JPS6246927A - Production of cylindrical or columnar glass - Google Patents

Production of cylindrical or columnar glass

Info

Publication number
JPS6246927A
JPS6246927A JP18683685A JP18683685A JPS6246927A JP S6246927 A JPS6246927 A JP S6246927A JP 18683685 A JP18683685 A JP 18683685A JP 18683685 A JP18683685 A JP 18683685A JP S6246927 A JPS6246927 A JP S6246927A
Authority
JP
Japan
Prior art keywords
cylindrical
gel
sol
columnar
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18683685A
Other languages
Japanese (ja)
Inventor
Masanobu Motoki
元木 正信
Sadao Kanbe
貞男 神戸
Masahisa Ikejiri
昌久 池尻
Teiichirou Mori
森 禎一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18683685A priority Critical patent/JPS6246927A/en
Publication of JPS6246927A publication Critical patent/JPS6246927A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To produce cylindrical or columnar glass of high quality with high mass productivity by pouring sol into a cylindrical vessel to form cylindrical or columnar gel, rotating the gel at a proper rotational frequency for a prescribed time, and drying and sintering the gel. CONSTITUTION:Sol is poured into a cylindrical vessel 1, and while the vessel 1 is rotated with a motor 2, the sol is converted into gel to form cylindrical or columnar gel. This gel is rotated for a prescribed time. The rotational fre quency during the rotation of the gel is preferably regulated so that centrifugal force produced by the rotation is made lower than 500G (G is the acceleration of gravity) at the outside of the cylindrical or columnar gel. The suitable rota tion time after the gelling is 30min-100hr. Thus, the deformation of the cylindri cal or columnar gel immediately after gelling is prevented. The gel is then taken out, dried and sintered. By this method, cylindrical or columnar glass having high roundness is obtd. in a high yield without causing warping or crack ing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はグルーゲル法による円筒状または円柱状ガラス
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing cylindrical or cylindrical glass by the Grugel method.

〔発明の概要〕[Summary of the invention]

本発明はゾルを円筒形容器中に流し込みゲル化させて円
筒状または円柱状ゲルを作成した後、乾燥、焼結するこ
とによりガラス化させるゾル−ゲル法による円筒状また
は円柱状ガラスの製造方法において、ゲル化後に所定時
間回転を加えることにより、ゲル化直後の円筒状または
円柱状ゲルの変形をなくしは真円度、反り、歩留りを改
魯したものである。
The present invention is a method for manufacturing cylindrical or cylindrical glass using the sol-gel method, in which a sol is poured into a cylindrical container and gelled to create a cylindrical or cylindrical gel, which is then dried and sintered to vitrify it. By applying rotation for a predetermined period of time after gelation, deformation of the cylindrical or cylindrical gel immediately after gelation is eliminated, and roundness, warpage, and yield are improved.

〔従来の技術〕[Conventional technology]

ゾル−ゲル法によるガラスの製造方法は、高品質のガラ
スを安価に製造できるため、現在非常に注目されている
。またゾルを円筒形容器中に流し込み円筒状または円柱
状ゲルを作成した後、乾燥、焼結を行なう円筒状または
円柱状ガラスの製造方法は、特に光フアイバ用母材を安
価に製造する方法として非常に重要である。
The glass manufacturing method using the sol-gel method is currently attracting a lot of attention because it can produce high quality glass at low cost. In addition, a method for manufacturing cylindrical or cylindrical glass, in which a sol is poured into a cylindrical container to create a cylindrical or cylindrical gel, followed by drying and sintering, is particularly useful as a method for manufacturing optical fiber base materials at low cost. Very important.

なおここでゾルのゲル化したかどうかの判定はゾルをビ
ーカー等に入れておき、それを傾けてもゾルが流動しな
くなった時点で「ゲル化した」としており、本特許中「
ゲル化」の規準はこれに従っている。現在までのところ
回転ゲル化を行う際にはゾルがゲル化した時点から30
分以内に回転を止めて、円筒形容器を静置して熟成し容
器から取りはずせるようになると乾燥容器中にうつし乾
燥させる方法が通常行なわれている。方法が通常行われ
ている。
Note that to determine whether or not the sol has gelled, the sol is placed in a beaker, etc., and when the sol no longer flows even when the sol is tilted, it is considered to have "gelled."
The criteria for ``gelation'' are in accordance with this. Up to now, when performing rotational gelation, the sol has been gelatinized for 30 minutes.
The usual method is to stop the rotation within a few minutes, leave the cylindrical container to ripen, and once it can be removed from the container, place it in a drying container and dry it. method is commonly practiced.

〔発明が解決しようとする問題点及び目的〕しかし、前
述の従来技術では、ゲルはゲル化直後ではまだ柔く、得
られたゲルが重力のため変形してしまい、乾燥に移る時
点までに真円度などが悪化してしまう。またこの間の歪
が保存され、以後の乾燥、焼結の工程において円筒状ま
たは円柱状ゲルが反ってしまったり割れてしまったりす
る。このように得られる円筒状または円柱状ガラスの品
質が悪化し、歩留りが悪くなり、量産性が著しく悪化す
るという欠点があった。そこで本発明はこのような問題
点を解決するためのもの、その目的とするところは、ゲ
ル化直後の円筒状または円柱状ゲルの変形をなくし高品
質の円筒状または円柱状ガラスを量産性良く得るための
円筒状または円柱状ガラスの製造方法を提供するところ
にある。
[Problems and objects to be solved by the invention] However, in the above-mentioned conventional technology, the gel is still soft immediately after gelation, and the resulting gel deforms due to gravity, and by the time it is dried, it becomes completely soft. The roundness etc. will deteriorate. Moreover, the strain during this time is preserved, and the cylindrical or cylindrical gel may warp or crack during the subsequent drying and sintering steps. The quality of the cylindrical or cylindrical glass obtained in this manner deteriorates, the yield rate deteriorates, and mass productivity deteriorates significantly. The present invention is intended to solve these problems, and its purpose is to eliminate the deformation of cylindrical or cylindrical gel immediately after gelation, and to mass-produce high-quality cylindrical or cylindrical glass with ease. An object of the present invention is to provide a method for producing cylindrical or cylindrical glass.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の円筒状または円柱状ガラスの製造方法は、ゾル
を円筒形容器中に流し込み、ゲル化させて円筒状または
円柱状ゲル3作成した後、乾燥、焼結することによりガ
ラス化させるゾル−ゲル法による円筒状または円柱状ガ
ラスの製造方法において、ゲル化後に所定時間、回転2
加えることを特徴とする。ここで、ゾルを円筒形容器中
に流し込みゲル化させる工程は、円筒形容器中にゾルを
満たして回転させながら、あるいは静置してゲル化し、
円柱状ゲルを作成する工程あるいはゾル2円筒状容器に
流し込み回転ゲル化させて円筒状ゲルを作成し、直ちに
ゾルを流し込み回転させながら、さらに円筒状ゲルの層
を必要に応じて作成する工程を繰り返した後、直ちにゾ
ルを流し込み回転させながら、もしくは静置してゲル化
させて円筒状または円柱状のゾルを作成する工程からな
る。
The method for manufacturing cylindrical or cylindrical glass of the present invention includes pouring a sol into a cylindrical container, gelling it to create a cylindrical or cylindrical gel 3, and then drying and sintering the sol to vitrify it. In a method for producing cylindrical or cylindrical glass by a gel method, rotation 2 is performed for a predetermined period of time after gelation.
It is characterized by adding. Here, the step of pouring the sol into a cylindrical container and gelling it involves filling the cylindrical container with the sol and gelling it while rotating or leaving it to stand still.
The process of creating a cylindrical gel or the step of creating a cylindrical gel by pouring the sol 2 into a cylindrical container and turning it into a gel, and then immediately pouring the sol and rotating it to create further layers of cylindrical gel as necessary. After repeating the process, the process immediately consists of pouring the sol and gelling it while rotating or leaving it to stand still to create a cylindrical or cylindrical sol.

ゲル化後の回転数は、回転による遠心力が円筒状または
円柱状ゲルの外周において500Gより大きいと、遠心
力により円筒状ゲルが割れてしまうので望ましくない。
The number of rotations after gelation is not desirable because if the centrifugal force due to rotation is greater than 500 G on the outer periphery of the cylindrical or cylindrical gel, the cylindrical gel will break due to the centrifugal force.

ゲルは、ゲル化直後は柔いが、ある時間で急速に硬化し
、その後徐々に収縮する。この時間は、ゾルの調整の工
程で制御す゛ることかできる。円筒状または円柱状ゲル
と回転に用いた容器との間にすき間ができる程度に円筒
状または円柱状ゲルが収縮すれば、その時には円筒状ま
たは円柱状ゲルは十分に硬化しており、重力による変形
は極めて小さくなる。ゲル化後、このような状態になる
までの時間は速いもので30分[4kl  イF  :
FJ  I %  +  61 f  +−)  W4
  J−Db  1ull  ul  ##  −7−
A  →:  1     1  4y  A:りて、
ゲル化後の回転時間は30分以上が望ましく、また、1
00時間以上回転を続けても、iik産性が低下するだ
けなので、100時間以内が望ましい。
The gel is soft immediately after gelling, but quickly hardens over a certain period of time, and then gradually shrinks. This time can be controlled during the sol preparation process. If the cylindrical or cylindrical gel shrinks to the extent that a gap is created between the cylindrical or cylindrical gel and the container used for rotation, then the cylindrical or cylindrical gel has sufficiently hardened, and the gravity Deformation becomes extremely small. After gelation, it takes about 30 minutes to reach this state [4kl iF:
FJ I% + 61 f +-) W4
J-Db 1ull ul ## -7-
A →: 1 1 4y A: Rite,
The rotation time after gelation is preferably 30 minutes or more, and 1
Even if the rotation continues for more than 100 hours, the iik productivity will only decrease, so it is preferable to keep the rotation for 100 hours or less.

〔作用〕[Effect]

ゲルは、ゲル化直後は柔く変形しやすいが、ゲル化後も
引き続き回転することにより、円筒状または円柱状ゲル
の半径方向に単位時間当り均等な重力が加わるので、真
円度を悪化させることがない。従って非常に真円度の良
い円筒状または円柱状ガラスが得られる。またゲル化直
後から乾燥に至るまでのゲルが柔い間、ゲルの歪が小さ
くなるので、後の乾燥、焼結の工程で反ったり、割れた
りすることが減少し、歩留りが改善され量産性が著しく
向上する。
Immediately after gelation, the gel is soft and easily deformed, but as it continues to rotate even after gelation, an even force of gravity is applied per unit time in the radial direction of the cylindrical or cylindrical gel, which worsens the roundness. Never. Therefore, a cylindrical or cylindrical glass with very good roundness can be obtained. In addition, while the gel is soft from immediately after gelation to drying, the distortion of the gel is reduced, so it is less likely to warp or crack during the subsequent drying and sintering processes, improving yield and facilitating mass production. is significantly improved.

以上述べた如く、本発明によれば高品質の円筒状または
円柱状ガラス’E−1を産性良く得ることができる。
As described above, according to the present invention, high quality cylindrical or columnar glass 'E-1 can be obtained with good productivity.

〔実施例〕〔Example〕

以下、実施例に従って本発明の詳細な説りjする実施例
1゜ xチにシ’)’r−ト980?、[11)2N塩酸80
01、市販の微粉末シリカ500 t *金属アルコキ
シドの加水分解より作成された微粉末ゲルマニウム62
9を混合、激しく攪拌し、超音波照射、遠心分離、濾過
を行い、均質度の高いゾルを得た。このゾルに[LIN
アンモニア水を加えPH値を4.2に調整した後濾過し
、1962tnLを5c!nφX1mのテトラフルオロ
エチレン製の円筒形容器中に流し込み、管軸のまわりに
200Orpmで回転させると、60分でゲル化した。
Hereinafter, the present invention will be explained in detail according to examples. , [11) 2N hydrochloric acid 80
01, commercially available fine powder silica 500 t * fine powder germanium 62 created by hydrolysis of metal alkoxide
9 were mixed, vigorously stirred, subjected to ultrasonic irradiation, centrifugation, and filtration to obtain a highly homogeneous sol. In this sol [LIN
After adding ammonia water and adjusting the pH value to 4.2, it was filtered, and 1962tnL was 5c! The mixture was poured into a cylindrical container made of tetrafluoroethylene with a size of nφ x 1 m and rotated around the tube axis at 200 rpm to form a gel in 60 minutes.

ゲル化後も引き続き2000rpmで、30分間、1時
間。
After gelation, continue at 2000 rpm for 30 minutes and 1 hour.

3時間、5時間回転を続けた試料を作成した。比較のた
めゲル化した時点で回転を止めた試料も作成した。得ら
れた円柱状ゲルを60℃で4i1間乾燥し、得られたド
ライゲルを1200℃まで加熱してφ2.5 on X
 50 anのゲルマニウム3m01%の円柱状石英系
ガラスを得た。各100本ずつについて調査し第1表の
結果を得た。
Samples were prepared by continuing rotation for 3 hours and 5 hours. For comparison, a sample was also prepared in which the rotation was stopped when gelation occurred. The obtained cylindrical gel was dried at 60°C for 4i1 minutes, and the obtained dry gel was heated to 1200°C to form a φ2.5 on
A cylindrical quartz-based glass containing 50 ann of 3m01% germanium was obtained. The results shown in Table 1 were obtained by examining 100 of each type.

第1表 (注)各位とも100本の平均値また真円度は外周での
値(以下の実施例も同様ン 第1表より、ゲル化後も回転させることにより、真円度
、反り、歩留りとも明らかに改善されている。
Table 1 (Note) For everyone, the average value of 100 pieces and the roundness are the values at the outer periphery (the following examples are also the same). The yield has also been clearly improved.

実施例Z 実施例−1と同様な方法でシリカゾルを作成し、PH値
を4.2に調整し、その1962rnlをテ) 57 
k オロエチレン製の円筒状容器に流し込み2000r
pmで回転させると60分後にゲル化した。ゲル化後、
引き続き第2表に示す回転数で5時間回転させた試料を
作成した。得られた円柱状ゲルを60℃で2週間乾燥し
、得られたドライゲルを1200℃まで加熱しZ5副φ
×50−の円柱状石英系ガラスを得た。
Example Z Silica sol was prepared in the same manner as in Example-1, the pH value was adjusted to 4.2, and the 1962rnl was prepared) 57
k Pour into a cylindrical container made of oleoethylene for 2000r
It gelled after 60 minutes when rotated at pm. After gelation,
Subsequently, samples were prepared by rotating for 5 hours at the rotation speed shown in Table 2. The obtained cylindrical gel was dried at 60°C for 2 weeks, the obtained dry gel was heated to 1200°C, and Z5 subφ
A cylindrical quartz-based glass of ×50- was obtained.

(注)回転による遠心力は円筒状あるいは円柱状ゲルの
最外周での値(以下の実施例も同様)第2表より、ゲル
化後の回転数は、回転による遠心力がcLIGg度でも
、真円度、反り、歩留りとも明らかに改善されているこ
とがわかる。また500Gを越える遠心力がくわわると
遠心力によりゲルが割れるために急激に歩留りが低下す
ることより、回転による遠心力が500G以下であるこ
とが望ましいことがわかる。
(Note) The centrifugal force due to rotation is the value at the outermost periphery of a cylindrical or cylindrical gel (the same applies to the following examples). From Table 2, the rotation speed after gelation is, even if the centrifugal force due to rotation is cLIGg degrees, It can be seen that the roundness, warpage, and yield are clearly improved. Furthermore, if a centrifugal force of more than 500G is applied, the gel will crack due to the centrifugal force, and the yield will drop sharply, which shows that it is desirable that the centrifugal force due to rotation be 500G or less.

実施例& 実施例1.と同様な方法でシリカゾルを作成し、’PH
値を五5に調整し、その1962m1を5cntφX1
mのテトラフルオロエチレン製の円筒形容器に流し込み
、1000rpmで回転させながらゲル化させた。約1
20分後にゲル化し、ゲル化後もグ1き続き10DOr
pmで、第3表に示す時間回転?続けた試料を作成した
。得られた円柱状ゲルを60℃で2週間乾燥し、得られ
た乾燥ゲルを1200℃まで加熱し、2.5crnφ×
50αの円柱状石英系ガラスを得た。
Examples & Example 1. Create silica sol in the same manner as 'PH
Adjust the value to 55 and convert that 1962m1 to 5cntφX1
The mixture was poured into a cylindrical container made of tetrafluoroethylene, and gelatinized while rotating at 1000 rpm. Approximately 1
It gels after 20 minutes, and continues to gel for 10 DOrs after gelling.
pm and the time rotation shown in Table 3? A subsequent sample was created. The obtained cylindrical gel was dried at 60°C for 2 weeks, the obtained dried gel was heated to 1200°C, and 2.5 crnφ×
A 50α cylindrical quartz glass was obtained.

第5表より、管状ゲルの変形は、長時間回転を行った方
が少ないことがわかるが、歩留りは除々に低下している
From Table 5, it can be seen that the deformation of the tubular gel is less when the rotation is performed for a longer time, but the yield is gradually lowered.

実施例4゜ 実施例1と同様な方法でゾルを作成し、PH値を4.2
に調整し、その1962rnLを5CItIφ×1mの
テトラフルオロエチレン製の円筒形容器ニ流し込み、2
000rpmで回転させると、60分でゲル化した。ゲ
ル化後も引き続き2000rpmで5時間回転させた後
、200rpmまで回転数を落として第4表に示す時間
回転を続けた試料を作成した。得られた円柱状ゲルを6
0℃で2週間乾燥して得られたドライゲルE−1200
°Cまで加熱したところ、2.5−φ×50rrnの円
柱状石英系ガラスが得られた。
Example 4 A sol was prepared in the same manner as in Example 1, and the pH value was 4.2.
The 1962rnL was poured into a cylindrical container made of tetrafluoroethylene of 5CItIφ x 1m, and
When rotated at 000 rpm, gelation occurred in 60 minutes. After gelation, samples were prepared by continuing to rotate at 2000 rpm for 5 hours, then decreasing the rotation speed to 200 rpm and continuing to rotate for the time shown in Table 4. The obtained cylindrical gel was
Dry gel E-1200 obtained by drying at 0°C for 2 weeks
When heated to °C, a cylindrical quartz-based glass of 2.5-φ×50 rrn was obtained.

第4表より、ゲル化後、長時間回転を続けると真円度、
反り、歩留りが改善されることがわかる。しかし、ゲル
の回転時間が100詩間を超えると、真円度、反り、歩
留りともほとんど変わらなくなるので、ゲル化後100
時間以上回転を続けても有益でないことがわかる。
From Table 4, it can be seen that after gelation, if the rotation is continued for a long time, the roundness will decrease.
It can be seen that warpage and yield are improved. However, if the gel rotation time exceeds 100 cycles, there will be almost no difference in roundness, warpage, or yield.
It can be seen that it is not beneficial to continue spinning for more than an hour.

第4表 実施例1 xチAyシ’)’r−)980f、Q、02N塩酸38
07を加えて激しく攪拌し加水分解反応を終了させた。
Table 4 Example 1
07 was added and stirred vigorously to complete the hydrolysis reaction.

これを加水分解液Aとする。次にエチルシリケート10
0F、102N塩酸13fを加えて水冷下で攪拌を2時
間した後、テトラエトキシゲルマニウム171を加えて
攪拌した。1時間このまま攪拌を続けた後、0.02N
塩酸229を加えて攪拌を行ない加水分解を終了させた
。これを加水分解液Bとする。
This is called hydrolyzate A. Next, ethyl silicate 10
After adding 13f of 0F, 102N hydrochloric acid and stirring under water cooling for 2 hours, tetraethoxygermanium 171 was added and stirred. After continuing stirring for 1 hour, 0.02N
Hydrochloric acid 229% was added and stirred to complete the hydrolysis. This is called hydrolyzate B.

一方エチルシリケート1086f、[LO5Nアンモニ
ア水575 yオよびエタノール2300r?加えて攪
拌し加水分解を終了させ超微粉末シリカを含む溶液を作
成した。これを濃縮して約600dとしたものを2N塩
酸でPH副調整行ないPH値を4.5とした。これを9
/10取ったものを微粉末シリカ分散液A 、 1 /
 10取りたものを微粉末シリカ分散液Bとする。
On the other hand, ethyl silicate 1086f, [LO5N ammonia water 575y and ethanol 2300r? In addition, the mixture was stirred to complete hydrolysis and a solution containing ultrafine powdered silica was prepared. This was concentrated to about 600 d, and the pH value was adjusted to 4.5 using 2N hydrochloric acid. This is 9
/10 is taken as fine powder silica dispersion A, 1/
10 was taken as fine powder silica dispersion B.

前記加水分解液Aと微粉末シリカ分散溶液Aを混合し、
激しく攪拌したものを濾過を行ない均質度の高いクラッ
ド用ゾルを得た。このゾルにα1Nアンモニア水を加え
PH値を4.8とした後、濾過を行ない、その1883
sjを5(Mlφ×1翼のポリエチレン製ty5円筒形
容器中に流し込み、管軸のまわりに2000rpmで回
転させると、60分でゲル化しクラッド用円筒状ウェッ
トゲルが作成できた。
Mixing the hydrolyzed solution A and the finely powdered silica dispersion solution A,
The mixture was vigorously stirred and filtered to obtain a highly homogeneous sol for cladding. After adding α1N ammonia water to this sol and adjusting the pH value to 4.8, it was filtered.
When sj was poured into a polyethylene TY5 cylindrical container with 5 (Mlφ×1 wing) and rotated around the tube axis at 2000 rpm, it gelated in 60 minutes and a cylindrical wet gel for cladding was created.

一方前記加水分解液Bと微粉末シリカ分散液Bを混合し
激しく攪拌し均質度の高いコア用ゾルを得た。このゾル
にQ、INアンモニア水を加えPH値を五5とした後濾
過、脱気を行なったものを、ゲル化直後の前記クラッド
用円筒状ウェットゲル中に7811を流し込み、回転数
200Orpmで回転させると25分でゲル化した。ゲ
ル化後も引き続き200Orpmで、30分間、1時間
、5時間回転を続けた試料を作成した。比較のためコア
用ゾルがゲル化した時点で回転を止めた試料も作成した
。作成した円柱状ゲルを60℃で2週間乾燥しドライゲ
ルな作成した。作成したドライゲルを50°C/hの昇
温速度で200°Cまで加熱し1時間保持して脱吸着水
処理を行った。つづいて昇温速度30℃/hで450℃
まで加熱してこの状態で5時間保持して脱炭素処理を行
った。
On the other hand, the hydrolyzed solution B and the fine powder silica dispersion B were mixed and vigorously stirred to obtain a highly homogeneous core sol. After adding Q and IN ammonia water to this sol and adjusting the pH value to 55, it was filtered and degassed, and 7811 was poured into the cylindrical wet gel for cladding immediately after gelation, and rotated at a rotation speed of 200 rpm. It gelated in 25 minutes. After gelation, samples were prepared by continuing to rotate at 200 rpm for 30 minutes, 1 hour, and 5 hours. For comparison, a sample was also prepared in which the rotation was stopped when the core sol gelled. The prepared cylindrical gel was dried at 60° C. for 2 weeks to obtain a dry gel. The prepared dry gel was heated to 200°C at a heating rate of 50°C/h and held for 1 hour to perform desorption water treatment. Continue to 450℃ at a heating rate of 30℃/h.
The decarbonization process was performed by heating the sample to 100% and holding it in this state for 5 hours.

次に昇温速度5℃/iで加熱して770℃の温度でHe
ガスとHeガスに対して流量比で5=1のCt、を炉内
に送シ込む状態を2時間保持した後、同じ昇温速度で9
00℃まで加熱し、HeガスとHeガスに対して流量比
で3:1の酸素ガスを使用して1時間保持して脱塩素処
理を行った。
Next, heat at a heating rate of 5°C/i to 770°C.
After maintaining the state in which Ct with a flow rate ratio of 5 = 1 for gas and He gas was pumped into the furnace for 2 hours, 9
The sample was heated to 00° C. and held for 1 hour using He gas and oxygen gas at a flow rate ratio of 3:1 to carry out dechlorination treatment.

その後Heガスを流し込みながら1℃/−で1200℃
まで加熱し、無孔化を行い、この温度で1.5時間保持
してガラス化して、2.5cTMφX1mのGe濃度3
m01%の円柱状石英7アイパ母材を得た。
After that, it was heated to 1200℃ at 1℃/- while flowing He gas.
It was heated to 2.5 cTMφ
A cylindrical quartz 7 Aipah base material with m01% was obtained.

第5表 (注) 回転時間は最外周のゲルがゲル化した時刻から
の経過時間とする。(以下の実施例も同様) 第5表より、コアのゲル化後も回転させることにより真
円度、反り、歩留りとも明らかに改善されている。
Table 5 (Note) The rotation time is the time elapsed from the time when the outermost gel gelled. (The same applies to the following Examples) From Table 5, by rotating the core even after gelation, the roundness, warpage, and yield were clearly improved.

実施例& エチルシリケート980F、[LO2N塩酸800yを
混合、攪拌し、加水分解液を作成した。
Example & Ethyl silicate 980F and [LO2N hydrochloric acid 800y were mixed and stirred to prepare a hydrolyzed solution.

一方、エチルシリケート980r、0.05Nアンモニ
ア水340 ?オヨびエタノール1400S’を加えて
攪拌し加水分解を終了させ超微粉末シリカ溶液を得た。
On the other hand, ethyl silicate 980r, 0.05N ammonia water 340? 1400 S' of ethanol was added and stirred to complete the hydrolysis and obtain an ultrafine powdered silica solution.

これを540−まで濃縮した後、2N塩酸でPH値五5
に調整した。これに前記加水分解液を混合し、さらに市
販の二酸化チタン微粉末1.51を加え激しく攪拌し、
遠心、濾過の後α2規定のアンモニア水でP4値を4.
8に調整した後濾過し、1962−を5αφX 1 m
のポリプロピレン製の円筒形容器中に流し込み、静置し
てゲル化させた。60分後にゲル化した後管軸のまわり
に20[fflOrpmで第6表に示す時間回転させ円
柱状ゲルを得た。これを60℃で2週間乾燥して187
0℃まで加熱したところ、2.5tnrφ×50mのチ
タン濃度[12mo1%の円柱状石英系ガラスが得られ
た。
After concentrating this to 540-, the pH value was 55 with 2N hydrochloric acid.
Adjusted to. The above hydrolyzed solution was mixed with this, and 1.51% of commercially available titanium dioxide fine powder was added and vigorously stirred.
After centrifugation and filtration, adjust the P4 value to 4.
After adjusting to 8 and filtering, the 1962-
The mixture was poured into a polypropylene cylindrical container and left to gel. After gelation occurred after 60 minutes, the tube was rotated around the tube axis at 20[fflOrpm] for the time shown in Table 6 to obtain a cylindrical gel. This was dried at 60℃ for 2 weeks to give 187
When heated to 0° C., a cylindrical quartz-based glass with a titanium concentration of 12 mo1% and a size of 2.5 tnrφ×50 m was obtained.

第6表 第6表より、ゲル化後回転させることにより真円度、反
り、歩留りとも、明確に改善されるのがわかる。
Table 6 Table 6 shows that rotation after gelation clearly improves roundness, warpage, and yield.

実施例Z 実施例5と同様な方法で、前記クラッド用ゾルを[LI
Nアンモニア水を加えPH値を4.8とした後濾過を行
ないその1570−を5c!nφ×1鶏のポリエチレン
製の円筒形容器中に流し込み、管軸のまわりに200O
rpmで回転させると、60分でゲル化しクラッド用円
筒状ウェットゲルが作成できた。
Example Z In the same manner as in Example 5, the cladding sol was converted to [LI
After adding N ammonia water and adjusting the pH value to 4.8, filtration was performed and the 1570- was 5c! Pour into a cylindrical container made of nφ×1 chicken polyethylene and heat around the tube axis to 200
When rotated at rpm, gelation occurred in 60 minutes and a cylindrical wet gel for cladding was created.

一方前記コア用ゾルを0.1Nアンモニア水でPH値を
五5とした後、濾過、脱気を行なったものを、ゲル化直
後の円筒状ウェットゲル中に62 v11流し込み回転
数2000rpmで回転させると25分でゲル化した。
On the other hand, the core sol was adjusted to a pH value of 55 with 0.1N ammonia water, filtered and degassed, then poured into a 62v11 cylindrical wet gel immediately after gelation, and rotated at a rotational speed of 2000 rpm. It gelated in 25 minutes.

ゲル化後も引き続き、3時間回転させた後、600rp
mまで回転数を落として第7表に示す時間回転を続けた
試料を作成した。得られた円筒状ゲルを50℃で3週間
乾燥してドライゲルを作成した。作成したドライゲルを
30℃/hの昇温速度で200℃まで加熱し1時間保持
して脱吸着水処理を行った。つづいて昇温速度50°C
/Qで450℃まで加熱してこの状態で5時間保持して
脱炭素処理を行った。
After gelation, continue to rotate for 3 hours, then rotate at 600 rpm.
Samples were prepared by lowering the rotation speed to m and continuing rotation for the time shown in Table 7. The obtained cylindrical gel was dried at 50° C. for 3 weeks to prepare a dry gel. The prepared dry gel was heated to 200° C. at a heating rate of 30° C./h and held for 1 hour to perform desorption water treatment. Next, the heating rate is 50°C
/Q to 450° C. and held in this state for 5 hours to perform decarbonization treatment.

次に昇温速度5℃/iで加熱して770℃の温度でHe
ガスとHeガスに対して流量比で5:1のat、e炉内
に送シ込む状態を2時間保持した後、同じ昇温速度で9
00℃まで加熱し、HeガスとHeガスに対して流量比
で3=1の酸素ガス企使用して1時間保持して脱塩素処
理を行った。
Next, heat at a heating rate of 5°C/i to 770°C.
After maintaining the state in which gas and He gas were fed into the AT and E furnaces at a flow rate ratio of 5:1 for 2 hours, the temperature was increased at the same heating rate at 9.
The mixture was heated to 00° C. and maintained for 1 hour using He gas and oxygen gas at a flow rate ratio of 3=1 to carry out dechlorination treatment.

その後Heガス2流し込みながら1℃/iで12σ・0
℃まで加熱し、無孔化を行い、この温度で5人 1.5時間保持してガラス化して、2.51?FFlφ
x1−のGθ濃度5m01%の円筒状石英ファイバ母材
3得た。
After that, while pouring 2 He gases, the temperature was 12σ・0 at 1℃/i.
It was heated to ℃ to make it non-porous, held at this temperature for 1.5 hours by 5 people, and vitrified to 2.51℃. FFlφ
A cylindrical quartz fiber base material 3 with a Gθ concentration of 5m01% was obtained.

第7表 第7表より長時間回転?続けると、真円度、反り、歩留
りが改善されていることがわかる。しかし、ゲルの回転
時間が100時間を超えると、真円度、反り、歩留りが
ほとんど変化しなくなるので、ゲル死後100時間以上
回転お続けでも有益でない。
Table 7 Rotating for a longer time than Table 7? As the process continues, it can be seen that roundness, warpage, and yield are improved. However, if the rotation time of the gel exceeds 100 hours, the roundness, warpage, and yield will hardly change, so it is not beneficial to continue rotating the gel for more than 100 hours after the gel has died.

なお、本実施例では、Ge、Ti等を含むガラスについ
て述べたが、他の成分のガラスについても全く同様に応
用できることが確認された。
In this example, the glass containing Ge, Ti, etc. was described, but it was confirmed that the present invention can be applied to glasses containing other components in exactly the same way.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、ゾルを円筒形容器
中に流し込み、ゲル化させて円筒状または円柱状ゲルを
作成した後、乾燥、焼結することによりガラス化させる
ゾル−ゲル法による円筒状または円柱状ガラスの製造方
法において、ゲル化後に所定時間、回転を加えることで
、ゲル化直後の変形がなくなり、真円度、反り、歩留り
が著しく改善される。従って高品質、高精度の円筒状ま
たは円柱状ガラスが、容易に、祉産性良く製造可能であ
ることから多方面に応用でき、特に光フアイバー母材、
あるいは、ロッド−イン−チューブ用、ファイバー母材
の製造等に極めて有効である
As described above, according to the present invention, the sol-gel method involves pouring a sol into a cylindrical container, gelling it to create a cylindrical or cylindrical gel, and then vitrifying it by drying and sintering. In the method for manufacturing cylindrical or cylindrical glass, by applying rotation for a predetermined period of time after gelation, deformation immediately after gelation is eliminated, and roundness, warpage, and yield are significantly improved. Therefore, high-quality, high-precision cylindrical or cylindrical glass can be manufactured easily and with good productivity, so it can be applied in many fields, especially as an optical fiber base material.
Alternatively, it is extremely effective for producing fiber base materials for rod-in-tubes, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例において、円筒状あるいは円
柱状ゲル作成に使用する回転装置の概略図である。 1・・円筒形容器 2・・モーター 5・・軸受け 4・・固定治具 5・・ガイドレール 6・・支持台 以  上
FIG. 1 is a schematic diagram of a rotating device used to prepare a cylindrical or cylindrical gel in an embodiment of the present invention. 1...Cylindrical container 2...Motor 5...Bearing 4...Fixing jig 5...Guide rail 6...Support stand and above

Claims (3)

【特許請求の範囲】[Claims] (1)ゾルを円筒形容器中に流し込みゲル化させて円筒
状または円柱状ゲルを作成した後、乾燥、焼結すること
によりガラス化させるゾル−ゲル法による円筒状または
円柱状ガラスの製造方法において、ゲル化後に所定時間
回転を加えることを特徴とする円筒状または円柱状ガラ
スの製造方法。
(1) A method for producing cylindrical or cylindrical glass using the sol-gel method, in which a sol is poured into a cylindrical container and gelled to create a cylindrical or cylindrical gel, which is then dried and sintered to vitrify it. A method for producing cylindrical or cylindrical glass, characterized in that rotation is applied for a predetermined period of time after gelation.
(2)ゲル化後の回転数は、回転による遠心力が円筒状
または円柱状ゲルの外周において500G(G:重力加
速度)より小さい回転数であることを特徴とする特許請
求の範囲第1項記載の円筒状または円柱状ガラスの製造
方法。
(2) The rotation speed after gelation is such that the centrifugal force due to rotation is less than 500G (G: gravitational acceleration) on the outer periphery of the cylindrical or columnar gel. A method of manufacturing the cylindrical or cylindrical glass described above.
(3)ゲル化後の回転時間は、30分以上100時間以
内であることを特徴とする特許請求の範囲第1項又は第
2項記載の円筒状または円柱状ガラスの製造方法。
(3) The method for producing cylindrical or columnar glass according to claim 1 or 2, wherein the rotation time after gelation is 30 minutes or more and 100 hours or less.
JP18683685A 1985-08-26 1985-08-26 Production of cylindrical or columnar glass Pending JPS6246927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18683685A JPS6246927A (en) 1985-08-26 1985-08-26 Production of cylindrical or columnar glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18683685A JPS6246927A (en) 1985-08-26 1985-08-26 Production of cylindrical or columnar glass

Publications (1)

Publication Number Publication Date
JPS6246927A true JPS6246927A (en) 1987-02-28

Family

ID=16195477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18683685A Pending JPS6246927A (en) 1985-08-26 1985-08-26 Production of cylindrical or columnar glass

Country Status (1)

Country Link
JP (1) JPS6246927A (en)

Similar Documents

Publication Publication Date Title
RU2278079C2 (en) Sol-gel method for preparation of large-size dry gels and modified glasses
JPS6246927A (en) Production of cylindrical or columnar glass
JPS62105936A (en) Production of quartz glass
JPS59131538A (en) Production of quartz glass
JPS6096533A (en) Preparation of quartz glass tube
JPS62283833A (en) Production of glass tube
JPS61163133A (en) Preparation of single polarization optical fiber
JPS62292625A (en) Production of glass
JPS6296339A (en) Production of optical fiber preform
JPS61186226A (en) Production of quartz glass
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPS61186236A (en) Production of parent material for optical fiber
JPS6191023A (en) Production of tubular quartz glass
JPS62288122A (en) Production of glass body by sol-gel method
JPS60239329A (en) Manufacture of quartz glass
JPS6345143A (en) Production of preform for optical fiber
JPS62230628A (en) Production of porous glass
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPH03285833A (en) Manufacture of porous glass
JPS62167233A (en) Production of quartz glass
JPS62119131A (en) Production of base material for optical fiber
JPS6296337A (en) Production of optical fiber preform
JPS61186232A (en) Production of tubular quartz glass
JPS62119132A (en) Production of base material for optical fiber
JPS6317234A (en) Production of preform for optical fiber