JPS61186232A - Production of tubular quartz glass - Google Patents

Production of tubular quartz glass

Info

Publication number
JPS61186232A
JPS61186232A JP2600285A JP2600285A JPS61186232A JP S61186232 A JPS61186232 A JP S61186232A JP 2600285 A JP2600285 A JP 2600285A JP 2600285 A JP2600285 A JP 2600285A JP S61186232 A JPS61186232 A JP S61186232A
Authority
JP
Japan
Prior art keywords
temperature
quartz glass
treatment
tubular quartz
glass according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2600285A
Other languages
Japanese (ja)
Inventor
Haruo Nagafune
長船 晴夫
Teiichirou Mori
森 禎一郎
Masahisa Ikejiri
昌久 池尻
Sadao Kanbe
貞男 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2600285A priority Critical patent/JPS61186232A/en
Priority to GB08523302A priority patent/GB2165233B/en
Priority to US06/782,333 priority patent/US4680045A/en
Priority to FR8514655A priority patent/FR2571357A1/en
Priority to DE19853535375 priority patent/DE3535375A1/en
Priority to AU48311/85A priority patent/AU581687B2/en
Publication of JPS61186232A publication Critical patent/JPS61186232A/en
Priority to US07/072,503 priority patent/US4786302A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To obtain the titled inexpensive and high-quality glass having high dimensional accuracy and purity, by gelatinizing a raw material consisting of a hydrolyzed solution of an alkyl silicate with an acidic catalyst and a hydrolyzed solution of it with a basic catalyst, drying and sintering it. CONSTITUTION:(a) An alkyl silicate such as ethyl silicate, etc. is hydrolyzed with (b) an acidic catalyst to give the solution A, the component a is hydrolyzed with (c) a basic catalyst to give the solution B containing silica fine particles having 0.01-1.0mu average particle diameter, which is concentrated to give 15-1.0g/cc silica concentration to prepare the concentrated solution B, pH of one or both of the solutions is adjusted to 3-6, and the solution A is blended with the solution B in a blending ratio of silica in the A solution/silica in the solution B=0.2-3 (molar ratio), to give raw material sol. It is put in a cylindrical container, gelatinized at 5-60 deg.C while rotating at the maximum centrifugal gravity of 1,000G to give wet gel, which is heated to 40-160 deg.C at <=120 deg.C/hr rate of heating, contracted and dried to give dry gel, which is sintered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルキルシリケートを原料とするゾル−ゲル
法による管状石英ガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing tubular quartz glass by a sol-gel method using an alkyl silicate as a raw material.

〔従来技術〕[Prior art]

石英ガラスは、高純度のものが製造できるようになった
ため、最近では半導体の製造に使用するルツボ、ボート
あるいは拡散炉用の炉芯管に用いられるようになり、そ
の有用性が認められているまた。理化学用のビーカー等
のガラス器具や光学測定用のセルなどにも用いられ、T
PT(薄膜トランジスタ)用の基板などへの応用も注目
されるようになり、今後ますます需要が拡大するものと
期待されている。
Since quartz glass can now be manufactured with high purity, it has recently been used for crucibles and boats used in the manufacture of semiconductors, as well as furnace core tubes for diffusion furnaces, and its usefulness has been recognized. Also. It is also used for glass instruments such as beakers for physics and chemistry, cells for optical measurement, etc.
Applications to substrates for PT (thin film transistors) are also attracting attention, and demand is expected to further increase in the future.

このように5石英ガラスの利用分野は多岐にわたるが、
使用目的によりその製造法、品質、形状は異なる。最近
、大容量伝送を目的とした光通信における光伝送媒体と
して石英ガラスを主原料とした光ファイバーが用いられ
ている。この光ファイバー用の母材製造時に出発材料あ
るいは外径調槓等のため管状の石英ガラスが必要である
。この時使用される管状石英ガラスは1寸法精度は勿論
品質的にも高度なものが要求される。そのだめ。
In this way, 5 quartz glass can be used in a wide variety of fields.
The manufacturing method, quality, and shape vary depending on the purpose of use. Recently, optical fibers made mainly of quartz glass have been used as optical transmission media in optical communications aimed at high-capacity transmission. When manufacturing a base material for this optical fiber, tubular quartz glass is required as a starting material or for adjusting the outer diameter. The tubular quartz glass used at this time is required not only to have high dimensional accuracy but also to be of high quality. That's no good.

非常に高価格で光ファイバーの低廉化への大きなネック
となっている。
The extremely high price of optical fiber is a major bottleneck in reducing the cost of optical fiber.

現在、市販されている管状石英ガラスは主に次の三種類
の方法で製造されている。
Currently, commercially available tubular quartz glass is mainly manufactured using the following three methods.

l)天然水晶を洗浄し、これを溶融する方法。l) A method of cleaning natural quartz and melting it.

2)高純度のs 6 CA4あるいはsea、を原料と
してS?:O,を作る方法。
2) S? using high purity s 6 CA4 or sea as raw material? : How to make O.

8)天然珪砂を溶融する方法。8) Method of melting natural silica sand.

8の方法によるものは純度的に光通信には使用できない
が、いずれにしても高温での処理が必要であり、これら
の製造方法の特徴として、心円度の高い管状石英ガラス
を製造するのは、非常に困難が伴う。
Products made by method 8 cannot be used for optical communication due to their purity, but in any case, processing at high temperatures is required, and the characteristics of these production methods are that they are difficult to produce tubular quartz glass with high circularity. is extremely difficult.

最近、ゾル−ゲル法を利用した光ファイバー用の管状石
英ガラスの製造が試みられている。ゾル−ゲル法の特長
としては、原料の金属アルコキシドの精製が容易なため
純度の高い石英ガラスが得られること、転移点以下で透
明石英ガラスが得られるため製造コストが安価であるこ
となどがあげられる。
Recently, attempts have been made to manufacture tubular quartz glass for optical fibers using the sol-gel method. The advantages of the sol-gel method include that it is easy to purify the metal alkoxide raw material, resulting in highly pure quartz glass, and that transparent quartz glass can be obtained below the transition point, resulting in low manufacturing costs. It will be done.

ところが、一般的なゾル−ゲル法においては。However, in the general sol-gel method.

大型のものを得るのが困難であるという欠点があった。The drawback was that it was difficult to obtain large-sized ones.

 Raunobichらは、超微粉末シリカを水に懸濁
させたヒドロシル溶液を中心棒を有する円筒容器内でゲ
ル化させた後、中心棒を引き抜き管状ゲルとし、これを
乾燥、焼結することにより内径1.7crn、外径2.
8副、長さ25cmと比較的大きい管状石英ガラスを得
ている。この方法はドライゲル中に大きい細孔ができる
ため割れやクラックが生じにくいと考えられる。
Raunovich et al. gelled a hydrosil solution in which ultrafine powdered silica was suspended in water in a cylindrical container with a central rod, then pulled out the central rod to form a tubular gel, which was then dried and sintered to reduce the inner diameter. 1.7 crn, outer diameter 2.
A relatively large tubular quartz glass with 8 sides and a length of 25 cm was obtained. This method is thought to be less likely to cause cracks or cracks because large pores are created in the dry gel.

また、当社特許(整理A 20672管状石英ガラスの
製造方法)では、アルキルシリケートの酸性軸媒による
加水分解液に超微粉末シリカを懸濁させたゾル溶液を原
料に用い5円筒容器中で回転させながらゲル化させると
いう方法で管状ゲルとし、これを乾燥、焼結することに
より最大で外径2.6tYn内径1.6 on長さ52
(1)の管状石英ガラスを得ている。
In addition, in our patent (Organization A 20672, method for manufacturing tubular quartz glass), a sol solution in which ultrafine powder silica is suspended in a hydrolyzed solution of alkyl silicate using an acidic axial medium is used as a raw material, and the sol solution is rotated in a 5-cylindrical container. A tubular gel is formed by gelling while drying, and by drying and sintering it, the maximum outer diameter is 2.6tY, inner diameter is 1.6on, and length is 52mm.
The tubular quartz glass of (1) is obtained.

この方法は、ドライゲルが大きい細孔を有し、かつシリ
カ微粒子間の結合力が前法に較べ強いためにより大型の
ものが得られる。iた、回転させながらゲル化させるた
め、前法に較べ大型のゲルができ、しかも真円度は高い
With this method, larger pores can be obtained because the dry gel has large pores and the bonding force between fine silica particles is stronger than in the previous method. In addition, since gelation is performed while rotating, a larger gel can be produced than in the previous method, and the roundness is also high.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記発明はともに液相中に微粉末シリカを分
散させる工程を含む。粉体を液中に分散させる方法とし
ては、攪拌や超音波印加等があるが、いずれにしても均
質な分散液を得るためにはlO− 甚大なエネルギーと長い時間を要するが、完全に均質な
分散液とすることは困難であり、例えば残存するダマが
最終的なガラス中の欠陥として品質を低下させてしまう
、また一般的な市販の微粉末シリカは、不純物として、
Ai、Fgなどを数ppm〜数百ppm含み5本発明の
ような光学ガラス用原料としては好ましくない。
By the way, both of the above inventions include a step of dispersing finely powdered silica in a liquid phase. Methods for dispersing powder in liquid include stirring and application of ultrasonic waves, but in any case, it takes a tremendous amount of energy and a long time to obtain a homogeneous dispersion, but it is completely homogeneous. It is difficult to form a dispersion liquid that is suitable for use, and for example, residual lumps become defects in the final glass and deteriorate the quality.Furthermore, general commercially available fine powder silica contains impurities such as
It contains several ppm to several hundred ppm of Ai, Fg, etc., and is not preferable as a raw material for optical glass as in the present invention.

本発明は以上の間頂点を解決するもので、その目的とす
るところは、アルキルシリヶー)k原料とするゾル−ゲ
ル法において5分散性が良好で、高純度のゾルを調製す
ることにより、高品質の管状石英ガラスの製造方法を提
供することにある。
The present invention solves the above problems, and its purpose is to achieve high quality by preparing a high-purity sol with good dispersibility in the sol-gel method using alkyl silica as a raw material. An object of the present invention is to provide a method for manufacturing tubular quartz glass.

〔問題点を解決するための手段〕[Means for solving problems]

本発明における管状石英ガラスの製造方法は、まずアル
キルシリケートの酸性触媒による加水分解液(A液)と
アルキルシリケートの塩基性触媒による加水分解液(B
液)とを調製する。アルキルシリケートの加水分解は使
用する触媒によって合成されるS (O!粉粒子大きさ
が全く異なる。
In the method for producing tubular quartz glass in the present invention, firstly, a hydrolysis solution of an alkyl silicate using an acidic catalyst (Liquid A) and a hydrolysis solution of an alkyl silicate using a basic catalyst (Liquid B) are prepared.
Prepare liquid). In the hydrolysis of alkyl silicate, the powder particle size is completely different depending on the catalyst used.

特に塩基性触媒を用いた場合、触媒量、溶媒に対するア
ルキルシリケートの量、水の量、温度などの条件によっ
て酸性触媒に比べ大きいシリカ粒子を、任意の大きさに
合成できる。ところで、大型のドライゲル、ひいては石
英ガラスを得るためにはドライゲル中に大きい細孔を含
んでいることが必須条件であるが、 (B)液中の比較
的大きい粒子はその役目を果たし、(A)液中の小さい
粒子はの)液中のシリカ粒子間の結合力を強める作用を
もっていると考えられる。
In particular, when a basic catalyst is used, silica particles larger than those using an acidic catalyst can be synthesized to any size depending on conditions such as the amount of catalyst, the amount of alkyl silicate relative to the solvent, the amount of water, and the temperature. By the way, in order to obtain large-sized dry gel and ultimately quartz glass, it is essential that the dry gel contains large pores, but (B) relatively large particles in the liquid play this role, and (A ) The small particles in the liquid are thought to have the effect of strengthening the bonding force between the silica particles in the liquid.

このような条件からの)液のシリカ粒子径は0.01μ
m以下となると、意味がなく、逆に大きすぎると沈降を
起こすため、均一なゾル液とする場合に不利である。特
に本発明においては、原料ゾルを回転させながらゲル化
させるため、遠心重力の作用を考えると、シリカ粒子径
は最大1゜0μmが限界である。
The silica particle size of the liquid (under these conditions) is 0.01μ
If it is less than m, there is no meaning, whereas if it is too large, sedimentation will occur, which is disadvantageous when preparing a uniform sol solution. In particular, in the present invention, since the raw material sol is gelled while being rotated, considering the action of centrifugal gravity, the maximum diameter of the silica particles is 1°0 μm.

本発明は上記したとおり、(A)(B)液ともに液相合
成したもの同志を混合し、原料ゾルとするため、特別な
分散工程は不要である。しかも使用する原料試薬は容易
に精製できるので、純度的にも高いものか得られる。
As described above, in the present invention, liquids (A) and (B) are synthesized in a liquid phase and are mixed together to form a raw material sol, so a special dispersion process is not necessary. Furthermore, since the raw material reagents used can be easily purified, products with high purity can be obtained.

さて、 (B)液は合成条件にもよるが一般的にシリカ
濃度は非常に低い、これは合成時のアルキルシリケート
に対する溶媒量をある程度多くしなければ、均一な粒径
分布をも′っシリカ粒子を合成できないことに起因して
いる。歩留りよくドライゲルを製造するためには、ゾル
中のシリカ濃度は高い方がよいが、高すぎると分散性が
悪くなり品質低下につながる。
Now, although it depends on the synthesis conditions in solution (B), the silica concentration is generally very low.This means that unless the amount of solvent relative to the alkyl silicate during synthesis is increased to a certain extent, the silica will not have a uniform particle size distribution. This is due to the inability to synthesize particles. In order to produce a dry gel with good yield, it is better to have a high silica concentration in the sol, but if it is too high, dispersibility deteriorates and quality deteriorates.

そこで、(B)液を濃縮する必要があるが、上記のよう
な制約からその範囲は0 、1517/CC−1、Oy
/cc、が望ましい。
Therefore, it is necessary to concentrate the liquid (B), but due to the above constraints, the range is 0, 1517/CC-1, Oy
/cc is desirable.

また、(A)液と(B)液の混合比により、製造される
ドライゲルの性質は大きく変わる。前述したように、(
A)液の割合が多くなるほど含まれる細孔は小さくなり
、割れや発泡が起きやすくなる。 (B)液の割合が多
くなると、逆に細孔そのものは大きくなるが、ドライゲ
ル自体の強度低下、焼結温度の上昇といった不利な現象
がでてくる。このことがら(A)液と(B)液の混合比
はそれぞれの液に含まれるs(o、モル量をM (A)
 、 Mの)とすると、M (A) )’ M(B)=
0.2〜8の範囲が、大型で高品質の石英ガラスを得る
必要条件である。
Furthermore, the properties of the produced dry gel vary greatly depending on the mixing ratio of liquid (A) and liquid (B). As previously mentioned,(
A) As the proportion of liquid increases, the pores contained become smaller, making cracking and foaming more likely to occur. (B) When the proportion of liquid increases, the pores themselves become larger, but disadvantageous phenomena such as a decrease in the strength of the dry gel itself and an increase in the sintering temperature occur. Based on this, the mixing ratio of liquids (A) and (B) is s(o, the molar amount contained in each liquid is M (A)
, M), then M (A) )' M(B)=
A range of 0.2 to 8 is a necessary condition for obtaining large and high quality quartz glass.

本発明のごときシリカゾルは、そのゲル化時間に高いP
H依存性がある。通常、PH13付近で最もゲル化時間
が短かく、瞬時にゲル化してしまうが、PH9以下であ
れば長時間安定なゾル状態を保つ、(A)液と(B)液
をそのまま混合すると、酸−塩基の中和が起こり、混合
ゾルのPH値はちょうど6程度になり、すぐにゲル比し
てしまうため、その後の操作上不利である。そこで、混
合後のゾル液のPH値が所望の値になるように2液を混
合前に予めPH調整してかく必要がある。方法としては
、 ■ (A)液のPRを下げる ■ (B)液のPHを下げる ■ (A) 、 CB)液両方のPH全下げる以上の8
法が考えられる。いずれの方法を用いてもその後のゾル
状態、最終的な品質に差はない。
The silica sol of the present invention has a high P content in its gelation time.
H-dependent. Normally, the gelation time is shortest around pH 13, and it gels instantly, but if the pH is below 9, it will remain stable for a long time. - Neutralization of the base occurs and the pH value of the mixed sol becomes just about 6, which immediately turns into a gel, which is disadvantageous in subsequent operations. Therefore, it is necessary to adjust the pH of the two liquids in advance before mixing them so that the pH value of the sol liquid after mixing becomes a desired value. The methods are: ■ (A) Lower the PR of the liquid ■ (B) Lower the PH of the liquid ■ (A) and CB) Lower the PH of both liquids by more than 8
Law is considered. No matter which method is used, there is no difference in the subsequent sol state or final quality.

また、混合後のゾル液を、アンモニア水、塩酸等會加え
ることにより、最終的なPH調整を行なうことも可能で
ある。
It is also possible to perform final pH adjustment by adding aqueous ammonia, hydrochloric acid, etc. to the sol solution after mixing.

円筒状のゲルを製造する装置図を第1図に示す。FIG. 1 shows a diagram of an apparatus for producing a cylindrical gel.

方法としては、上記PHpl整後のゾル液を円筒容器に
流し込み2回転装置にとりつけ、回転させながらゲル化
させる。このような回転ゲル化により真円度の高い円筒
状ゲルを得ることができる。
As a method, the sol solution after the PHpl adjustment is poured into a cylindrical container, placed in a two-rotation device, and gelled while being rotated. By such rotational gelation, a cylindrical gel with high roundness can be obtained.

回転させながらゲル化させる場合の回転条件について説
明する1本製造法における原料は、先に説明したとおり
、  0.01綿〜1.01tmの大きさの微粒子シリ
カを含んでいるため5回転による遠心力により微粒子シ
リカが沈降し、ゾルひいてはゲルの組成に不均一を生じ
る。このようなゲルの組成の不均一は、乾燥時あるいは
焼結時の割れの原因となるばかりでなく、光学的特性へ
も悪影+wを及ぼす、そこで5回転させながらゲル化さ
せる場合の回転数、回転時間は、原料ゾル中の微粒子シ
リカが沈降を起こさない範囲に制御しなければならない
。微粒子シリカの沈降の制御因子は、ねらいとする管状
石英ガラスの大きさを一定とすると回転ゲル化時の2回
転数、回転時間、原料ゾル組成である。仁のうち5回転
時間は先に述べたゲルfヒ時間と乾燥ゲルの歩留りとの
かねあいから一義的に定まり、また原料ゾル組成は後の
焼結条件に係わり最適化される。このため、微粒子シリ
カの沈降は主に回転数で制御する必要がある1回転数は
、回転容器内原料ゾル中の微粒子シリカにかかる遠心加
速度の下限はIG(980crn/秒R)であり、上限
は微粒子シリカの粒径、円筒状回転容器内での中心軸か
らの距離によって真なるため、確定することはできない
が、例えば500x程度の微粒子シリカ音用い、、 5
crnφの大きさの回転容器の場合には、容器内最外周
部における微粒子シリカに500Gの遠心重力が80分
以上かかるとはげしい沈降現象を起こす、Iまた原料が
微粒子シリカを含まないゾル液の場合でも100OG以
上の遠心重力が加わると、ゲル化時にクラックが生じる
Explaining the rotation conditions for gelling while rotating.As explained earlier, the raw material in the one-piece production method contains fine silica particles with a size of 0.01 to 1.01 tm, so it is centrifuged with 5 rotations. The force causes the particulate silica to settle, causing non-uniformity in the composition of the sol and eventually the gel. Such non-uniformity in the composition of the gel not only causes cracks during drying or sintering, but also has a negative impact on the optical properties. The rotation time must be controlled within a range that does not cause sedimentation of the fine silica particles in the raw material sol. The controlling factors for the precipitation of particulate silica are the number of rotations during rotational gelation, the rotation time, and the composition of the raw sol, assuming that the size of the target tubular quartz glass is constant. The time for five rotations of the gel is uniquely determined by the balance between the above-mentioned gel heating time and the yield of dry gel, and the raw material sol composition is optimized in relation to the subsequent sintering conditions. For this reason, the sedimentation of particulate silica must be controlled mainly by the rotational speed. cannot be determined because it depends on the particle size of the particulate silica and the distance from the central axis in the cylindrical rotating container, but for example, using a particulate silica sound of about 500x, 5
In the case of a rotating container with a size of crnφ, if the particulate silica in the outermost part of the container is subjected to centrifugal gravity of 500 G for 80 minutes or more, a severe sedimentation phenomenon will occur.In addition, if the raw material is a sol solution that does not contain particulate silica. However, if centrifugal gravity of 100OG or more is applied, cracks will occur during gelation.

このことから5回転ゲル化時の回転数は原料ゾル液に及
ぼす遠心重力が1000()を超えない範囲で選ばなけ
ればならない。
From this, the number of rotations during 5-turn gelation must be selected within a range in which the centrifugal gravity exerted on the raw sol solution does not exceed 1000 ().

大きなドライゲルを作成する場合には、容器および乾燥
条件が適切でないと歩留りが悪くなる。
When producing a large dry gel, the yield will be poor if the container and drying conditions are not appropriate.

そこで歩留りを向上し得る容器および乾燥条件について
説明する。
Therefore, a container and drying conditions that can improve the yield will be explained.

ウェットゲルをドライゲルにする乾燥工程は最も歩留り
に影響を与える重要な工程であるが、ウェットゲルが割
れずに収縮するための条件として乾燥がウェットゲル内
部で均一に進むことが必要である。そのためにはできる
だけゆっくりと乾燥させればよいが、生産性なども考え
た結果、開口率10%以下で昇温速度120℃/ h 
r以下で40〜160℃の温度まで昇温し、その温度範
囲にある温度で乾燥すれば歩留まり良く比較的短期間で
ドライゲル全書ることができる。その時ゲル化させた円
筒状回転容器に前記開口率のフタをしたまま乾燥させる
方法が比較的手間をかけずに歩留吐り良くドライゲルを
得る良い方法であるが、前記ウェットゲルを前記開口率
をもった容器に移し入れ、その中で乾燥させる方法を用
いると、さらに歩留まり良くドライゲルを得ることがで
きる。とのときウェットゲルを複数本前記容器に移し入
れ、その中で乾燥させる方法が5歩留まりに影響ヲ与え
ず生産性ヲ高める方法として望ましい。
The drying process to turn wet gel into dry gel is the most important process that affects the yield, but in order for wet gel to shrink without cracking, it is necessary that drying proceed uniformly inside the wet gel. To achieve this, it is best to dry as slowly as possible, but after considering productivity and other factors, we decided to increase the temperature at a rate of 120°C/h with an open area ratio of 10% or less.
If the temperature is raised to a temperature of 40 to 160° C. below r and dried at a temperature within that temperature range, the dry gel can be completely formed in a relatively short period of time with a good yield. At that time, it is a good method to obtain a dry gel with a good yield and discharge rate with relatively little effort, by drying the gelled cylindrical rotating container with a lid having the above opening ratio. If a method is used in which the gel is transferred to a container with a container and dried therein, a dry gel can be obtained with a higher yield. In this case, a method of transferring a plurality of wet gels to the container and drying them therein is desirable as a method that increases productivity without affecting the yield.

本発明の管状石英ガラスの製造方法において、前記ドラ
イゲルを焼結する工程は以下の7つの工程からなる。
In the method for manufacturing tubular quartz glass of the present invention, the step of sintering the dry gel consists of the following seven steps.

たソしく4’) (5)に関しては省くこともできる。It is certainly possible to omit 4') (5).

光ファイバー用の管状石英ガラスとしては、これをクラ
ツド材として用いる時はOH基量は少なくとも1 pp
m以下でなくてはならない、このような場合は当然、(
4)の塩累等による脱OH処理、それにともなう(5)
の脱塩累処理等が必要となってくる。しかし、光ファイ
バーの外径調整のために用いられるジャケット管に関し
てはOH基量は数百ppm程度あっても、はとんど影響
がない。このように用途によって要求される品質も異な
るため(4) (5)の処理が必ずしも必要なわけでは
ない。
When using tubular quartz glass for optical fibers as a cladding material, the amount of OH groups should be at least 1 pp.
It must be less than or equal to m. In such a case, of course, (
4) De-OH treatment by salt accumulation etc., accompanied by (5)
It becomes necessary to carry out cumulative desalination treatment, etc. However, for jacket tubes used for adjusting the outer diameter of optical fibers, even if the amount of OH groups is several hundred ppm, it has almost no effect. As described above, since the quality required varies depending on the application, the processes in (4) and (5) are not necessarily necessary.

1)脱吸着水処理をする工程 2)脱炭素処理をする工程 8)脱水縮合反応の促進処理をする工程4)脱OH基処
理をする工程 5)脱塩素処理あるいは脱フッ素処理をする工程 6)閉孔化処理をする工程 7)透明ガラス化処理をする工程 (1)の脱吸着水処理をする工程は該焼結工程における
歩留りに最も大きな影響を与えるが、ドライゲルに多量
に吸着する物理的吸着水はほぼ400℃程度の熱処理に
よって除去できる。しかしこの時急速に昇温すると割れ
が生じやすくなって歩留りが低下する。しかし、昇温速
度が小さすぎると処理に時間がかかりすぎ製造コストが
かさむ。詳しい調査を行なった結果、歩留りを低下書せ
ないで脱吸着水処理を行なえる上限はほぼ400℃/h
rであり、400℃までの所定の温度で少なくとも1時
間以上保持する操作を少なくとも1回行なうことが望ま
しい、というのは所定の温度で少なくとも1時間以上保
持する操作はゲル内部でより均一に脱吸着水反応が起こ
る状態を作るため歩留まり向上に役立つからである。
1) Process of desorption water treatment 2) Process of decarbonization 8) Process of promoting dehydration condensation reaction 4) Process of removing OH group 5) Process of dechlorination or defluorination 6 ) Step of pore-closing treatment 7) Step of transparent vitrification treatment The step of treating desorbed water in (1) has the greatest effect on the yield in the sintering process, but the physical adsorption of a large amount into the dry gel Targetally adsorbed water can be removed by heat treatment at approximately 400°C. However, if the temperature is raised rapidly at this time, cracks tend to occur and the yield decreases. However, if the temperature increase rate is too low, the processing takes too much time and increases manufacturing costs. As a result of detailed investigation, the upper limit of desorption water treatment without decreasing the yield is approximately 400℃/h.
r, and it is desirable to hold the temperature at a predetermined temperature up to 400°C for at least one hour at least once.This is because holding the temperature at a predetermined temperature for at least one hour allows for more uniform desorption within the gel. This is because it creates a condition in which the adsorbed water reaction occurs, which helps improve yield.

(2)の脱炭素処理をする工程において、脱炭素処理は
400〜900℃の範囲の熱処理によって行なわれる。
In the step (2) of decarbonizing, the decarbonizing treatment is performed by heat treatment in the range of 400 to 900°C.

このときゲルの内部に存在するアンモニアと酸の塩(ア
ンモニウム塩)も取り除くととができる。さらに脱吸着
水処理のときと同様昇温速度が歩留りに影響を与えるが
、80〜b/ h rの昇温速度が実用的である。1だ
本処理を行なう時、雰囲気中には02ガスの存在が必要
である。
At this time, the ammonia and acid salts (ammonium salts) present inside the gel can also be removed. Furthermore, as in the case of desorption water treatment, the temperature increase rate affects the yield, but a temperature increase rate of 80 to 20 b/hr is practical. When carrying out the one-shot process, the presence of 02 gas is required in the atmosphere.

(8)の脱水縮合反応の促進処理分する工程において、
脱水縮合反応の促進処理は、昇温速度80〜400℃/
 h rで900〜1200℃の範囲内の所定の温度に
昇温し、その温度で30分以上保持する処理を少なくと
も1回行なってなる1本工程の目的はゲル内部での脱水
縮合反応を促進させ。
(8) In the step of promoting the dehydration condensation reaction,
The dehydration condensation reaction is accelerated at a heating rate of 80 to 400°C/
The purpose of this single process, which involves raising the temperature to a predetermined temperature within the range of 900 to 1200°C for hr and holding it at that temperature for 30 minutes or more at least once, is to promote the dehydration condensation reaction inside the gel. Let me.

未反応OH基を減することにある9本工程を経ずに次の
工程に進んだ場合、脱OH基処理の際、脱OH基剤が多
量に消費され、それが原因となって透明ガラス化処理の
際5発泡することが多い3本工程も昇温速度が歩留りに
影響を与えるが、前記の範囲が実用的である。
If you proceed to the next step without going through the nine steps to reduce unreacted OH groups, a large amount of OH removal base will be consumed during the OH removal treatment, which will cause the transparent glass to deteriorate. Although the rate of temperature rise affects the yield in the three-step process in which foaming is often performed during the chemical treatment, the above range is practical.

(4)の脱OH基処理をする行程の目的は、光ファイバ
の伝送損失に特に重大な影響を与えるOH基を取り除く
ことにある。そして本工程は水分その他の不純物を含ま
ないHe等のキャリヤーガスと該キャリヤーガスに対し
て流量比で1〜40q6の範囲の脱OH基剤を焼結炉に
送り込みながら700〜1100℃の範囲の温度で加熱
することによってなる。ここで脱OH基を完全に行なわ
せるためには脱OH基剤をキャリヤーガスに対して1係
以上にすることが必要であるが1〜40%の範囲が望ま
しい、また本工程で使用される脱OH基剤は(三5(−
oH)と反応して(ヨ57−cl)あるいは(三Ei−
F)となるような試薬が選ばれるが、経済性、取り扱い
やすさ等の理由からC121SOCl、SF6 、CF
4 IC2II′6.C3F畠が実用的である。
The purpose of the OH group removal process (4) is to remove OH groups that have a particularly serious effect on the transmission loss of the optical fiber. In this step, a carrier gas such as He that does not contain moisture or other impurities and an OH removing base with a flow rate ratio of 1 to 40q6 to the carrier gas are fed into a sintering furnace while heating at a temperature of 700 to 1100°C. By heating at a certain temperature. In order to completely remove the OH groups, it is necessary to make the ratio of the OH removing base to the carrier gas at least 1%, but it is preferably in the range of 1 to 40%. The deOH base is (35(-
oH) to react with (yo57-cl) or (3Ei-
Reagents such as F) are selected, but for reasons such as economic efficiency and ease of handling, C121SOCl, SF6, CF
4 IC2II'6. C3F Hatake is practical.

(5)の脱塩素処理あるいは脱フッ素処理をする目的は
、さきの脱OH基処理を経たあとでゲル中に存在する塩
素あるいはフッ素を取り除くためであ−2】− る1本工程を省略して焼結工程を進めた場合、透明ガラ
ス比処理をしたり線引きして光ファイバにしたりすると
きにガラス中に残存する塩素あるいはフッ素が原因とな
って発泡しやすくなる。脱塩素処理あるいは脱フッ素処
理は800〜1200℃の温度範囲でHe等のキャリヤ
ーガスに対して1〜100q6の範囲の02を焼結炉に
送り込みながら行なう。
The purpose of the dechlorination or defluorination treatment in (5) is to remove chlorine or fluorine present in the gel after the previous OH group removal treatment. If the sintering process is carried out, foaming tends to occur due to chlorine or fluorine remaining in the glass when processing the transparent glass or drawing it to make an optical fiber. The dechlorination treatment or the defluorination treatment is carried out at a temperature range of 800 to 1200° C. while feeding 02 in a range of 1 to 100q6 into a sintering furnace with respect to a carrier gas such as He.

(6)の閉孔f比処理は炉内を真空にするかあるいは炉
内にHeガスを送り込みながら昇温することによって行
なう、上記の操作を経ずに閉孔化した場合、閉孔の中に
雰囲気のガスが閉じ込められ、透明ガラス比処理をした
りするときに発泡現象が発生しやすい、また昇温速度が
歩留りに影響を与えるが、80〜b 用的である。ガラス中で閉孔が生成する温度は。
The pore closing f ratio treatment (6) is performed by making the furnace a vacuum or raising the temperature while feeding He gas into the furnace. Atmospheric gases are trapped in the glass, and bubbling phenomenon tends to occur during transparent glass ratio processing, and the temperature increase rate affects the yield, but it is suitable for 80~b. What is the temperature at which closed pores form in glass?

ゾルを調整するときの(A)液との)液の混合割合、ゾ
ル中のシリカ濃度、(B)液中シリカの平均粒径、(B
)液中シリカの粒径分布、ゲル中の細孔径分布、ゲル中
の含水率、昇温スピード等によって異なるため閉孔f比
処理を行なう試料についてあらかじめ調査することが必
要である。本発明の実施例では900〜1350℃の温
度範囲にあった。
When preparing the sol, (A) the mixing ratio of the liquid (with the liquid), the silica concentration in the sol, (B) the average particle size of the silica in the liquid, (B)
) It is necessary to investigate in advance the sample to be subjected to the pore-closing f-ratio treatment because it varies depending on the particle size distribution of silica in liquid, pore size distribution in gel, water content in gel, temperature increase speed, etc. In the examples of the present invention, the temperature was in the range of 900 to 1350°C.

前記閉孔化処理を行なった後、1200〜1600℃の
範囲の所定の温度に昇温し、所定の時間その温度で保持
して@記透明ガラス化処理金行なうことにより管状石英
ガラスを得る。
After performing the pore-closing treatment, the temperature is raised to a predetermined temperature in the range of 1,200 to 1,600° C., and held at that temperature for a predetermined period of time to perform the transparent vitrification treatment described above, thereby obtaining tubular quartz glass.

本発明の管状石英ガラスの製造方法において。In the method for manufacturing tubular quartz glass of the present invention.

各焼結条件における最適な温度プログラムは、ゾルを調
整するときの(A)液と(B)液の混合割合、ゾル中の
シリカ濃度、(B)I中シリカの平均粒径、 (B)液
中シリカの粒径分布、ゲル中の細孔径分布、ゲル中の含
水率等によって異なり、上述した温度範囲、昇温スピー
ドの中から選ばれる。
The optimal temperature program for each sintering condition is the mixing ratio of (A) liquid and (B) liquid when adjusting the sol, the silica concentration in the sol, (B) the average particle size of silica in I, (B) It varies depending on the particle size distribution of the silica in liquid, the pore size distribution in the gel, the water content in the gel, etc., and is selected from the above-mentioned temperature range and heating speed.

以上の操作により十分な大きさをもつ高品質な管状石英
ガラスが歩留り良く1造できるが、以下の実施例に基づ
いて本発明の詳細な説明する。
By the above operations, a high-quality tubular quartz glass having a sufficient size can be manufactured with a high yield.The present invention will be explained in detail based on the following examples.

〔実施例1〕 ■ (A)液の調整 ′f’74 ’M した市販のエチルシリケート579
゜Ovに0.02規定の塩酸200fを加え、激しく攪
拌して加水分解し、(A)液とした。
[Example 1] ■ (A) Preparation of liquid 'f'74 'M Commercially available ethyl silicate 579
200 f of 0.02N hydrochloric acid was added to °Ov, and the mixture was vigorously stirred to hydrolyze it to obtain liquid (A).

■ (B)液の調整 精製した市販のエチルシリケー) 864.9 fに無
水エタノール2187f 、アンモニア水(29%)7
2プ、水800fを混合し、2時間攪拌した後、−晩装
置し、(B)液とした。粒度分布計で粒度を測定したと
ころ平均粒径は0.15μmであった。
■ Preparation of liquid (B) Purified commercially available ethyl silica) 864.9 f, absolute ethanol 2187 f, ammonia water (29%) 7
The mixture was mixed with 800 f of water, stirred for 2 hours, and then left in the apparatus overnight to obtain liquid (B). When the particle size was measured using a particle size distribution meter, the average particle size was 0.15 μm.

■ (B)液の濃縮 工程■で調整した(B)液を減圧濃縮した。原液の状態
では含まれるシリカ濃度は0.069々であるがこれを
0.401Aになるまで減圧濃縮した。
(2) Concentration step of liquid (B) The liquid (B) prepared in (2) was concentrated under reduced pressure. The concentration of silica contained in the stock solution was 0.069, but this was concentrated under reduced pressure to 0.401A.

■ 混合前PH調整 濃縮後(B)液のPH値は8.80 、 (A)液のそ
れは2.10であった。2規定塩酸を用いての)液のP
H値を5.0までおとした。この時5粒度分布計音用−
て粒度を測定したとζろ、工程■の時と比べ変化はなか
った。
(2) PH adjustment before mixing After concentration, the pH value of solution (B) was 8.80, and that of solution (A) was 2.10. (using 2N hydrochloric acid) solution P
The H value was lowered to 5.0. At this time, 5 for particle size distribution measurement -
When the particle size was measured using ζ filtration, there was no change compared to step ⑶.

■ 混合 工程■で得られた(A)液650mAと、工程■で得ら
れた(B)液620m、#を混合した。このときそれぞ
れからのシリカ量割合M (A) / M (B)は0
.67である。
(2) 650 mA of liquid (A) obtained in mixing step (2) and 620 mA of liquid (B) obtained in step (2) were mixed. At this time, the silica amount ratio M (A) / M (B) from each is 0
.. It is 67.

混合液のPH値は4.80であった。The pH value of the liquid mixture was 4.80.

■ 回転ゲル化 第1図に回転ゲルfヒ用装置図を示す。工程■で得られ
た原料ゾル液1256m、#全内径5副φ、長さ1.0
Oo7+の塩化ビニルライニング鋼管中に流し入れた。
■ Rotational gelling Figure 1 shows a diagram of the apparatus for rotating gelling. 1256 m of raw sol liquid obtained in step ①, #total inner diameter 5 minor φ, length 1.0
It was poured into an Oo7+ vinyl chloride lined steel pipe.

シリコーンゴムでフタをした後。After sealing with silicone rubber.

回転装置にとりつけた。回転数70 Orpmでモニタ
ーサンプルがゲル比するまで回転させた。
It was attached to a rotating device. The sample was rotated at a rotational speed of 70 rpm until the monitor sample resembled a gel.

ゲル比に要した時間は65分であった。ウェットゲルの
寸法は外径5cm4内径8鋸、長さ98副であった。
The time required for gel ratio was 65 minutes. The dimensions of the wet gel were an outer diameter of 5 cm, an inner diameter of 8 cm, and a length of 98 cm.

■ 乾燥 工程■で得られたウェットゲル10本を2日間回転容器
中で静置した後、開口率1%のフタを有するステンレス
製の箱型容器(タテ15crnヨコ120副高さ20 
on )に移し替え、昇温速度2℃/hで室温(25℃
)から70℃まで加熱し、12日間この温度で保持した
ところ、室温に放置しても割れない安定なドライゲル(
外径8.8副内径2.Ocpn長さ640)が得られた
■ After leaving the 10 wet gels obtained in the drying process ■ in a rotating container for 2 days, they were placed in a stainless steel box-shaped container (vertical: 15 cm, horizontal: 120 cm, sub-height: 20 cm) with a lid of 1% opening ratio.
on), and heated to room temperature (25℃) at a heating rate of 2℃/h.
) to 70℃ and held at this temperature for 12 days, a stable dry gel (
Outer diameter 8.8 Secondary inner diameter 2. Ocpn length 640) was obtained.

次にこのドライゲル葡石英製管状焼結炉に入れ昇温速度
80℃/hrで80℃から200℃まで加熱し、この温
度で5時間保持し、つづいて昇温速度80℃/ h r
で200℃からaOO″C,まで加熱し、この温度で5
時間保持して脱吸看水全行なった。つづいて昇温速度8
0℃/ h rで800℃から1100℃まで加熱し、
この温度で80分間保持して脱炭素、脱塩化アンモニウ
ム処理、脱水縮合反応の促進処理を行なった。つづいて
700℃まで降温しHe 2 A / min r C
l2O,21r/minの混合ガスを流しながら80分
間保持し、その後Heのみを流しなから昇温速度60℃
/ h rで800’C−Eで加熱した。800℃でH
e 21Vmin、 Cl2O,2,4/?7ti n
の混合ガスを流しながら1時間保持し、その後Heのみ
を流しなから昇温速度60℃/ h rで900℃まで
加熱した。900℃でHe 21e/min、Cl2O
。2.θ侃inの混合ガスを流しながら1時間保持し、
脱OH基処理を行なった。つづいて、 He2に/mi
nに対してoao、4.θ’rrbtnの混合ガスを流
しなから昇温速度60℃/hrで1050″Cまで加熱
し、この温度で1時間保持して脱塩素処理を行なった。
Next, this dry gel was placed in a quartz tubular sintering furnace and heated from 80°C to 200°C at a heating rate of 80°C/hr, held at this temperature for 5 hours, and then heated at a heating rate of 80°C/hr.
from 200℃ to aOO″C, and at this temperature 5
I held it for a while and did all the water inhalations. Next, heating rate 8
Heating from 800°C to 1100°C at 0°C/hr,
This temperature was maintained for 80 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Subsequently, the temperature was lowered to 700℃ and He 2 A / min r C
Hold for 80 minutes while flowing a mixed gas of 12O, 21 r/min, then increase the temperature to 60°C without flowing only He.
Heated at 800'C-E/hr. H at 800℃
e 21Vmin, Cl2O,2,4/? 7tin
The mixture was maintained for 1 hour while flowing a mixed gas of 1 to 1, and then heated to 900°C at a temperature increase rate of 60°C/hr without flowing only He. He 21e/min, Cl2O at 900℃
. 2. Hold for 1 hour while flowing a mixed gas of θ,
OH group removal treatment was performed. Next, to He2/mi
oao for n, 4. The mixture was heated to 1050''C at a heating rate of 60°C/hr without flowing a mixed gas of θ'rrbtn, and was held at this temperature for 1 hour to perform dechlorination treatment.

つづいてHeのみを流しなから昇温速度30℃/ h 
r テ1250 ”C’t t’7)O熱し、?C(7
)la度テ30分保持して閉孔化処理を行なった。つづ
いて試料全箱型炉に移し1200℃から昇温速度60 
”C7hγで1350℃まで加熱し、この温度で1時間
保持すると無孔比し、透明な管状石英ガラス(外径2.
6備、内径1.5crn、長さ50 cm )が得られ
た焼結工程での割れはなく歩留りは100%であった。
Next, without flowing only He, the temperature increase rate was 30℃/h.
r te1250 ”C't t'7)O heat, ?C(7
) A pore-closing treatment was carried out by holding the sample at a temperature of 30 minutes. Next, all the samples were transferred to a box-type furnace, and the heating rate was 60°C from 1200°C.
"When heated to 1350°C with C7hγ and held at this temperature for 1 hour, it becomes non-porous and becomes transparent tubular quartz glass (outer diameter 2.
There were no cracks in the sintering process, and the yield was 100%.

この管状石英ガラスに含まれるOH基量を赤外吸収スペ
クトルで測定したところh 2−70 Amでの吸収ピ
ークが全く認められず、  1 ppm以下であること
が確認できた。
When the amount of OH groups contained in this tubular quartz glass was measured by infrared absorption spectrum, no absorption peak at h2-70 Am was observed, and it was confirmed that the amount was 1 ppm or less.

また、寸法精度は内外径公差±1%以下でありインクル
ージヨンや異物も認められず、リングヒータで2000
℃に加熱、溶融状態としたが発泡せず光ファイバー製造
用の管状石英ガラスとじて使用できることがわかった。
In addition, the dimensional accuracy is within ±1% of the inner and outer diameter tolerance, and there are no inclusions or foreign substances.
It was found that the product did not foam when heated to ℃ and was brought into a molten state, so it could be used as a tubular quartz glass for manufacturing optical fibers.

また、同じドライゲルを用いて以下のような焼結を行な
った。石英製管状焼結炉に入れ、昇温速度30℃/ h
 rで30℃から200℃まで加熱し、この温度で5時
間保持し、つづいて昇温速度3(1’C/hrで200
℃から800℃まで加熱し、この温度で5時間保持して
脱吸着水全行なった。つづいて昇温速度30℃/ h 
r テ800 ’Cから1000’Cまで加熱し、この
温度で用時間保持して脱炭素。
Furthermore, the following sintering was performed using the same dry gel. Placed in a quartz tubular sintering furnace and heated at a heating rate of 30°C/h.
r from 30°C to 200°C, held at this temperature for 5 hours, and then heated at a heating rate of 3 (200°C at 1'C/hr).
The mixture was heated from .degree. C. to 800.degree. C. and kept at this temperature for 5 hours to completely remove the adsorbed water. Next, the temperature increase rate is 30℃/h
r Heat from 800'C to 1000'C and hold at this temperature for a period of time to decarbonize.

脱塩fヒアンモニウム処理、脱水縮合反応の促進処理を
行なった。さらに60℃/ h rで1100℃まで昇
へれ即時間保持、60℃/ h rで1150℃まで昇
@に20時間保持してできるだけ開孔状態での脱水縮合
反応を促進させることによりOR基量金減らした。つづ
いてHe f 2 Z / min流しなから列温速度
30℃/ h rで1250℃まで加熱し、このIm度
で1時間保持して閉孔f比処理を行なった。
Desalination f-hyammonium treatment and dehydration condensation reaction acceleration treatment were performed. Further, the temperature was increased to 1100°C at 60°C/hr and held immediately, and the temperature was increased to 1150°C at 60°C/hr and held for 20 hours to promote the dehydration condensation reaction in an open pore state as much as possible. The quantity was reduced. Subsequently, the tube was heated to 1250° C. at a heating rate of 30° C./hr while flowing at He f 2 Z/min, and held at this Im degree for 1 hour to perform hole-closing f-ratio treatment.

つづいて、試料を箱型炉に移し1250℃から昇温速度
60℃/ h rで1350℃まで加熱し、この温度で
1時間保持すると無孔比し透明な管状石英ガラスとなっ
た。OH基量を測定したところ4゜Oppmであったが
、リングヒーターで2000℃に加熱溶融状態にしても
発泡することはなかった。
Subsequently, the sample was transferred to a box furnace and heated from 1250°C to 1350°C at a heating rate of 60°C/hr, and when held at this temperature for 1 hour, it became a transparent tubular quartz glass with no pores. When the amount of OH groups was measured, it was found to be 4° Oppm, but no foaming occurred even when heated to 2000° C. in a molten state using a ring heater.

このように、塩素等を用いた脱OH基処理、それにとも
なう脱塩素処理等を行なわなくても、光ファイバ製造時
の外径調整のためのジャケット管として使用するには充
分な管状石英ガラスが得られた。
In this way, sufficient tubular quartz glass can be produced to be used as a jacket tube for adjusting the outer diameter during optical fiber manufacturing, even without OH group removal treatment using chlorine, etc., and accompanying dechlorination treatment. Obtained.

〔実施例2〕 実施例1における工程■を以下に変えた。[Example 2] Step (2) in Example 1 was changed as follows.

精製したエチルシリケート468fに無水エタノール2
δOOmA、アンモニア水(29%)250m!、水1
65fを混合し、2時間攪拌した後、−夜装置した1粒
度分布計で粒度を測定したところ、平均粒径は0.84
μmであった。なお、一度静置後容器の底に沈降してい
たシリカ粒子の粒径を測定したところ、すべてIAm以
上であった。このことから11℃m以上のシリカ粒子が
ゾル中に含まれることは均一な分散液とするのに不利で
あることがわかった。
Anhydrous ethanol 2 to purified ethyl silicate 468f
δOOmA, ammonia water (29%) 250m! , water 1
After mixing 65f and stirring for 2 hours, the particle size was measured using a particle size distribution analyzer that was installed overnight, and the average particle size was 0.84.
It was μm. In addition, when the particle size of the silica particles that had settled at the bottom of the container once left still was measured, all of them were larger than IAm. From this, it was found that the inclusion of silica particles with a temperature of 11° C.m or more in the sol is disadvantageous in obtaining a uniform dispersion.

乾燥工程は、実施νu1と全く同様に行なったが。The drying process was performed in exactly the same manner as in Example νu1.

ドライゲルのかさ密度は0 、86 t/1wr”  
で実施例1の場合の1.0817cm”に比べかなり小
さくなった。
The bulk density of the dry gel is 0, 86 t/1wr"
This was considerably smaller than 1.0817 cm'' in Example 1.

○ 焼結 実施例1における塩素処理を行なわないHe処理だけの
焼結を行ない、そのOH基針ヲ測定したところ、  2
50 ppmT!あった。このことから、本実2II!
8例のように(B)′g!iのシリカ粒径を大きくする
ことにより、焼結過程での脱水は促進されることが判明
した。
○ When sintering was performed with only He treatment without chlorine treatment in Sintering Example 1, and the OH base needle was measured, 2
50 ppmT! there were. From this, Honjitsu 2II!
As in example 8, (B)′g! It has been found that dehydration during the sintering process is promoted by increasing the silica particle size of i.

また、実施例1と同様に塩素処理を行なうことにより含
水fikk1pprn以下にすることができ、高品質の
管状石英ガラスが得られた。
Furthermore, by performing chlorine treatment in the same manner as in Example 1, the water content could be reduced to less than 1 pprn, and a high quality tubular quartz glass was obtained.

〔実施例8〕 (6)液の調整時に、1規定の硝酸を用いて実施例1と
同様に加水分解を行なった。
[Example 8] (6) When preparing the liquid, hydrolysis was performed in the same manner as in Example 1 using 1N nitric acid.

(B)液の調整濃縮は実施例1と同様に行なった。The adjustment and concentration of liquid (B) was carried out in the same manner as in Example 1.

濃縮後(B)液を2規定アンモニア水によりPHを4.
0に調整した後、(A)液と混合したところ、混合ゾル
のPHは8.2になった。このような低いPH値の−加
− ゾルは室温放置では数日経ってもゲル化しない。
After concentration, the pH of solution (B) was adjusted to 4.0 with 2N ammonia water.
After adjusting the pH to 0, the mixed sol was mixed with liquid (A), and the pH of the mixed sol was 8.2. An -added sol with such a low pH value will not gel even after several days if left at room temperature.

そこで0.2規定アンモニア水音滴下することにより、
PFI’に4.90に調整し、原料ゾルとした。
Then, by dropping 0.2N ammonia water,
The PFI' was adjusted to 4.90 and used as a raw material sol.

実施例1と同様な方法で回転ゲルfヒさせたが本実施し
0では回転数k l 000 rpmとした。
A rotating gel was heated in the same manner as in Example 1, but in this embodiment, the rotation speed was set to kl 000 rpm.

上記ウェットゲルの乾燥は実施例1と同様に行ないドラ
イゲルとした。
The wet gel was dried in the same manner as in Example 1 to obtain a dry gel.

次にこのドライゲルを石英製管状焼結炉に入れ昇温速度
80℃/hr テ80 ’Cから200′ctで加熱し
、この温度で5時間保持し、つづいて昇温速度80℃/
 h ?−で2oo℃からaoo’cまで加熱し、この
温度で5時間保持して脱吸着水全行なった。つづいて昇
温速度80℃/hrでaoo’cから1000℃まで加
熱し、この温度で60分間保持して脱炭素、脱塩化アン
モニウム処理、脱水縮合反応の促進処理を行なった。つ
づいて800℃まで降温しHe 2A/min、 C1
20,2A/min  の混合ガスを流しながら80分
間保持し、その後Heのみを流しなから昇温速度60℃
/hrで900℃−hで加熱した。900℃でHe 2
7/min、 C120,2It/’qnz nの混合
ガス?流しながら1時間保持し、つづいてHe 21に
/min  に対してOzo、4!〆ninの混合ガス
を流しなから昇温速度60℃/ h rで1050℃ま
で加熱し、この温度で1時間保持して脱塩系処理を行な
った。つづいてHeのみを流しなから昇温速度80℃/
 h rで1250℃まで加熱し。
Next, this dry gel was placed in a quartz tubular sintering furnace and heated from 80'C to 200'ct at a heating rate of 80°C/hr, held at this temperature for 5 hours, and then heated at a heating rate of 80°C/hr.
h? - and heated from 2oooC to aoo'c and held at this temperature for 5 hours to completely remove the adsorbed water. Subsequently, the material was heated from aoo'c to 1000° C. at a temperature increase rate of 80° C./hr, and held at this temperature for 60 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Subsequently, the temperature was lowered to 800℃ and He 2A/min, C1
Hold for 80 minutes while flowing a mixed gas of 20.2 A/min, then increase the temperature to 60°C without flowing only He.
/hr and heated at 900°C-h. He2 at 900℃
7/min, C120, 2It/'qnz n mixed gas? Hold for 1 hour while flowing, then Ozo for He 21/min, 4! The reactor was heated to 1050° C. at a temperature increase rate of 60° C./hr without flowing a mixed gas of 300° C., and was held at this temperature for 1 hour to perform a desalination treatment. Next, without flowing only He, the heating rate was 80℃/
Heat to 1250°C at hr.

この温度で80分保持して閉孔比処理を行なった。This temperature was maintained for 80 minutes to perform pore-closing ratio treatment.

つづいて試料を箱型炉に移し1200℃から昇温速度6
0℃/ h rで1350℃壕で加熱し、との温度で1
時間保持すると無孔比し、透明な管状石英ガラスが得ら
れた。これに含まれるOH基量はガラス体中央部で10
 ppm程度検出されたが、溶融状態でも発泡しなかっ
た。
Next, the sample was transferred to a box furnace and heated at a rate of 6 from 1200℃.
Heated in a trench at 1350°C at 0°C/hr, and at a temperature of 1
After holding for a period of time, a transparent tubular quartz glass with no pores was obtained. The amount of OH groups contained in this is 10 at the center of the glass body.
Although about ppm was detected, no foaming occurred even in the molten state.

〔実施例4〕 実施例1と同様に(A) (B)液を調整した後、工程
■における(B)液の濃縮条件を種々変えて実験を行な
った。(サンプル数884=12本)この時、←)液と
の)Mの混合体積比が各々異なるため、混合後のPH値
は各々異なるが、0.INアンモニア水、あるいは0.
IN塩酸を用いてすべて最終PH値ヲ6.0とした。
[Example 4] After preparing solutions (A) and (B) in the same manner as in Example 1, experiments were conducted by variously changing the conditions for concentrating solution (B) in step (2). (Number of samples: 884 = 12 bottles) At this time, since the mixing volume ratio of ←) M with the liquid is different, the PH values after mixing are different, but 0. IN ammonia water or 0.
The final pH value in all cases was adjusted to 6.0 using IN hydrochloric acid.

■ワレ■クラック○完全体 以上の結果より、 (B)液はシリカ濃度が0.15r
、a以上になるまで濃縮することが必要であることが判
明した。なお5割れ、及びクラックの生じたゲルを実施
例1と同様の焼結を行なったが、品質的には何ら問題な
く、高品質の石英ガラスが得られた。
■Cracks■Cracks○From the results of the complete product, the silica concentration of solution (B) is 0.15r.
It has been found that it is necessary to concentrate until the concentration reaches , a or higher. Incidentally, the gel with cracks and cracks was sintered in the same manner as in Example 1, but there were no quality problems and high quality quartz glass was obtained.

ところで、濃縮中、シリカ濃度が1.09々 を越える
と、急激に粘度が高くなり、均一な分散液とすることが
不可能となった。よって、これ以上の濃縮は何らメリッ
トを有しないこともわかった。
By the way, during concentration, when the silica concentration exceeded 1.09, the viscosity suddenly increased, making it impossible to form a uniform dispersion. Therefore, it was also found that further concentration has no merit.

〔実施例6〕 (A)液と(B)液の混合比を変えて実験を行なった。[Example 6] Experiments were conducted by changing the mixing ratio of liquid (A) and liquid (B).

−お− その他のゾル調整、乾燥、焼結工程は実施例1と同様に
行なった。(サンプル数axa=1s本)この場合も(
A)液と(B)液の混合体積比が各々異なるため、混合
後のPH値は各々異なるが、0.1規定アンモニア水、
あるいは0゜l規定塙酸を用いてす2べて最終PH値を
5.0とした。
-O- Other sol preparation, drying, and sintering steps were performed in the same manner as in Example 1. (Number of samples axa = 1s) Also in this case (
Since the mixing volume ratio of liquid A) and liquid (B) is different, the pH value after mixing is different, but 0.1N ammonia water, 0.1N ammonia water,
Alternatively, 0°l normal sulfuric acid was used to adjust the final pH value to 5.0 in both cases.

以上の結果より、Mに))/M(B)は0.2〜8の範
囲であることが、大型で高品質の管状石英ガラスを製造
するための条件であることが判明した。
From the above results, it was found that M)/M(B) in the range of 0.2 to 8 is a condition for manufacturing large-sized, high-quality tubular quartz glass.

〔実施例6〕 実施例1と同様にして、管状ウェットゲル5本4製造し
、回転容器をそのまま乾燥容器として使用した。開口率
1%のフタを両端にして60℃恒温槽で乾燥させたとこ
ろ、途中で8本が割れ、残り2本も割れやクラックはな
かったものの実施例1の時に比べ、ドライゲルの曲がり
が激しかった。
[Example 6] Five tubular wet gels were produced in the same manner as in Example 1, and the rotating container was used as a drying container. When dried in a constant temperature bath at 60°C with lids with an open area ratio of 1% on both ends, eight of the gels cracked on the way, and the remaining two had no cracks or cracks, but the dry gel was more severely bent than in Example 1. Ta.

〔実施例7〕 実施例1と同様にして、管状ウェットゲル5本全製造し
、開口率の異なる乾燥容器に移し替えた。
[Example 7] In the same manner as in Example 1, all five tubular wet gels were manufactured and transferred to dry containers with different opening ratios.

これらを60℃の恒温槽に入れて様子を見た。These were placed in a constant temperature bath at 60°C and observed.

このことから、開口率が1.(1%〜5%であってもさ
らに低い温度で乾燥させればゲルが割れない可能性はあ
るが、乾燥速度が著しく遅くなるため。
From this, the aperture ratio is 1. (Even if it is 1% to 5%, there is a possibility that the gel will not crack if it is dried at a lower temperature, but the drying speed will be significantly slower.

効率的ではない、また、開口率が0.5%のものはゲル
の歩留りは良いが、乾燥に5日も要した。結局乾燥速度
とゲルの歩留りとのかねあいから、開口率は1〜2俤程
度がよいことが判明した。
It was not efficient, and although the gel yield was good in the one with an aperture ratio of 0.5%, it took 5 days to dry. In the end, it was found that the aperture ratio should be about 1 to 2 circles due to the trade-off between drying speed and gel yield.

〔実施例8〕 実施例1と同様にして原料ゾルを調整した。回転ゲル化
時の回転数を種々変えて実験を行なった。
[Example 8] A raw material sol was prepared in the same manner as in Example 1. Experiments were conducted by varying the rotational speed during rotational gelation.

原料ゾルの最終PH値はナベで5゜lOに揃え、有効回
転時間(ゾルがゲル比するまでに回転させていた時間)
もすべて加分に揃えた、。
The final pH value of the raw sol was adjusted to 5゜lO using a pan, and the effective rotation time (the time the sol was rotated until it became a gel)
All of them have been arranged accordingly.

* G = 980crn/秒2 8000回転でゲル化させたものは、ウェットゲルの状
態は良好であったが、乾燥させたところ内面に剥離現象
が見られた。これは遠心重力による粒子の沈降により、
内面層に粒子濃度の薄い層ができたものと考えられ、あ
まり激しい回転は不利であることがわかった。
* G = 980 crn/sec 2 The wet gel state of the gel at 8,000 revolutions was good, but when it was dried, a peeling phenomenon was observed on the inner surface. This is due to sedimentation of particles due to centrifugal gravity.
It is thought that a layer with a low particle concentration was formed on the inner surface layer, and it was found that too vigorous rotation was disadvantageous.

〔実施例9〕 ■ (A)液の調整 精製した市販のメチルシリケート685Fに0.1規定
の塩酸8009に加え激しく攪拌して加水分解しくA)
液とした。
[Example 9] ■ Preparation of liquid (A) Add 0.1N hydrochloric acid 8009 to purified commercially available methyl silicate 685F and stir vigorously to hydrolyze it.A)
It was made into a liquid.

■ (B)液の調整 精製した市販のメチルシリケート685Fに無水メタノ
ール6200mA、アンモニア水(29%)575mI
/、水800vを混合し、2時間攪拌した後、−晩装置
しくB)ifflとした1粒度分布計で粒径を測定した
ところ、平均粒径は0019μm であった。
■ Preparation of solution (B) Add purified commercially available methyl silicate 685F to 6200 mA of anhydrous methanol and 575 mI of aqueous ammonia (29%).
After mixing 800v of water and stirring for 2 hours, the particle size was measured overnight using a particle size analyzer (B) iffl, and the average particle size was 0.019 μm.

■ (Bl)液の濃縮・PH調整 工程■で調整した(B)液をシリカ濃度が0.45@鷹
になるまで減圧濃縮した後、0゜5規定塩酸を用いてP
 H(@を4.50まで下げた。
■ (Bl) liquid concentration/PH adjustment step After concentrating the (B) liquid adjusted in step ■ under reduced pressure until the silica concentration becomes 0.45@taka, P
H(@ lowered to 4.50.

■ 混合・PH調整 =37− (A)液918mAと工程■で得られた(+3)IgL
570mkを混合したところ、PHは4.35  にな
った。
■ Mixing/PH adjustment = 37- (+3) IgL obtained in (A) solution 918 mA and step ■
When 570mk was mixed, the pH became 4.35.

これ全0.2規定アンモニア水でP H= 4.80 
 に調整した。
With all this 0.2N ammonia water, pH = 4.80
Adjusted to.

■ 回転ゲル化 工程■で得られたゾル液1256mAを内径5譚φ長さ
100cmの塩fヒビニルライニング鋼管に流し入れ、
シリコンゴムでフタをした後、回転装置にとりつけた1
回転数1500γpmでモニターサンプルがゲル化する
まで回転させた。
■ 1256 mA of the sol obtained in the rotary gelation process ■ was poured into a salt f vinyl lined steel pipe with an inner diameter of 5 mm and a length of 100 cm.
After covering with silicone rubber, it was attached to a rotating device 1
It was rotated at a rotation speed of 1500 γpm until the monitor sample gelled.

ゲル化に要した時間は70分であった。当工程により外
径5.0cIn、内径80m、長さ98鋸の管状ウェッ
トゲルが得られた。
The time required for gelation was 70 minutes. Through this process, a tubular wet gel with an outer diameter of 5.0 cIn, an inner diameter of 80 m, and a length of 98 ins was obtained.

■ 乾燥 工程■で得られたウェットゲルを8日間回転容器中で静
置した後、開口率1.596のフタを有するステンレス
製の箱型容器(タテ15crnヨコ120鋸高さ20m
)に移し替え、乾燥器に入れた。これ全昇温速度5℃/
hで室温(25℃)からω℃まで加熱し、15日間この
温度で保持したところ−=38− 室温に放置しても割れない安定なドライゲル(外径8.
5cm、内径2.1副、長さ69 cm )が得られた
■ Drying process ■ After leaving the wet gel obtained in step ■ in a rotating container for 8 days, it was placed in a stainless steel box-shaped container (vertical: 15 cm, horizontal: 120 cm, height: 20 m) with a lid with an opening ratio of 1.596.
) and placed in a dryer. This total temperature increase rate is 5℃/
When heated from room temperature (25°C) to ω°C at h and held at this temperature for 15 days - = 38 - A stable dry gel (outer diameter 8.
5 cm, inner diameter 2.1 mm, length 69 cm) was obtained.

■ 焼結 次にこのドライゲルを石英製管状焼結炉に入れ昇温速度
80℃/ h rで80℃から200℃まで加熱し、こ
の温度で5時間保持し、つづいて200℃から800℃
まで昇温速度80℃/hrで加熱し、この温度で5時間
保持して脱吸着水を行なった。つづいて昇温速度80℃
/ h rで800℃から1050℃まで加熱し、この
温度で80分間保持して脱炭素、脱塩fヒアンモニウム
処理、脱水縮合反応の促進処理を行なった。
■ Sintering Next, this dry gel was placed in a quartz tubular sintering furnace and heated from 80°C to 200°C at a heating rate of 80°C/hr, held at this temperature for 5 hours, and then heated from 200°C to 800°C.
The sample was heated at a temperature increase rate of 80° C./hr to 80° C./hr, and held at this temperature for 5 hours to perform desorption of water. Next, the temperature increase rate is 80℃
/ hr from 800° C. to 1050° C. and held at this temperature for 80 minutes to perform decarbonization, desalting, ammonium treatment, and acceleration treatment of dehydration condensation reaction.

つづいて700℃まで降温しHe 21!7m1n、 
C120、2,lz/min  の混合ガスを流しなが
ら80分間保持し、その後Heガスのみを流しなから昇
温速度60℃/ h rで800℃まで加熱した。80
0℃でHe 21r/min、 C120,21!r/
min の混合ガス全流しながら1時間保持し、その後
Heガスのみを流しなから昇温速度60℃/ h rで
900’ctで加熱した。900℃でHe 2 A/m
in 。
Subsequently, the temperature decreased to 700℃ and He 21!7m1n,
The mixture was held for 80 minutes while flowing a mixed gas of C120, 2,1z/min, and then heated to 800°C at a temperature increase rate of 60°C/hr without flowing only He gas. 80
He 21r/min at 0℃, C120,21! r/
The mixture was maintained for 1 hour while flowing a full mixed gas of min., and then heated at a heating rate of 60°C/hr and 900'ct without flowing only He gas. He 2 A/m at 900°C
In.

Cl 20 、ur/min  の混合ガスを流しなが
ら1時間保持し、脱OH基処理を行なった。つづいてH
e 21に/minに対して020 、4A/minの
混合ガスを流しながら昇温60℃/hrで1000℃ま
で加熱し、この温度で1時間保持して脱塩素処理を行な
った。つづいてHeガスのみ全流しなから昇温速度80
℃/ h rで1250℃まで加熱し。
The mixture was maintained for 1 hour while flowing a mixed gas of Cl 20 and ur/min to perform OH group removal treatment. Followed by H
The mixture was heated to 1000° C. at a temperature increase of 60° C./hr while flowing a mixed gas of 4 A/min at 020° C./min to e 21° C., and was held at this temperature for 1 hour to perform dechlorination treatment. Next, since only He gas is completely flowed, the temperature increase rate is 80
Heat to 1250 °C at °C/hr.

この温度で80分保持して閉孔化処理を行なった。This temperature was maintained for 80 minutes to perform a pore-closing treatment.

次に5箱型炉に移して1250℃から昇温速度間℃/h
rで1500℃まで加熱し、透明な管状石英ガラス(外
径2.70内径l。6 cm長さ52c1n)を得た。
Next, transfer to a 5-box furnace and increase temperature from 1250℃ to ℃/h.
The glass was heated to 1500° C. to obtain a transparent tubular quartz glass (outer diameter 2.70, inner diameter 1.6 cm, length 52 c1n).

品質、OH基量等について、実施例1で得られたものと
全く同等であった。
The quality, OH group amount, etc., were completely equivalent to those obtained in Example 1.

このことから、使用原料のアルキルシリケートはそのア
ルキル基によらず2本発明の工程により同等品質の石英
ガラスが製造されることが期待できる。
From this, it can be expected that the process of the present invention will produce quartz glass of the same quality regardless of the alkyl group of the alkyl silicate used as the raw material.

〔実施例10 ) 実施例9と同様な方法で管状ドライゲルを製造し、以下
の条件で焼結を行なった。
[Example 10] A tubular dry gel was produced in the same manner as in Example 9, and sintered under the following conditions.

次にこのドライゲル全石英製管状焼結炉に入れ昇温速度
80℃/ h rで80℃から200℃まで加熱し、こ
の温度で5時間保持し、つづいて200℃から800 
’Cまで昇温速度80℃/ h rで加熱し、この温度
で5時間保持して脱吸着水を行なった。つづいて昇温速
度80℃/ h rで800℃から1050℃まで加熱
し、この温度で80分間保持して脱炭素、脱塩化アンモ
ニウム処理、脱水縮合反応の促進処理を行なった。つづ
いて700℃まで降温しHe 21A/min 、 C
F 40.2A/minの混合ガス全流しながら80分
間保持し、その後Heガスのみを流しなから昇温速度6
0℃/hrで800℃まで加熱した。800℃でHe 
2 k/rnin 。
Next, this dry gel was placed in an all-quartz tubular sintering furnace and heated from 80°C to 200°C at a heating rate of 80°C/hr, held at this temperature for 5 hours, and then heated from 200°C to 800°C.
The sample was heated to 'C at a rate of temperature increase of 80°C/hr and held at this temperature for 5 hours to perform desorption of water. Subsequently, it was heated from 800°C to 1050°C at a temperature increase rate of 80°C/hr, and held at this temperature for 80 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Subsequently, the temperature was lowered to 700℃ and He 21A/min, C
F 40.2 A/min of the mixed gas was kept flowing for 80 minutes, and then the heating rate was increased to 6 without flowing He gas only.
It was heated to 800°C at 0°C/hr. He at 800℃
2k/rnin.

CF40.2.θ侃inの混合ガスを流しながら1時間
保持し、その後Heガスのみを流しなから昇温速度60
℃/ h rで900℃まで加熱した。900℃でHe
 2 i/min 、 OF 40.2A/min  
の混合ガス會流しながら1時間保持し、脱OH基処理を
行なった。
CF40.2. The temperature was maintained for 1 hour while flowing a mixed gas of
Heated to 900 °C at °C/hr. He at 900℃
2 i/min, OF 40.2A/min
The mixture was maintained for 1 hour while flowing with a mixed gas of 1 to remove OH groups.

つづいてHe 24/rninに対してOt 0.41
!/min の混合ガスを流しながら昇温60℃/ h
 rで1000℃まで加熱し、この温度で1時間保持し
て脱フッ累処理を行なった。つづいでHeガスのみを流
しなから昇温速度80℃/ h rで1250℃まで加
熱し、この温度で80分保持して閉孔化処理を行なった
Next, Ot 0.41 for He 24/rnin
! Temperature increased to 60℃/h while flowing mixed gas at /min.
It was heated to 1000° C. at r and held at this temperature for 1 hour to perform a fluoride removal treatment. Subsequently, without flowing only He gas, it was heated to 1250° C. at a temperature increase rate of 80° C./hr, and held at this temperature for 80 minutes to perform a pore-closing treatment.

次に5箱型炉に移し、1250℃から1400℃まで昇
温速度60℃/hrで加熱し、1400℃で2時間保持
して、透明な管状石英ガラスを得た。
Next, it was transferred to a 5-box furnace, heated from 1250°C to 1400°C at a temperature increase rate of 60°C/hr, and held at 1400°C for 2 hours to obtain a transparent tubular quartz glass.

含まれるOH基閂ヲ測定したところlppm以下であっ
た。?!、たリングヒーターを用いて約2000℃に加
熱し済融状態にしたが発泡現象は見られなかった。
The OH group contained was measured and found to be less than 1 ppm. ? ! The mixture was heated to about 2000° C. using a ring heater to bring it to a melted state, but no foaming phenomenon was observed.

なお、石英ガラス中にフン累全含有させるとガラスの屈
折率を下げることができることが知られており、本実施
例で得られたようなフッ素含有管状石英ガラスをクラツ
ド材、純石英ガラスをコア材として光ファイバーを構成
すれば、現在、一般的に利用されているゲルマニウム含
有コア使用の元ファイバーに比べかなり安価に光ファイ
バー母材が製造できる。
It is known that the refractive index of glass can be lowered by cumulatively containing fluorine in quartz glass. If optical fiber is used as the material, the optical fiber base material can be produced at a much lower cost than the base fibers that use germanium-containing cores, which are currently commonly used.

〔発明の効果〕〔Effect of the invention〕

以上5本発明のごときゾル−ゲル法により安価で高品質
、しかも寸法精度も高い管状石英ガラスが得られ、光フ
ァイバ母材製造時の支持管、あるいはジャケット管とし
て利用できる。また、フッ素等を含有させ屈折率の低い
管状石英ガラスを純石英ガラスコアのクラツド材として
使用することでより低コストで光ファイバーを製造する
ことが可能であり、今後大量の需要が予想される光ファ
イバー全低価格で供給できる。
By the sol-gel method as described above, it is possible to obtain a tubular quartz glass of low cost, high quality, and high dimensional accuracy, and it can be used as a support tube or a jacket tube when manufacturing an optical fiber base material. In addition, by using tubular quartz glass containing fluorine and a low refractive index as a cladding material for a pure silica glass core, it is possible to manufacture optical fibers at a lower cost, making it possible to manufacture optical fibers at a lower cost. All can be supplied at low price.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒状のゲルを製造する装置図第1図において 1が回転容器 2がモーター 8が軸受け 4が回転容器1をモーター2と軸受け8に固定するため
の固定治具 5がモーター2と軸受は全固定するだめのガイドレール 6が支持台 である。 以   上
FIG. 1 is a diagram of a device for producing cylindrical gel. In FIG. 1, 1 is the rotating container 2, the motor 8 is the bearing 4, and the fixing jig 5 for fixing the rotating container 1 to the motor 2 and the bearing 8 is the motor 2. The guide rail 6 on which the bearing is completely fixed serves as a support base. that's all

Claims (20)

【特許請求の範囲】[Claims] (1)アルキルシリケートを主原料とするゾル−ゲル法
による管状石英ガラスの製造方法において、アルキルシ
ルケートの酸性触媒による加水分解液(A液)とアルキ
ルシリケートの塩基性触媒による加水分解液(B液)の
混合溶液を原料ゾルとし、これを管状にゲル化させ乾燥
、焼結して透明ガラス化させることを特徴とする管状石
英ガラスの製造方法。
(1) In a method for manufacturing tubular quartz glass by the sol-gel method using alkyl silicate as the main raw material, a hydrolyzed solution of alkyl silicate using an acidic catalyst (liquid A) and a hydrolyzing solution of alkyl silicate using a basic catalyst (liquid B) A method for manufacturing tubular quartz glass, which is characterized by using a mixed solution of (liquid) as a raw material sol, gelling it into a tubular shape, drying and sintering it to form transparent glass.
(2)前記、(B)液は平均粒径が0.01μm〜1.
0μmの間のシリカ粒子を含むゾル溶液であることを特
徴とする特許請求の範囲第1項記載の管状石英ガラスの
製造方法。
(2) The above liquid (B) has an average particle size of 0.01 μm to 1.0 μm.
2. The method for producing tubular quartz glass according to claim 1, wherein the sol solution contains silica particles with a diameter of between 0 μm.
(3)前記、(B)液を(A)液と混合前にシリカ濃度
が0.15g/cc〜1.0g/ccになるように濃縮
することを特徴とする特許請求の範囲第1〜2項記載の
管状石英ガラスの製造方法。
(3) The liquid (B) is concentrated to a silica concentration of 0.15 g/cc to 1.0 g/cc before being mixed with the liquid (A). The method for producing tubular quartz glass according to item 2.
(4)前記(A)液と(B)液の混合比が、各々に含ま
れるシリカのモル量をそれぞれM(A)、M(B)とす
ると、M(A)/M(B)=0.2〜3になるように混
合することを特徴とする特許請求の範囲第1〜3項記載
の管状石英ガラスの製造方法。
(4) The mixing ratio of liquid (A) and liquid (B) is M(A)/M(B)= 4. A method for manufacturing tubular quartz glass according to claims 1 to 3, characterized in that the mixing is performed so that the ratio of the two components is 0.2 to 3.
(5)前記(A)液と(B)液の混合ゾルは2液混合前
に予め(A)液あるいは(B)液もしくは両方をPH調
整しておくか、2液混合後のPHを調整することにより
PH値を3〜6の範囲に調整して後ゲル化させることを
特徴とする特許請求の範囲第1〜4項記載の管状石英ガ
ラスの製造方法。
(5) For the mixed sol of liquids (A) and (B), either adjust the pH of liquid (A) or (B) or both before mixing the two liquids, or adjust the pH after mixing the two liquids. 5. A method for manufacturing tubular quartz glass according to claims 1 to 4, wherein the pH value is adjusted to a range of 3 to 6 and post-gelation is performed.
(6)前記管状ゲルの作製方法として、原料ゾルを円筒
容器に入れ回転させながらゲル化させることを特徴とす
る特許請求の範囲第1〜5項記載の管状石英ガラスの製
造方法。
(6) The method for producing tubular quartz glass according to any one of claims 1 to 5, characterized in that the method for producing the tubular gel includes gelling the raw sol while rotating it in a cylindrical container.
(7)前記、回転ゲル化時の回転数は、原料ゾルに及ぼ
す最大遠心重力が1000G(G=980cm/秒^2
)以下になるように制御することを特徴とする特許請求
の範囲第6項記載の管状石英ガラスの製造方法。
(7) The rotational speed during rotational gelation is such that the maximum centrifugal gravity exerted on the raw material sol is 1000G (G = 980cm/sec^2
) The method for manufacturing tubular quartz glass according to claim 6, characterized in that the method is controlled to be as follows.
(8)ウェットゲル乾燥工程において、前記円筒状回転
容器の両端に開口率10%以下のフタをして前記ウェッ
トゲルを乾燥させることを特徴とする特許請求の範囲第
1項〜第9項記載の管状石英ガラスの製造方法。
(8) In the wet gel drying step, the wet gel is dried by covering both ends of the cylindrical rotating container with a lid having an opening ratio of 10% or less. A method for manufacturing tubular quartz glass.
(9)前記乾燥行程において、前記ウェットゲルを円筒
状回転容器から取り出し、前記ウェットゲルを10%以
下の開口率をもった容器に移し入れ、前記容器中で乾燥
させることを特徴とする特許請求の範囲第1項〜第8項
記載の管状石英ガラスの製造方法。
(9) In the drying process, the wet gel is taken out from the cylindrical rotating container, the wet gel is transferred to a container having an opening ratio of 10% or less, and the wet gel is dried in the container. A method for producing tubular quartz glass according to items 1 to 8.
(10)5〜60℃の範囲の温度でゲル化させた後、昇
温速度120℃/hr以下で40〜160℃の温度まで
昇温し、収縮乾燥させてドライゲルを作成することを特
徴とする特許請求の範囲第1項〜第9項記載の管状石英
ガラスの製造方法。
(10) After gelling at a temperature in the range of 5 to 60°C, the temperature is raised to a temperature of 40 to 160°C at a temperature increase rate of 120°C/hr or less, and dried by shrinkage to create a dry gel. A method for manufacturing tubular quartz glass according to claims 1 to 9.
(11)前記ドライゲルを焼結する工程が以下の5つの
工程からなることを特徴とする特許請求の範囲第1項〜
第12項記載の光ファイバ用母材の製造方法。 1)脱吸着水処理をする工程 2)脱炭素処理をする工程 3)脱水縮合反応の促進処理をする工程 4)閉孔化処理をする工程 5)透明ガラス化処理をする工程
(11) The step of sintering the dry gel consists of the following five steps.
13. A method for manufacturing an optical fiber preform according to item 12. 1) Process of desorption water treatment 2) Process of decarbonization treatment 3) Process of promoting dehydration condensation reaction 4) Process of pore closing treatment 5) Process of transparent vitrification treatment
(12)前記ドライゲルを焼結する工程が以下の7つの
工程からなることを特徴とする特許請求の範囲第1項〜
第10項記載の管状石英ガラスの製造方法。 1)脱吸着水処理をする工程 2)脱炭素処理をする工程 3)脱水縮合反応の促進処理をする工程 4)脱OH基処理をする工程 5)脱塩素処理あるいは脱フッ素処理をする工程 6)閉孔化処理をする工程 7)透明ガラス化処理をする工程
(12) The step of sintering the dry gel consists of the following seven steps.
11. The method for producing tubular quartz glass according to item 10. 1) Process of desorption water treatment 2) Process of decarbonization 3) Process of promoting dehydration condensation reaction 4) Process of removing OH group 5) Process of dechlorination or defluorination 6 ) Step of performing pore closing treatment 7) Step of performing transparent vitrification treatment
(13)昇温速度400℃/hr以下で20〜400℃
の範囲の所定の温度に昇温し、その温度で1時間以上保
持する処理を少なくとも1回行なって前記脱吸着水処理
を行なうことを特徴とする特許請求の範囲第11項また
は12項記載の管状石英ガラス製造方法。
(13) 20 to 400°C at a heating rate of 400°C/hr or less
Claim 11 or 12, characterized in that the desorption water treatment is performed by raising the temperature to a predetermined temperature in the range of and holding it at that temperature for at least one hour at least once. Method for manufacturing tubular quartz glass.
(14)昇温速度80〜400℃/hrで400〜90
0℃の範囲内の所定の温度に昇温して前記脱炭素処理を
行なうことを特徴とする特許請求の範囲第11〜14項
記載の管状石英ガラスの製造方法。
(14) 400-90 at a heating rate of 80-400℃/hr
15. The method for manufacturing tubular quartz glass according to claims 11 to 14, wherein the decarbonization treatment is performed by raising the temperature to a predetermined temperature within the range of 0°C.
(15)昇温速度30〜400℃/hrで900〜12
00℃の範囲内の所定の温度に昇温し、その温度で30
分以上保持する処理を少なくとも1回行なって前記脱水
縮合反応の促進処理を行なうことを特徴とする特許請求
の範囲第11〜14項記載の管状石英ガラスの製造方法
(15) 900-12 at a heating rate of 30-400℃/hr
Raise the temperature to a predetermined temperature within the range of 00℃, and at that temperature
15. The method for producing tubular quartz glass according to claims 11 to 14, characterized in that the dehydration condensation reaction is accelerated by carrying out a holding process for at least one minute.
(16)700〜1100℃の範囲の温度でHeガスあ
るいはO_2ガスあるいはN_2ガスあるいはArガス
あるいはそれらの混合ガスとガスに対して流量比で1〜
40%の範囲の脱OH基剤を炉内に送り込みながら脱O
H基処理を行なうことを特徴とする特許請求の範囲第1
2項〜第15項記載の管状石英ガラスの製造方法。
(16) At a temperature in the range of 700 to 1100°C, the flow rate ratio for He gas, O_2 gas, N_2 gas, Ar gas, or a mixture thereof is 1 to 1.
De-O while feeding 40% range of de-OH base into the furnace.
Claim 1 characterized in that H group treatment is performed.
The method for producing tubular quartz glass according to items 2 to 15.
(17)前記脱OH基剤としてCl_2、SOCl、S
F_6、CF_4、C_2F_6、C_3F_8のいず
れかを用いて前記脱OH基処理を行なうことを特徴とす
る特許請求の範囲第16項記載の管状石英ガラスの製造
方法。
(17) As the OH removing base, Cl_2, SOCl, S
17. The method for producing tubular quartz glass according to claim 16, wherein the OH group removal treatment is performed using any one of F_6, CF_4, C_2F_6, and C_3F_8.
(18)脱OH基処理の後、800〜1200℃の温度
範囲で所定時間HeガスあるいはArガスあるいはN_
2ガスあるいはそれらの混合ガスに対して流量比で1〜
100%の範囲のO_7を炉内に送り込むことにより前
記脱塩素処理あるいは脱フッ素処理を行なうことを特徴
とする特許請求の範囲第12項〜第17項記載の管状石
英ガラスの製造方法。
(18) After the OH group removal treatment, He gas or Ar gas or N_
Flow rate ratio of 1 to 2 gases or a mixture thereof
18. The method for producing tubular quartz glass according to claims 12 to 17, wherein the dechlorination treatment or defluorination treatment is performed by feeding 100% O_7 into the furnace.
(19)炉内を真空にするかあるいは炉内にHeガスを
送り込みながら昇温速度30〜400℃/hrで900
〜1350℃の範囲内の所定の温度に昇温し、その温度
で1時間以上保持する処理を少なくとも1回行なって前
記閉孔化処理を行なうことを特徴とする特許請求の範囲
第11項〜第18項記載の管状石英ガラスの製造方法。
(19) Make the inside of the furnace a vacuum or feed He gas into the furnace at a heating rate of 30 to 400°C/hr to 900°C.
Claim 11, characterized in that the pore-closing treatment is performed by raising the temperature to a predetermined temperature within the range of ~1350°C and holding it at that temperature for 1 hour or more at least once. 19. The method for producing tubular quartz glass according to item 18.
(20)閉孔化処理を行なった後、1200〜1600
℃の範囲の所定の温度に昇温し、所定の時間その温度で
保持して前記透明ガラス化処理を行なうことを特徴とす
る特許請求の範囲第11項〜第19項記載の管状石英ガ
ラスの製造方法。
(20) After pore closing treatment, 1200 to 1600
The tubular quartz glass according to claims 11 to 19, characterized in that the transparent vitrification treatment is performed by raising the temperature to a predetermined temperature in the range of °C and holding at that temperature for a predetermined time. Production method.
JP2600285A 1984-10-04 1985-02-13 Production of tubular quartz glass Pending JPS61186232A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2600285A JPS61186232A (en) 1985-02-13 1985-02-13 Production of tubular quartz glass
GB08523302A GB2165233B (en) 1984-10-04 1985-09-20 Method of making a tubular silica glass member
US06/782,333 US4680045A (en) 1984-10-04 1985-10-01 Method of preparing tubular silica glass
FR8514655A FR2571357A1 (en) 1984-10-04 1985-10-03 PROCESS FOR PREPARING SILICA TUBULAR GLASS
DE19853535375 DE3535375A1 (en) 1984-10-04 1985-10-03 METHOD FOR PRODUCING TUBULAR QUARTZ GLASS
AU48311/85A AU581687B2 (en) 1984-10-04 1985-10-04 Method of preparing tubular silica glass
US07/072,503 US4786302A (en) 1984-10-04 1987-07-13 Method of preparing tubular silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2600285A JPS61186232A (en) 1985-02-13 1985-02-13 Production of tubular quartz glass

Publications (1)

Publication Number Publication Date
JPS61186232A true JPS61186232A (en) 1986-08-19

Family

ID=12181498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2600285A Pending JPS61186232A (en) 1984-10-04 1985-02-13 Production of tubular quartz glass

Country Status (1)

Country Link
JP (1) JPS61186232A (en)

Similar Documents

Publication Publication Date Title
US4680045A (en) Method of preparing tubular silica glass
US4680048A (en) Method of preparing doped silica glass
US4747863A (en) Method of manufacturing glass bodies
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
JPS61186232A (en) Production of tubular quartz glass
JP2020040868A (en) Method for producing synthesized quartz powder
US8763430B2 (en) Method for manufacturing grin lens
JPS59131538A (en) Production of quartz glass
JPH0258214B2 (en)
JPS6065735A (en) Production of quartz glass
JPS6054929A (en) Production of quartz glass
JPH0114177B2 (en)
JPS61186235A (en) Production of parent material for optical fiber
JPS6296339A (en) Production of optical fiber preform
JPS60226418A (en) Preparation of quartz glass mass
JPS61186236A (en) Production of parent material for optical fiber
JPS60131833A (en) Manufacture of quartz glass
JPS62288122A (en) Production of glass body by sol-gel method
JPS61186226A (en) Production of quartz glass
JPS6126525A (en) Production of quartz glass
JPS62119132A (en) Production of base material for optical fiber
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPH0520364B2 (en)
JP3847818B2 (en) Method for producing synthetic quartz glass powder
JPS60108324A (en) Production of quartz glass