屈曲平行部以前の搬送チヤンネルの角度に沿う角
度でロータ内へ流入するので、この場合は搬送チ
ヤンネルの屈曲前のチヤンネルの中心軸とロータ
内壁の捕集面とのなす角度をβとみなすこともで
きる。さらに、第7図及び第8図に示すように搬
送チヤンネル9の出口をボス部19の側面に開口
する代わりに、円板状のセパレータ22を設け、
セパレータ22の上面と対向する位置に出口部を
設ける場合で、搬送チヤンネル9の出口部の位置
がセパレータ22の外周部付近に対向するように
設けてある場合には、通路面積が拡大するため平
行に屈曲される変向効果が弱められ、第6図と同
様に搬送チヤンネル出口部が若干の長さだけ屈曲
しているものとみなすことができ、この場合の角
度βは第6図の説明と同様な定義とみなすことが
できる。 本第3の態様の紡糸装置は、搬送チヤンネル出
口部の中心軸とロータ内壁の捕集面とのなす角β
を小さな最適範囲にして、搬送チヤンネル出口部
からの空気流の捕集面への衝突、それに伴う反射
流の発生を防止して、搬送チヤンネル出口部付近
の乱流の発生を防止するものである。すなわち、
搬送チヤンネル内よりロータ内へ流入する空気流
は、ロータ内壁面に対して小さな角度で流入する
ため、チヤンネル出口方向へはね返つてチヤンネ
ル出口付近一帯に乱流を形成することはなく、ロ
ータ内部方向へはね返つてロータ内の旋回流に合
流するようになり、繊維を折り曲げることなく搬
送チヤンネル内よりロータ内壁近傍へ速やかに近
づけ、ロータ内壁の捕集面に付着させる効果を持
つている。 本発明の第4の態様のロータ式オープンエンド
精紡機における紡糸装置は、上記第3の態様にお
いて前記搬送チヤンネル出口部の中心軸上の前記
ロータ内壁の捕集面までの距離lを次の範囲内 (1/3)L≦l≦(1/2)L にするものである。 本第4の態様は、搬送チヤンネル出口部と対向
する内壁面との距離を平均繊維長の1/2以下にし
たので、繊維の先端がロータ内壁の捕集面に付着
した時点から繊維の先端はロータ周速と同じ速さ
で動き、一方繊維の後端側はまだチヤンネル内に
あつて、繊維の先端部と後端部の速度差が大きい
ことにより、繊維は一層真直に伸ばさされてロー
タ内壁に付着する。 本発明の第5の態様のロータ式オープンエンド
精紡機における紡糸装置は、第1の態様におい
て、前記ロータ内壁の小径部に形成された捕集面
と大径部に形成された滑動面とは、半径方向へ延
びる壁で形成された段差面を介して結合するよう
に形成したものである。 本第5の態様は小径部に形成された捕集面に付
着の繊維がロータの最大内径部に向けて摺動する
際、繊維後端が捕集面に付着している間に、段差
面を越えて繊維先端が捕集面より半径の大きい滑
動面に接し、捕集面と滑動面との半径差に基づく
大きな遠心力の差により急激に繊維先端が引張ら
れることにより、繊維の真直性が増すものであ
る。 本発明の第6の態様のロータ式オープンエンド
精紡機における紡糸装置は、第4の態様において
前記ロータの内壁面の最大内径部に回転軸に直交
する平面に対して小さな角度を有する直線状の繊
維集積面を前記滑動面に連続して形成するもので
ある。 本第6の態様は第4の態様に加えて、直線状の
繊維集積面を付加するものであるため、上述の第
2態様から第5の態様の作用効果を奏する上に、
本第6の態様特有の作用効果を奏する。 上述の第3の態様の作用効果を奏するためのチ
ヤンネルからの空気流の中心流線とロータ内壁面
とのなく角度βを実験的に調べると、5゜〜40゜
が適していることがわかつた。本第6の態様にお
いて、この数値を搬送チヤンネル及びロータの形
状におきかえて考えることにする。第3図に示す
ように、搬送チヤンネルの中心軸とロータ回転軸
に直交する面とのなく角度をθ、ロータ開放端
付近の円錐面すなわち捕集面とロータ回転軸に直
交する面とのなす角度θ11、又、第3図を上より
ながめロータを平面的な円とみなしたときに搬送
チヤンネルの中心軸の位置は、繊維集束溝の最大
内径Rmに対し通常1/3からら2/3Rmの距離離れ
たところを通つてロータ内へ流入する関係にあ
る。これらの位置関係を考慮するとき、チヤンネ
ル中心軸を含む平面でロータを軸方向と平行に縦
割りした断面内において、チヤンネル中心軸とロ
ータ内壁面とのなす角度βを5゜〜40゜の範囲に
するためには、搬送チヤンネルの中心軸の位置は
ほぼ1/2Rmにあつて、θ=25゜の条件におい
ては、ロータ開放端付近の捕集面の角度θ11が30
゜から60゜、望ましくは35゜より55゜の範囲とな
る。 このように角度θ11が小さいので、ロータ内壁
面の形状を繊維の捕集作用と繊維を集束溝まで滑
動させる滑動作用とを持つた一つの円錐面で構成
すると、チヤンネルを有するボス部の直径に比し
てロータ内径が非常に大きくなり、紡出中の糸張
力の増大により紡出条件がせばめられる不都合が
生じる。又ロータ内径を大きくしない場合はボス
径が小さくなつてチヤンネルの断面積が小さくな
りチヤンネル内を流れる空気流が極端に減少し、
チヤンネルよりロータ内へ繊維を送り込むことが
実質的に不可能となる。そのため、角度θ11を小
さくし理想的なロータ形状とするためには、ロー
タ内壁面の形状をロータ開放端付近の捕集面と滑
動面及び繊維集束溝の3つの直線で構成された円
錐面で構成することが最も適切である。そしてチ
ヤンネルの中心軸と捕集面とのなす角度βを5゜
〜40゜の範囲にすることによつて、捕集面に近接
させて配設されたチヤンネル内よりロータへ送り
込まれた繊維は先端が速やかに捕集面に付着し、
真直に伸ばされて後端部も捕集面に付着すること
となり、紡出糸の太さ斑、糸欠点を減らすことが
でき、糸強力を向上させることができる。 実施例 次に本発明を具体化した実施例について第3図
を用いて説明する。本実施例は上述の第1態様な
いし第5の態様全てに属し、第1図で示す従来装
置の構成と基本的には同じであり、ロータ形状及
び搬送チヤンネルのみが異なる。ロータ形状を第
3図に示す。本実施例のロータ形状は第3図に示
すように、その内壁面がチヤンネル9からロータ
8内に送り込まれた開繊繊維を付着させるための
捕集面16と、該捕集面16に付着した開繊繊維
を最大内径部に形成された繊維集束溝10まで導
く滑動面17及び繊維集束溝10の3つの円錐面
からなつている。チヤンネル9の中心軸を含むロ
ータ回転軸に平行な平面でロータを縦割りした断
面内において、チヤンネル9の中心軸と捕集面1
6とのなす角度βが22゜となるようにチヤンネル
9の中心軸とロータ8の回転軸に直交する平面と
のなす角度θを25゜とし、捕集面16がロータ
8の回転軸に直交する平面となす角度θ11を50゜
とした。又捕集面16の長さを十分長く保つた
め、ロータ開放端から繊維集束溝10までのロー
タ軸方向長さh1を10.5mm、捕集面16のロータ軸
方向長さh2を4.8mmとして、h2/h1の比を約0.46に
設定した。さらに、チヤンネル9の中心軸を延長
して捕集面16に到達する位置とチヤンネル9の
出口端との距離を平均繊維長の1/2以下となるよ
うに、ロータ8の開放端に入り込んだボス部19
の側面にチヤンネル9の出口端が開口され、チヤ
ンネル9の中心軸を延長したとき捕集面に到達す
る位置が捕集面16のほぼ中央になるようにチヤ
ンネル9の出口端が設けられている。ボス部19
の中央には糸Yを引き出すための糸引出し孔12
を有するネーブル11が配設されている。なおロ
ータ8の底部20には排気孔21が形成されてい
る。 次に前記のように構成された装置の作用につい
て説明する。さて、コーミングローラ6によつて
ばらばらに開繊された繊維F(代表して一本だけ
示す)はチヤンネル9によりロータ8内に空気流
とともに送り込まれ、捕集面16、滑動面17を
経て繊維集束溝10に集束され、ロータ8の回転
によつて加撚されて糸Yとなり糸引出し孔12か
ら引き出されてパツケージに巻き取られる。チヤ
ンネル9の出口端から捕集面16までの距離が平
均繊維長の1/2以下となつておりチヤンネル9内
よりロータ8内へ流入する空気流が捕集面16に
激しく衝突することなく滑かに流入し、繊維を捕
集面近傍に近づけるので、繊維は捕集面近傍の随
伴気流の影響を受け旋回し、遠心力の影響を受け
ることによつて繊維Fの先端はすぐに捕集面16
と接触し、ロータ8とともに回転運動をしようと
する。一方、繊維Fの後端はこのときまだチヤン
ネル9内にあるので、先端がロータ8とともに移
動するに従い繊維Fはチヤンネル9の出口のエツ
ジ部に接触しながらチヤンネル9から出ていく。
このため繊維Fは充分な引き伸ばし作用を受けて
真直な状態で捕集面16に付着し、滑動面17上
を滑動して繊維集束溝10に集束されるので糸Y
を構成する繊維Fの有効繊維長が長くなるる。本
実施例では綿番手20Sの綿糸の強力がリー強力
で表わすと46Kgであり、第1図に示す従来装置で
は、ロータ内壁面8aの傾斜角74゜のときにリー
強力40.1Kgであるので本実施例の効果が大きいこ
とが実証されている(下の表を参照のこと)。糸
質以外にロータ開放端からの繊維の排出がないこ
とも確認されている。 その他同様な実施例で捕集面の角度θ11と捕集
面の長さh2を変更して実験した結果について、第
4図と第5図に示す。捕集面16とチヤンネル9
の中心軸とのなす角度β及び捕集面16の長さに
は適値があることが認められる。
TECHNICAL FIELD This invention relates to a spinning device for a rotor-type open-end spinning frame. Prior Art Generally, in a rotor-type open-end spinning machine, as shown in FIG. 1, a sliver 3 supplied from a supply port 2 of a spinning unit 1 is transported to a combing roller 6 by the joint action of a feed roller 4 and a presser 5. After the fibers are spread apart by the combing roller 6 and garbage such as leaf waste and fruit waste is discharged from the discharge port 7, the spread fibers are transferred to a conveyance channel 9 based on the negative pressure inside the rotor 8.
The air flow generated within the rotor 8 is fed into the rotor 8. The fibers fed into the rotor 8 adhere to the inner wall surface 8a of the rotor 8 by riding the swirling airflow within the rotor 8 generated by the action of the rotor 8 rotating at high speed, and then enter the fiber focusing groove 10 formed at the maximum inner diameter part. The fibers slide toward each other and are bundled into a ribbon in the fiber focusing groove 10, and are twisted by the rotation of the rotor 8, passed through the yarn pull-out hole 12 of the navel 11, and pulled out by the pull-out roller 13 and sent to the take-up roller 14. It is then wound up into the package 15. In this type of conventional device, when considering the flow of air into and out of the rotor 8, exhaust air as shown in Fig. There is a self-exhaust system with holes 21. In this self-exhaust system, the air inside the rotor 8 is discharged to the outside of the rotor 8 through the exhaust hole 21 due to the action of centrifugal force generated by the rotation of the rotor 8, and the inside of the rotor 8 becomes negative pressure, thereby creating a channel 9. and thread pull-out hole 1
Air flows into the rotor 8 through 2. on the other hand,
There is a forced exhaust system that does not have an exhaust hole 21 unlike the one shown in FIG. 1 (FIG. 8). This method uses a suction blower to suck out the air inside the rotor 8 from the annular gap between the boss 19 of the opening device 1 having the channel 9 and the inlet of the rotor 8. A negative pressure is created and air flows into the rotor 8 through the channel 9 and the thread pull-out hole 12. There is also a combination method that combines these self-exhaust methods and forced exhaust methods. In either method, the fibers fed into the rotor 8 by the airflow generated in the channel 9 based on the negative pressure in the rotor 8 ride on the swirling airflow in the rotor 8 generated by the action of the rotor 8 rotating at high speed. It adheres to the inner wall surface 8a of the rotor 8. Here, when comparing the speed of the swirling flow inside the rotor 8 and the speed of the airflow flowing inside the channel 9, the swirling flow inside the rotor 8 is an accompanying airflow generated by being drawn by the rotor inner wall surface 8a which is rotating at high speed. Rotor inner wall surface 8
It is very fast near a and becomes slower as it moves away from the inner wall surface 8a. On the other hand, the air flow flowing in the channel 9 has a circumferential speed of the combing roller 6 (20 to 30 m/s).
In the conventional device, the distance between the outlet of the channel 9 and the inner wall surface 8a of the rotor is long, and the outlet of the channel 9 is located at a place where the swirling flow inside the rotor 8 is slow. As a result, the air flow and fibers that entered the rotor 8 rapidly expanded and decelerated, causing the tips of the fibers to bend and the exit of the channel 9 to the rotor inner wall surface 8a. Even if the yarn is placed close to the outlet of the channel 9, the flow near the outlet of the channel 9 will be disturbed, and the tip will turn in a bent state and become hook fibers that will adhere to the rotor inner wall surface 8a. The drawback was that it was less powerful.
In addition, in the forced exhaust method and the self/forced combination method,
Since the swirling flow within the rotor 8 is discharged to the outside through the annular gap between the rotor inner wall surface 8a and the boss portion 19, some of the fibers that have entered the rotor 8 from the channel 9 enter the swirling flow. There was an inconvenience that, while riding on the vehicle, it was ejected from the rotor 8 before it attached to the inner wall surface 8a of the rotor. In order to solve this problem, the inner wall surface 8a of the rotor 8 is connected to the channel 9 as shown in FIG.
The cone is formed by extending the surface with which the fibers F transported into the rotor 8 first come into contact with each other, and the apex angle α of the cone is large.
It has been proposed that the apex angle formed by the remaining wall surface continuous to 0 becomes gradually smaller. In this device, the force that causes the fibers F transported into the rotor 8 and attached to the inner wall surface 8a to slide along the inner wall surface 8a is the force acting on the fibers F on the inner wall surface 8a and the flow due to the exhaust flow outside the rotor 8. force, which prevents useful fibers from being entrained out of the rotor 8 with the exhaust airflow. However, in this device, the channel 9 is connected to the inner wall surface 8a near the open end of the rotor.
Channel 9
Since the position of the fibers F fed into the rotor 8 is not specified and reaches over a wide range, the landing posture of the fibers on the rotor inner wall surface 8a varies,
In the process of the fibers F sliding on the rotor inner wall surface 8a, the fibers F may become entangled with each other, or the channel 9 may become entangled.
There is a possibility that the fibers F coming out of the thread directly collide with the thread and become wrapped around it. Further, the rotor inner wall surface 8a is curved, and as it approaches the fiber focusing groove 10, the inclination angle of the inner wall surface 8a becomes smaller than the rotor 8.
Since it becomes larger with respect to the plane perpendicular to the rotation axis of the rotor, the sliding force of the fibers decreases, and there is also the possibility that the fibers may gather on the rotor inner wall surface 8a and cause entanglement among the fibers. Purpose of the Invention The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to smoothly merge the air flow that enters the rotor from the channel outlet into the accompanying swirling flow on the rotor inner wall without decelerating the air flow. By placing the fibers in a straight state in the airflow and swirling flow, the fibers are quickly attached to the inner wall of the rotor from the tip, thereby preventing the fibers from becoming entangled with each other and reducing uneven thickness of the spun yarn. An object of the present invention is to provide a spinning device for a rotor-type open-end spinning frame that can reduce yarn defects, increase the effective fiber length of fibers constituting the yarn, and improve the strength of the yarn. Structure of the Invention In order to achieve the above object, the present inventors repeatedly conducted systematic experimental analysis and improvements to the rotor and the conveyance channel, and as a result, they reached the following knowledge. One of the most important things about a rotor-type open-end spinning machine is that the fibers are separated into individual fibers by the opening device and fed into the rotor by the airflow, without creating hooks, and instead remaining straight on the inner wall of the rotor. The objective is to increase the effective fiber length of the fibers that make up the yarn and to prevent the strength of the yarn from decreasing as much as possible. The basic idea to achieve this is to form a sufficient swirling flow near the channel, and to first ensure that the air flow from the channel to the rotor is smooth without creating deceleration flow or turbulence. By merging with the above swirling flow, the fibers are placed on the accelerated flow that flows smoothly from inside the channel toward the vicinity of the inner wall of the rotor, and the fibers remain straight without creating hooks, and the fibers are quickly transferred to the rotor. It is necessary to bring the fibers close to the inner wall of the rotor, and if this can be achieved, the fibers that approach the inner wall of the rotor will not only have the inherent inertia force in the radial direction of the rotor, but also spin and centrifugally ride on the very fast accompanying airflow that flows near the inner wall of the rotor. It adheres to the inner wall surface of the rotor under the action of force. The basic configuration for realizing this idea is, first, to provide a portion of the rotor with the fastest swirling flow over a sufficient length near the channel exit. In other words, the peripheral speed of the combing roller of the opening device is 20 to 30
m/s, and the air flow inside the channel is at a speed equal to or higher than the circumferential speed of the combing roller, and the cross-sectional area narrows as it approaches the rotor within the channel, resulting in an accelerated flow. By design, the airflow from the channel into the rotor remains at a considerable speed. Therefore, it is desirable to provide a location near the channel exit where the swirling flow within the rotor is as fast as possible to prevent the airflow from the channel from rapidly expanding or decelerating. Next, it is necessary to prevent turbulence from being created in the area around the channel outlet due to air flowing into the rotor from the channel. In order to achieve this, considering the reason why turbulent flow occurs, there is no problem if the air flowing into the channel smoothly merges with the swirling flow inside the rotor, but it is necessary to place the channel outlet closer to the inner wall of the rotor than necessary. If the air flowing into the rotor from within the channel collides violently with the inner wall of the rotor and bounces off, creating turbulent flow in the area near the channel exit, the turbulent flow will cause the fibers flowing into the rotor to Some of the yarn gets caught up in the flow, and some of it is discharged outside the rotor or becomes hook fibers and adheres to the inner wall of the rotor, reducing the strength of the yarn. As mentioned above, in order for the airflow from the channel to smoothly merge into the accompanying swirling flow inside the rotor without colliding with the rotor inner wall or decelerating more than necessary, the collection surface where the fibers are first captured by the rotor is necessary. It has been found that the length of the rotor in the axial direction needs to be at least a certain level, and that the distance between the rotor inner wall and the channel outlet needs to be close and within a certain range. The range of this distance is determined by the thickness and velocity distribution of the swirling flow formed by the rotation of the rotor, the velocity of the airflow at the channel exit and the subsequent deceleration rate. The present inventors have arrived at the present invention based on the above-mentioned knowledge. The spinning device in the rotor-type open-end spinning frame of the present invention has a linear collection surface having a predetermined length formed on a small diameter portion of a conical inner wall surface and having a small angle with respect to a plane perpendicular to the rotation axis. and a linear sliding surface having a large angle with respect to a plane perpendicular to the rotational axis formed in the large diameter part, and a predetermined rotor oriented toward the collection surface and close to the collection surface. and a conveying channel with an outlet formed within the range. The apparatus of the present invention having the above-mentioned configuration forms a linear collection surface having a small angle with respect to a plane perpendicular to the rotor axis with respect to the linear sliding surface on the inner wall of the rotor. The rotor shaft is designed to effectively bring the accompanying swirling flow caused by the collection surface as the rotor rotates closer to the surface of the rotor, and to smoothly merge the air flow and fibers from the conveyance channel outlet by having the collection surface have a predetermined length. An accompanying swirling flow is formed in advance by the collection surface over the length of the direction, and most of the fibers riding on the swirling flow can be attached to the collection surface. Furthermore, the device of the present invention directs the outlet of the conveyance channel toward the collection surface, and the air flow from the outlet of the conveyance channel is not so close to the collection surface that it collides violently with the collection surface, and the air flow is not spread out. The air flow from the outlet of the conveyance channel smoothly merges with the associated swirling flow formed by the collection surface of the inner wall of the rotor because it is located within a predetermined range that is not far enough to cause sagging or deceleration. As a result, the fibers conveyed along with the airflow in the conveyance channel ride in a straight state on the airflow from the conveyance channel outlet toward the collection surface of the rotor inner wall and the accompanying swirling flow formed by the collection surface of the rotor inner wall. In addition to the inertia force that the fibers originally had in the radial direction of the rotor at the exit of the conveyance channel, the centrifugal force that acts when the fibers swirl on the accompanying swirling flow accompanying the rotation of the rotor causes the fibers to be quickly collected on the inner wall of the rotor. It is attached to a surface. Effects of the Invention Therefore, the device of the present invention prevents the generation of hook fibers caused by bending of fibers and the entanglement of fibers with each other, thereby reducing uneven thickness of spun yarn and yarn defects, and improves the structure of yarn. This has the effect of increasing the effective fiber length of the fibers and improving the strength of the yarn. Aspects of the present invention Next, aspects of the present invention will be described. The spinning device in the rotor-type open-end spinning frame according to the first aspect of the present invention has the outlet portion of the conveyance channel directed to a substantially central position in the rotor axial direction of the collection surface of the inner wall of the rotor, and the outlet portion of the conveyance channel The fibers are arranged so that the distance l from the central axis of the rotor to the collection surface of the inner wall of the rotor falls within the following range (L is the fiber length) (1/20)L≦l≦L. The spinning apparatus of the first aspect of the present invention having the above-described configuration makes the effects of the present invention even more remarkable. The spinning device in the rotor-type open-end spinning frame according to the second aspect of the present invention has an angle θ formed by the collection surface of the inner wall of the rotor with respect to a plane perpendicular to the rotation axis.
11 is 30°≦θ 11 ≦60°, and the angle θ 12 made by the sliding surface of the rotor inner wall with respect to the plane perpendicular to the rotation axis is
60°≦θ 12 ≦80°, and the following relationship between the rotor axial length h2 of the collection surface and the rotor axial length h1 from the rotor open end to the bottom surface is 1/4≦h 2 /h 1 ≦1/1.5. The spinning device of the second aspect optimizes the length of the collection surface of the inner wall of the rotor. That is, in the second embodiment, in order to effectively utilize the effects, it is necessary to keep the length of the collection surface sufficiently long. In other words, if the collection surface is short, a swirling flow sufficient to merge the airflow flowing into the rotor from the conveyance channel will not be formed, and a portion of the airflow will not be attached to the collection surface and will be directed directly to the sliding surface. Therefore, the above-mentioned effects cannot be achieved.
In this sense, the length of the collection surface is made sufficiently long so that most of the air flowing into the rotor from within the conveyance channel flows toward the collection surface. but,
If the collection surface is made too long, the angle θ 12 (see Figure 3) of the sliding surface will become too large in order to form the rotor while keeping the rotor's maximum inner diameter constant, which may cause problems due to reduced sliding force. Yes, undesirable. As shown in Fig. 5, when the length of the collection surface is experimentally investigated, the length of the collection surface is expressed as the length in the rotor axial direction, and the length of the collection surface in the rotor axial direction is h 2 , When the axial length of the rotor from the open end to the fiber focusing groove is h 1 , the ratio of h 2 /h 1 is 1/4 to 1/4.
It was found that a range of 1.5 is appropriate. The length of this collection surface is one of the important requirements in the present invention. The effects of the second aspect of the present invention are effective regardless of the self or forced exhaust system. In addition, in the second aspect, the angle θ of the collection surface
11 is substantially within a small range of 30° to 60°, the fiber sliding force on the collecting surface is large, and the fibers attached to the collecting surface are generated at the open end of the rotor by forced exhaust method and self/forced combination method. Under the influence of the air discharged to the outside of the rotor, it moves away from the inner wall of the rotor,
It is not discharged outside the rotor together with the air.
Furthermore, in order to reduce the angle θ 11 of the collection surface, the annular gap formed between the rotor collection surface and the boss near the open end of the rotor is in a relationship that narrows rapidly as it goes toward the open end of the rotor. Even if the fibers fed into the rotor from the inside fly toward the open end of the rotor riding the flow toward the outside of the rotor, the annular gap narrows rapidly toward the open end of the rotor, so the fibers The fibers have a high probability of adhering to the collection surface, and are effective in preventing the fibers from being discharged to the outside of the rotor. In the spinning device of the rotor-type open-end spinning frame according to the third aspect of the present invention, in the second aspect of the present invention, the central axis of the main flow flowing into the rotor from the outlet of the conveyance channel and the collection surface of the inner wall of the rotor The angle β is set within the following range of 5°<β<40°. In order to understand the optimal range of the angle between the central streamline of the air flow from the conveyance channel outlet and the collection surface of the rotor inner wall, the inventors of the present invention set the formation angle of the conveyance channel and the outlet part of the conveyance channel parallel to each other. As a result of conducting experiments with various lengths when formed, the above-mentioned range was reached as the desired range for forming airflow. Here, the definition of angle β will be specifically explained. In the case of a straight channel shape as shown in FIG. It is regarded as the angle between the center axis of the channel and the collection surface of the inner wall of the roller. Furthermore, if the outlet of the conveyance channel 9 is bent so as to be almost parallel to the plane perpendicular to the rotational axis of the rotor 8, as shown in FIG. For example, the central streamline of the airflow flowing through the conveyance channel 9 is bent slightly parallel at the parallel portion, but when it exits the outlet, it is hardly bent at the bent portion and the angle of the conveyance channel before the bent parallel portion is changed. In this case, the angle between the central axis of the conveyance channel before bending and the collection surface of the inner wall of the rotor can be regarded as β. Furthermore, instead of opening the outlet of the conveyance channel 9 on the side surface of the boss portion 19 as shown in FIGS. 7 and 8, a disc-shaped separator 22 is provided,
In the case where the outlet section is provided at a position facing the upper surface of the separator 22, and when the outlet section of the conveyance channel 9 is provided so as to face the vicinity of the outer periphery of the separator 22, the passage area is expanded, so parallel It can be considered that the direction changing effect of bending is weakened, and the conveyance channel exit part is bent by a certain length as in FIG. 6. In this case, the angle β is as explained in FIG. It can be regarded as a similar definition. The spinning device of the third aspect has an angle β formed between the central axis of the conveyance channel outlet and the collection surface of the inner wall of the rotor.
is set to a small optimum range to prevent the airflow from the conveyance channel outlet from colliding with the collection surface and the resulting reflected flow, thereby preventing the occurrence of turbulent flow near the conveyance channel outlet. . That is,
The air flowing into the rotor from inside the conveyance channel enters at a small angle with respect to the inner wall surface of the rotor, so it does not bounce back toward the channel exit and form turbulent flow in the area around the channel exit, and the air flows inside the rotor. The fibers bounce back to the direction and join the swirling flow inside the rotor, which has the effect of quickly bringing the fibers close to the inner wall of the rotor from inside the conveyance channel without bending them, and causing them to adhere to the collection surface of the inner wall of the rotor. In the spinning device of the rotor-type open-end spinning frame according to the fourth aspect of the present invention, in the third aspect, the distance l from the central axis of the conveyance channel outlet section to the collecting surface of the rotor inner wall is within the following range. (1/3)L≦l≦(1/2)L. In the fourth aspect, since the distance between the conveyance channel outlet and the opposing inner wall surface is set to 1/2 or less of the average fiber length, the fiber tip starts to move from the time when the fiber tip attaches to the collection surface of the rotor inner wall. moves at the same speed as the circumferential speed of the rotor, while the trailing end of the fiber is still in the channel, and the large speed difference between the leading and trailing ends of the fiber causes the fiber to be stretched straighter and move closer to the rotor. Adheres to the inner wall. In the spinning device of the rotor-type open-end spinning frame according to the fifth aspect of the present invention, in the first aspect, the collecting surface formed in the small diameter part of the inner wall of the rotor and the sliding surface formed in the large diameter part are different from each other. , are formed so as to be connected via a step surface formed by a wall extending in the radial direction. In the fifth aspect, when the fibers attached to the collection surface formed in the small diameter part slide toward the maximum inner diameter part of the rotor, while the rear ends of the fibers are attached to the collection surface, the step surface Beyond this point, the fiber tip contacts a sliding surface with a larger radius than the collection surface, and the fiber tip is suddenly pulled due to the large difference in centrifugal force based on the difference in radius between the collection surface and the sliding surface, which improves the straightness of the fiber. increases. A spinning device in a rotor-type open-end spinning frame according to a sixth aspect of the present invention, in the fourth aspect, has a linear spinning device having a small angle with respect to a plane perpendicular to the rotation axis at the maximum inner diameter portion of the inner wall surface of the rotor. A fiber accumulation surface is formed continuously on the sliding surface. In addition to the fourth aspect, the sixth aspect adds a linear fiber accumulation surface, so it not only provides the effects of the second to fifth aspects described above,
Effects unique to the sixth aspect are achieved. When we experimentally investigated the angle β between the central streamline of the airflow from the channel and the inner wall surface of the rotor in order to achieve the effect of the third aspect described above, it was found that 5° to 40° is suitable. Ta. In this sixth aspect, this numerical value will be replaced with the shapes of the conveyance channel and the rotor. As shown in FIG. 3, the angle between the central axis of the conveyance channel and the plane orthogonal to the rotor rotation axis is θ 2 , and the angle between the conical surface near the open end of the rotor, that is, the collection surface, and the plane orthogonal to the rotor rotation axis. The angle θ 11 formed, and the position of the central axis of the conveyance channel when viewing Fig. 3 from above and regarding the rotor as a flat circle, is usually 1/3 to 2 of the maximum inner diameter Rm of the fiber focusing groove. The relationship is such that it flows into the rotor through a distance of /3Rm. When considering these positional relationships, the angle β between the channel center axis and the rotor inner wall surface should be in the range of 5° to 40° in a cross section of the rotor vertically divided parallel to the axial direction on a plane that includes the channel center axis. In order to achieve this, the position of the central axis of the conveyance channel should be approximately 1/2Rm, and under the condition of θ 2 = 25°, the angle θ 11 of the collection surface near the open end of the rotor should be 30
It is in the range of 60° to 60°, preferably 35° to 55°. Since the angle θ 11 is small in this way, if the shape of the inner wall of the rotor is composed of a single conical surface that has the function of collecting the fibers and the sliding function of sliding the fibers to the focusing groove, the diameter of the boss portion with the channel will decrease. The inner diameter of the rotor becomes very large compared to the conventional method, and the spinning conditions become narrower due to the increase in yarn tension during spinning. Also, if the inner diameter of the rotor is not increased, the boss diameter will become smaller and the cross-sectional area of the channel will become smaller, and the airflow flowing through the channel will be extremely reduced.
It becomes virtually impossible to feed fibers into the rotor through the channel. Therefore, in order to reduce the angle θ 11 and obtain an ideal rotor shape, the shape of the rotor inner wall surface should be a conical surface consisting of three straight lines: the collection surface near the open end of the rotor, the sliding surface, and the fiber focusing groove. It is most appropriate to consist of By setting the angle β between the central axis of the channel and the collection surface in the range of 5° to 40°, the fibers fed into the rotor from within the channel disposed close to the collection surface are The tip quickly attaches to the collection surface,
As the yarn is stretched straight, the rear end also adheres to the collecting surface, reducing uneven thickness of the spun yarn and yarn defects, and improving yarn strength. Embodiment Next, an embodiment embodying the present invention will be described with reference to FIG. This embodiment belongs to all of the above-mentioned first to fifth aspects, and is basically the same in configuration as the conventional apparatus shown in FIG. 1, with only the rotor shape and conveyance channel being different. The rotor shape is shown in Figure 3. As shown in FIG. 3, the shape of the rotor in this embodiment is such that its inner wall surface has a collection surface 16 for adhering the spread fibers sent into the rotor 8 from the channel 9, and It consists of three conical surfaces: a sliding surface 17 that guides the opened fibers to a fiber focusing groove 10 formed at the maximum inner diameter portion, and a fiber focusing groove 10. In a cross section obtained by vertically dividing the rotor along a plane parallel to the rotor rotation axis including the center axis of the channel 9, the center axis of the channel 9 and the collection surface 1
The angle θ 2 between the central axis of the channel 9 and a plane perpendicular to the rotation axis of the rotor 8 is set to 25 degrees so that the angle β between the channel 9 and the rotation axis of the rotor 8 is 25 degrees. The angle θ 11 made with the orthogonal plane was set to 50°. In order to keep the length of the collection surface 16 sufficiently long, the rotor axial length h 1 from the rotor open end to the fiber focusing groove 10 is 10.5 mm, and the rotor axial length h 2 of the collection surface 16 is 4.8 mm. As such, the ratio of h 2 /h 1 was set to approximately 0.46. Furthermore, the fibers were inserted into the open end of the rotor 8 so that the central axis of the channel 9 was extended so that the distance between the point where the fiber reached the collection surface 16 and the outlet end of the channel 9 was less than 1/2 of the average fiber length. Boss part 19
The outlet end of the channel 9 is opened on the side surface of the channel 9, and the outlet end of the channel 9 is provided so that when the central axis of the channel 9 is extended, the position at which it reaches the collection surface is approximately at the center of the collection surface 16. . Boss part 19
There is a thread pull-out hole 12 in the center for pulling out the thread Y.
A navel 11 having a diameter is provided. Note that an exhaust hole 21 is formed in the bottom portion 20 of the rotor 8 . Next, the operation of the apparatus configured as described above will be explained. Now, the fibers F (only one is shown as a representative), which have been spread apart by the combing roller 6, are sent into the rotor 8 along with the air flow through the channel 9, and pass through the collection surface 16 and the sliding surface 17, and then the fibers F are spread into pieces by the combing roller 6. The threads are focused in the focusing groove 10 and twisted by the rotation of the rotor 8 to form a thread Y, which is pulled out through the thread pull-out hole 12 and wound around a package. The distance from the outlet end of the channel 9 to the collection surface 16 is less than 1/2 of the average fiber length, so that the air flowing from the channel 9 into the rotor 8 can slide without violently colliding with the collection surface 16. As the fibers flow in and bring the fibers close to the collection surface, the fibers turn under the influence of the accompanying airflow near the collection surface, and the tip of the fiber F is immediately collected due to the influence of centrifugal force. Face 16
The rotor 8 attempts to make a rotational movement together with the rotor 8. On the other hand, since the rear end of the fiber F is still within the channel 9 at this time, as the leading end moves together with the rotor 8, the fiber F comes out of the channel 9 while contacting the exit edge of the channel 9.
Therefore, the fibers F are sufficiently stretched and adhere to the collection surface 16 in a straight state, slide on the sliding surface 17, and are focused in the fiber focusing groove 10, so that the fibers Y
The effective fiber length of the fibers F constituting becomes longer. In this example, the strength of the cotton yarn of cotton count 20S is 46 kg expressed as Lee strength, and in the conventional device shown in Fig. 1, the Lee strength is 40.1 kg when the rotor inner wall surface 8a has an inclination angle of 74 degrees. The effectiveness of the examples has been demonstrated (see table below). It has also been confirmed that there is no discharge of fibers from the open end of the rotor other than yarn. The results of experiments conducted in other similar embodiments by changing the angle θ 11 of the collection surface and the length h 2 of the collection surface are shown in FIGS. 4 and 5. Collection surface 16 and channel 9
It is recognized that there are appropriate values for the angle β between the central axis and the length of the collection surface 16.

【表】 第10図の実施例においては、捕集面16と滑
動面17とは、その間にあつてロータ8の半径方
向に延びる壁によつて形成される段差面24を介
して結合しているので、捕集面16から滑動面1
7に移行する繊維はここで急激に伸長される。す
なわち段差面24を境にして、繊維の後端は捕集
面16に付着したまま、先端は急激に径の大きく
なつた滑動面17に接するようになるため、半径
差に基づく遠心力の差により繊維は急激に引張ら
れ、伸長するのである。これにより繊維は真直状
態にされて滑動面17から繊維集束溝10へ滑動
していく。この段差面24の大きさは、ロータ8
の繊維集束溝10におけるロータ半径と比較して
1/40〜1/4の範囲であれば繊維の伸長作用の効果
が得られる。具体的には、前記ロータ半径20mmの
場合、3mmの段差面24の大きさであると有効で
あつた。 なおこの発明は前記実施例に限定されるもので
はない。例えば、第6図に示すようにチヤンネル
9の出口部付近を水平に屈曲させて、水平屈曲部
の流さが数mm以内にして、最終方向とロータ8の
回転軸心に直交する平面とのなす角θが0゜と
なるように形成しもよい。水平屈曲部の長さが短
いため、チヤンネル9内の空気流は水平屈曲部で
若干曲げられるが、最終的にはチヤンネルの形成
角度に沿つたロータ内壁に向かう空気流となる。
第7図に示すようにチヤンネル9の出口をボス部
19の側面に開口する代わりに、セパレータ22
を設けるとともにセパレータ22の上面と対向す
る位置に出口を設けてもよい。この場合Aで示す
部分を便宜上チヤンネル9の出口とみなす。さら
に第8図に示すようにロータ8の底部20の中央
に糸引出し孔12を設けたり、第9図に示すよう
にボス部19を設けずにチヤンネル9の先端をパ
イプ23で形成してもよい。又、この装置は自己
排気方式、強制排気方式、両者を組合わせた方式
のいずれの場合にも適用できる。そのうえ第10
図に示す実施例で、段差面24はロータ中心軸線
に直角な壁面で形成されている必要はなく、その
直角な面に対して上下の方向に角度をなしていて
もよい。 以上詳述したように上述の実施例によれば、チ
ヤンネルからロータ内へ入つた繊維が真直な姿勢
のまま捕集面に付着された後、滑動面上を速やか
に滑動して繊維集束溝に集束されるので糸を構成
する繊維の有効繊維長が長くなり糸強力が高くな
る。又、チヤンネルを出た繊維が捕集面の狭い範
囲に速やかに付着するので繊維相互のからみ合い
が少なくなり、糸強力の向上、太さ斑の減少、糸
欠点の減少に役立つ。さらに、糸に巻付いた繊維
が少なくなり、太さ斑が減少し、糸欠点が少なく
なるとともに、糸の風合がリング精紡糸に近くな
る。又、ロータ開放端からの繊維の排出がなくな
り、原料が全て有効に糸となるという優れた効果
を奏する。
[Table] In the embodiment shown in FIG. 10, the collection surface 16 and the sliding surface 17 are connected via a stepped surface 24 formed between them by a wall extending in the radial direction of the rotor 8. Therefore, from the collection surface 16 to the sliding surface 1
The fibers transitioning to 7 are now rapidly elongated. In other words, with the stepped surface 24 as a boundary, the rear end of the fiber remains attached to the collection surface 16, and the tip comes into contact with the sliding surface 17 whose diameter has suddenly increased, so that the difference in centrifugal force due to the difference in radius is reduced. This causes the fibers to be rapidly pulled and elongated. As a result, the fibers are straightened and slide from the sliding surface 17 to the fiber focusing groove 10. The size of this stepped surface 24 is determined by the size of the rotor 8.
compared to the rotor radius at the fiber focusing groove 10 of
If it is in the range of 1/40 to 1/4, the effect of fiber elongation can be obtained. Specifically, in the case of the rotor radius of 20 mm, it was effective that the step surface 24 had a size of 3 mm. Note that this invention is not limited to the above embodiments. For example, as shown in FIG. 6, the vicinity of the outlet of the channel 9 is bent horizontally so that the flow at the horizontal bend is within a few mm, so that the final direction and the plane perpendicular to the rotational axis of the rotor 8 are aligned. It may be formed so that the angle θ 2 is 0°. Since the length of the horizontal bent portion is short, the airflow within the channel 9 is slightly bent at the horizontal bent portion, but ultimately the airflow is directed toward the inner wall of the rotor along the forming angle of the channel.
Instead of opening the outlet of the channel 9 on the side surface of the boss portion 19 as shown in FIG.
In addition, an outlet may be provided at a position facing the upper surface of the separator 22. In this case, the portion indicated by A is regarded as the exit of the channel 9 for convenience. Furthermore, as shown in FIG. 8, the thread pulling hole 12 may be provided in the center of the bottom 20 of the rotor 8, or the tip of the channel 9 may be formed with a pipe 23 without providing the boss portion 19 as shown in FIG. good. Further, this device can be applied to any of the self-exhaust type, forced exhaust type, and a combination of both. Moreover, the 10th
In the embodiment shown in the figures, the step surface 24 does not need to be formed by a wall surface perpendicular to the rotor central axis, and may be at an angle in the vertical direction with respect to the perpendicular surface. As detailed above, according to the above embodiment, the fibers entering the rotor from the channel are attached to the collection surface in a straight posture, and then quickly slide on the sliding surface and enter the fiber collecting groove. Since the fibers are bundled, the effective fiber length of the fibers constituting the yarn becomes longer and the yarn strength increases. In addition, since the fibers exiting the channel quickly adhere to a narrow area on the collection surface, the entanglement of the fibers with each other is reduced, which helps to improve yarn strength, reduce thickness unevenness, and reduce yarn defects. Furthermore, the number of fibers wound around the yarn is reduced, thickness unevenness is reduced, yarn defects are reduced, and the texture of the yarn is similar to that of ring-spun yarn. Further, there is no discharge of fibers from the open end of the rotor, and an excellent effect is achieved in that all the raw materials are effectively turned into yarn.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロータ式オープンエンド式精紡機の断
面図、第2図は従来装置の要部断面図、第3図は
この発明を具体化した一実施例を示す要部断面
図、第4図はチヤンネル9の中心軸と捕集面との
なす角度βを変更することによる紡出糸のリー強
力の変化を示す線図、第5図は(捕集面のロータ
軸方向の長さh2)/(ロータ開放端から繊維集束
溝までのロータ軸方向長さh1)を変更することに
よる紡出糸のリー強力の変化を示す線図、第6〜
10図は変更例を示す要部断面図である。 ロータ……8、チヤンネル……9、繊維集束溝
……10、糸引出し孔……12、捕集面……1
6、滑動面……17、繊維……F、チヤンネル9
の中心軸を含む平面でロータ回転軸に平行にロー
タを縦割りしたときの断面においてチヤンネル9
からの空気流の中心流線と捕集面16とのなす角
度……β、ロータの回転軸心に直交する平面と捕
集面とのなす角度……θ11、ロータの回転軸心に
直交する平面と滑動面とのなす角度……θ12、チ
ヤンネルの最終方向とロータ回転軸心に直交する
平面とのなす角度……θ、捕集面のロータ軸方
向長さ……h2、ロータ開放端から繊維集束溝まで
のロータ軸方向長さ……h1
Fig. 1 is a sectional view of a rotor-type open-end spinning frame, Fig. 2 is a sectional view of main parts of a conventional device, Fig. 3 is a sectional view of main parts showing an embodiment of the present invention, and Fig. 4 5 is a diagram showing the change in the Lee force of the spun yarn by changing the angle β between the central axis of the channel 9 and the collection surface, and FIG. )/(rotor axial length h 1 from the rotor open end to the fiber focusing groove) Diagrams showing changes in the Lee strength of the spun yarn, 6th to
FIG. 10 is a sectional view of a main part showing a modified example. Rotor...8, Channel...9, Fiber focusing groove...10, Yarn pull-out hole...12, Collection surface...1
6. Sliding surface...17. Fiber...F. Channel 9
Channel 9 in the cross section when the rotor is vertically divided parallel to the rotor rotation axis on a plane including the central axis of
The angle between the central streamline of the airflow from the center and the collection surface 16...β, The angle between the collection surface and a plane perpendicular to the rotor's rotation axis... θ11 , Orthogonal to the rotor's rotation axis Angle between the plane and the sliding surface... θ 12 , Angle between the final direction of the channel and a plane perpendicular to the rotor rotational axis... θ 2 , Length of the collection surface in the rotor axial direction... h 2 , The axial length of the rotor from the open end of the rotor to the fiber focusing groove... h1 .

Claims (1)

【特許請求の範囲】 1 搬送チヤンネルから空気流とともに送り込ま
れる開繊繊維をロータの内壁面に付着させ、最大
内径部に設けられた繊維集束溝に集束した繊維束
を中央に配設した糸引出し孔から加撚しながら連
続的に引出すようにしたロータ式オープンエンド
精紡機において、 円錐形内壁面の小径部に形成した所定の長さを
有し、回転軸に直交する平面に対して小さな角度
を有する直線状捕集面と、大径部に形成した回転
軸に直交する平面に対して大きな角度を有する直
線状の滑動面とを有するロータと、 前記捕集面に指向させるとともに、前記捕集面
までの距離が近接した所定の範囲内におさまる様
に出口部を形成した搬送チヤンネルとから成るこ
とを特徴とするロータ式オープンエンド精紡機に
おける紡糸装置。 2 前記搬送チヤンネルの出口部はロータ内壁の
捕集面のロータ軸方向ほぼ中央位置に指向させる
とともに、搬送チヤンネルの出口部の中心軸上の
前記ロータ内壁の捕集面までの距離lが次に示す
範囲内(Lは平均繊維長)に (1/20)L≦l≦L におさまるように配置したことを特徴とする特許
請求の範囲第1項記載のロータ式オープンエンド
精紡機における紡糸装置。 3 前記ロータ内壁の捕集面の回転軸に直交する
平面に対してなす角度θ11を30゜≦θ11≦60゜と
し、ロータ内壁の滑動面の回転軸に直交する平面
に対してなす角度θ12を60゜≦θ12≦80゜とする
とともに、前記捕集面のロータ軸方向長さh2をロ
ータ解放端から底面までのロータ軸方向長さh1
対して次の関係 1/4≦h2/h1≦1/1.5 を満足するようにしたことを特徴とする特許請求
の範囲第1項記載のロータ式オープンエンド精紡
機における紡糸装置。 4 前記搬送チヤンネル出口部よりロータ内へ流
入する主流の中心流線とロータ内壁の捕集面との
なす角βを次の範囲内 5゜<β<40゜ にしたことを特徴とする特許請求の範囲第3項記
載のロータ式オープンエンド精紡機における紡糸
装置。 5 前記搬送チヤンネル出口部の中心軸上の前記
ロータ内壁の捕集面までの距離lを次の範囲内 (1/3)L≦l≦(1/2)L にしたことを特徴とする特許請求の範囲第4項記
載のロータ式オープンエンド精紡機における紡糸
装置。 6 前記ロータの内壁面の最大内径部に回転軸に
直交する平面に対して小さな角度を有する直線状
の繊維集積面を前記滑動面に連続して形成したこ
とを特徴とする特許請求の範囲第5項記載のロー
タ式オープンエンド精紡機における紡糸装置。 7 前記ロータ内壁面の小径部に形成された前記
捕集面と大径部に形成された滑動面とは、半径方
向へ延びる壁で形成された段差面を介して結合し
ていることを特徴とする特許請求の範囲第1項記
載のロータ式オープンエンド精紡機における紡糸
装置。
[Claims] 1. A yarn drawer in which the spread fibers sent along with the air flow from the conveyance channel are attached to the inner wall surface of the rotor, and the fiber bundles converged in the fiber convergence groove provided at the maximum inner diameter portion are arranged in the center. In a rotor-type open-end spinning machine that continuously pulls out the spinning frame while twisting it through a hole, it has a predetermined length formed on the small diameter part of the conical inner wall surface, and is formed at a small angle with respect to the plane perpendicular to the axis of rotation. a linear sliding surface formed in a large diameter portion and having a large angle with respect to a plane perpendicular to the rotation axis; 1. A spinning device for a rotor-type open-end spinning frame, characterized by comprising a conveyance channel having an outlet portion formed so that the distance to the collection surface is within a predetermined range close to each other. 2. The outlet portion of the conveyance channel is oriented approximately at the center of the collection surface of the rotor inner wall in the rotor axial direction, and the distance l from the central axis of the outlet portion of the conveyance channel to the collection surface of the rotor inner wall is A spinning device in a rotor-type open-end spinning frame according to claim 1, characterized in that the spinning device is arranged so that (1/20) L≦l≦L within the range shown (L is the average fiber length). . 3 The angle θ 11 formed by the collection surface of the rotor inner wall with respect to a plane perpendicular to the rotation axis is 30°≦θ 11 ≦60°, and the angle formed by the sliding surface of the rotor inner wall with respect to a plane perpendicular to the rotation axis. θ 12 is set to 60°≦θ 12 ≦80°, and the length h 2 of the collection surface in the rotor axial direction is related to the rotor axial length h 1 from the open end of the rotor to the bottom surface as follows: 1/ The spinning device in a rotor-type open-end spinning frame according to claim 1, characterized in that the spinning device satisfies 4≦h 2 /h 1 ≦1/1.5. 4. A patent claim characterized in that the angle β between the center streamline of the main flow flowing into the rotor from the outlet of the conveyance channel and the collection surface of the inner wall of the rotor is within the following range: 5°<β<40° A spinning device in a rotor-type open-end spinning frame according to item 3. 5. A patent characterized in that the distance l from the central axis of the conveyance channel outlet to the collection surface of the inner wall of the rotor is within the following range: (1/3)L≦l≦(1/2)L. A spinning device in a rotor-type open-end spinning frame according to claim 4. 6. Claim 6, characterized in that a linear fiber accumulation surface having a small angle with respect to a plane perpendicular to the rotational axis is formed at the maximum inner diameter portion of the inner wall surface of the rotor, and is continuous with the sliding surface. A spinning device in a rotor-type open-end spinning machine according to item 5. 7. The collection surface formed on the small diameter portion of the inner wall surface of the rotor and the sliding surface formed on the large diameter portion are coupled via a step surface formed by a wall extending in the radial direction. A spinning device in a rotor-type open-end spinning frame according to claim 1.
JP14455583A 1983-08-08 1983-08-08 Spinning apparatus of rotor-type open-end spinning machine Granted JPS6039414A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14455583A JPS6039414A (en) 1983-08-08 1983-08-08 Spinning apparatus of rotor-type open-end spinning machine
DE19843427811 DE3427811A1 (en) 1983-08-08 1984-07-27 Spinning apparatus in an open-end spinning machine
CH368884A CH670259A5 (en) 1983-08-08 1984-07-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14455583A JPS6039414A (en) 1983-08-08 1983-08-08 Spinning apparatus of rotor-type open-end spinning machine

Publications (2)

Publication Number Publication Date
JPS6039414A JPS6039414A (en) 1985-03-01
JPS6247974B2 true JPS6247974B2 (en) 1987-10-12

Family

ID=15364995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14455583A Granted JPS6039414A (en) 1983-08-08 1983-08-08 Spinning apparatus of rotor-type open-end spinning machine

Country Status (3)

Country Link
JP (1) JPS6039414A (en)
CH (1) CH670259A5 (en)
DE (1) DE3427811A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS274235B1 (en) * 1988-12-14 1991-04-11 Petr Blazek Device for staple fibres spinning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1710001C3 (en) * 1967-10-10 1974-03-28 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Open-end spinning device with a spinning turbine
DE1710003B1 (en) * 1967-10-28 1972-05-25 Schubert & Salzer Maschinen Open-end spinning device with spinning turbine
DE2200871A1 (en) * 1971-02-25 1972-08-31 Spinnereimaschb Karl Marx Stad Rotating spinning chamber
CH624718A5 (en) * 1977-09-30 1981-08-14 Rieter Ag Maschf
JPS5743904A (en) * 1980-08-29 1982-03-12 Toshiba Corp Manufacture of ferro-sintered part having pressure resistance

Also Published As

Publication number Publication date
CH670259A5 (en) 1989-05-31
DE3427811A1 (en) 1985-03-28
DE3427811C2 (en) 1988-02-04
JPS6039414A (en) 1985-03-01

Similar Documents

Publication Publication Date Title
US5159806A (en) Apparatus for producing spun yarns
JPH0227459B2 (en)
US3604194A (en) Fiber supply method and apparatus in an open-end spinning system utilizing airflow and centrifugal force
US4437302A (en) False twisting air nozzle
JPS6214648B2 (en)
JP2004510890A (en) Method and apparatus for producing yarns having properties similar to ring yarns
JPH01162829A (en) Air jet nozzle and method for forming rotary air layer at twisting part of said nozzle
US4336683A (en) Mechanism for the production of a wrapped yarn
JPS5988932A (en) Jet spinning apparatus
JPS6247974B2 (en)
US6789382B2 (en) Apparatus for producing a spun yarn
JP2000064130A (en) Open-end spinning machine
US4479348A (en) Apparatus for spinning fasciated yarn
JPH01139826A (en) Spinning unit of open end fine spinning frame
US4476672A (en) Air nozzle for fasciated yarn spinning
US7328569B2 (en) Arrangement for producing a spun thread from a staple fiber strand
JPS59130323A (en) Method and apparatus for spinning yarn from staple fiber in whirled air
US4640089A (en) Method and device for spinning a yarn in accordance with the open end-friction spinning principle
GB2178451A (en) Open-end spinning
EP0613508B1 (en) Method of opening fibers using a modified disperser plate
JPH0673618A (en) Spinning apparatus
JPH08500153A (en) Improved method and apparatus for open end twist spinning
JP3353896B2 (en) Sliver spinning equipment
JPS63256722A (en) Spinning process
JPH0641822A (en) Method for spinning