JP3847818B2 - Method for producing synthetic quartz glass powder - Google Patents

Method for producing synthetic quartz glass powder Download PDF

Info

Publication number
JP3847818B2
JP3847818B2 JP25999695A JP25999695A JP3847818B2 JP 3847818 B2 JP3847818 B2 JP 3847818B2 JP 25999695 A JP25999695 A JP 25999695A JP 25999695 A JP25999695 A JP 25999695A JP 3847818 B2 JP3847818 B2 JP 3847818B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
glass powder
raw material
producing synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25999695A
Other languages
Japanese (ja)
Other versions
JPH09100109A (en
Inventor
隆伸 香月
芳雄 勝呂
昭二 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25999695A priority Critical patent/JP3847818B2/en
Priority to PCT/JP1996/002916 priority patent/WO1997012837A1/en
Priority to KR1019980702483A priority patent/KR19990064006A/en
Priority to EP96932838A priority patent/EP0854113A4/en
Publication of JPH09100109A publication Critical patent/JPH09100109A/en
Application granted granted Critical
Publication of JP3847818B2 publication Critical patent/JP3847818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は半導体分野、及び、光ケーブル等に使用される合成石英ガラス粉、特に1000℃以上の高温度領域で使用される半導体製造用超高純度石英ガラス製品の原料として好適な合成石英ガラス粉を提供するものである。
従来、半導体単結晶製造用のルツボや治具等は、天然石英を粉砕して得た天然石英粉を溶融して製造されていたが、天然石英は良質のものであっても種々の金属不純物を含んでおり、純度の面から十分満足し得るものではなかった。特に、半導体産業の高性能化に伴って要求される高純度単結晶には、金属不純物が混入すると半導体の性能に悪影響を与えるので、金属不純物等の混入が懸念されるようなルツボや治具等を使用することは出来ない。この為、最近では、合成による高純度な石英ガラス粉末が必要になってきている。近年、純度的にすぐれたケイ酸源として、アルコキシシランを原料としたゾル・ゲル法による石英ガラスが紹介されている。例えば、特開昭62一176928号公報には、アルコキシシランを酸又はアルカリの存在下、加水分解してゲルを調製し、これを粉砕、乾燥した後、焼成して合成石英ガラス粉を製造する方法が示されている。
【0002】
【発明が解決しようとする課題】
ゾル・ゲル法による合成石英ガラス粉の製造では、まず、原料としてアルコキシシランを用い、これを加水分解・縮重合させてウエットゲルとし、副生したアルコールや水を乾燥除去してドライゲルとする。これを焼成して合成石英ガラス粉を製造している。ところが、スケールの大きな実装生産ラインで実際に運転を行なうと、黒色異物が合成石英粉の製品中に大量に発生するというトラブルに直面した。この黒色異物が合成石英粉の製品中に混入すると、ルツボやインゴットに成形するために溶融した際、COやCO2ガスとなって発泡の原因となり、泡を含んだ石英ルツボや炉心管等は、高温使用時の寸法安定性や、単結晶引き上げ時に泡が弾けて液面揺動、結晶欠陥となる等の間題を引き起こすことが知られている。しかしながら、この黒色異物の発生を抑制する機構が十分解明されていないため、製造上の制御ポイントは何なのか解明できないまま今日に至っている。特にスケールが大きな実装生産ラインでは、ラボスケールと異なり、温度や加水分解反応の制御が困難であり、また大型の装置を使用するため軸シール、バルブ等からのコンタミなどもあり、原因の特定は容易なことではなく、合成石英粉の量産化において大きな障害となっていた。
【0003】
【課題を解決するための手段】
本発明者等は、上記のような不都合のない合成石英ガラス粉末を効率的に得るため、鋭意検討を重ねた結果、加水分解工程の原料仕込みにおいて、少なくともアルコキシシランと水を仕込み終えるまでの間、反応容器に仕込まれた原料の液温を50℃以下、好ましくは40℃以下に保つとともに、反応容器としてジャケット付き反応機を用いることによって、熔融成形時に泡の発生を抑えられる合成石英ガラス粉を得られることを見出し、本発明に到達した。
【0004】
すなわち、本発明は、加水分解可能な珪素化合物の加水分解によりアルコキシシランの加水分解により得られたシリカゲルの粉末を焼成し合成石英ガラス粉を製造するにあたり、加水分解工程の原料仕込みにおいて、少なくともアルコキシシランと水を仕込み終えるまでの間、反応容器に仕込まれた原料の液温を50℃以下に保つとともに、反応容器としてジャケット付き反応機を用いることを特徴とする合成石英ガラス粉の製造方法、に存する。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の合成石英ガラス粉は、アルコキシシランを加水分解して得られるシリカゲルを乾燥後、焼成して得られるものである。ゾルゲル法によるアルコキシシランの加水分解は、アルコキシシランと水を反応させることによって行なわれる。
【0006】
原料として用いられるアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン等のCl〜C4の低級アルコキシシラン或いはそのオリゴマーが好ましい。水の使用量は通常、アルコキシシラン中のアルコキシ基の1倍当量以上10倍当量以下から選択する。
この際、必要に応じてアルコール類やエ一テル類等の有機溶媒を混合してもよい。アルコールとしては、メタノール、エタノール、プロパノール、ブタノール等が、エ一テルとしてはアセトン類が挙げられる。また、触媒として塩酸、酢酸のような酸やアンモニアのようなアルカリを用いてもよい。高純度の合成石英ガラス粉末を得る為、使用する原料アルコキシシラン、水、溶媒等使用する物質は、すべて高純度であるのが好適である。加水分解生成物を加熱することによって直ちにゲルを得ることが出来るが、常温で放置しても数時間でゲル化するので、加温の程度を調節することによってゲル化時間を調節することができる。
【0007】
生産性を上げるためには、加水分解反応時間を短縮することが有効である。従来、常温の液温で、原料を仕込み終えることが一般的であったが、これは、反応初期の温度が低くなるため、反応時間が長くなる傾向にあった。当然のことながら、原料仕込み終了時の温度を、高くするほど反応時間が短くなり生産効率が高くなる。しかしながら、後述するように、ある温度以上で原料を仕込み終えることは、反応時間の短縮には結びついても、製品の品質を逆に悪化させることが、本発明者らにより新たに判明した。具体的な原料仕込み終了時の温度としては、50℃以下、好ましくは40℃以下、通常20℃以上、更に好ましくは、30〜40℃の範囲が好ましい。原料液温が低すぎると、加水分解反応時間が長くなり、生産性が低下する。逆に高すぎると、製品中に黒色異物が大量に発生して、石英ガラス製品の原料として不適なものとなる。原料仕込み終了時の温度が高すぎると黒色異物が発生し易くなる機構は、はっきりとしていないが、以下のような機構によるものと推測している。原料仕込み終了時の温度が高くなると、加水分解反応が急速に進行して不均一なゲルが生成する。その不均一なゲル中には、加水分解反応が十分に進行していない、未反応有機基が大量に残留しており、これが焼成時に、脱却できずに、未燃カーボンとなって合成石英ガラス粉中に残り、黒色異物となるものと考えられる。また、原料仕込み終了時の温度が高くなると、加水分解反応中に、アルコールやアルコキシシランといった揮発性の成分が、蒸発して、ゲルの組成に何等かの影響を与えている可能性もある。
【0008】
原料仕込み終了時の温度の制御は、仕込み中の反応容器のジャケット温度や仕込む前の原料の温度を調整することによって行うことができるが、原料仕込み速度を制御して、反応熱を利用して仕込み原料の温度を調整することもできる。
このように、原料仕込み終了時の温度を50℃以下、好ましくは40℃以下、通常は20℃以上、更に好ましくは、30〜40℃の範囲に制御することによって、焼成後の製品中に含まれる黒色異物の量が極めて少ない合成石英ガラス粉を得ることができる。
【0009】
加水分解工程に用いる反応容器は特に限定されないが、撹拌が容易であり均一なゲルを容易に得ることができるため、内部に撹拌翼、撹拌羽根等の、物理的撹拌手段を有するものが好ましい。これらの物理的撹拌手段の形状等は特に制限されず、内容物を撹拌しうるものであれば足りる。また、得られたゲルを排出することが容易であることから、いわゆるリボン型撹拌翼が特に好ましい。
【0010】
また,反応容器の容積も特に制限されるものではないが、本発明は、150リットル以上の大容量の容器を用いた場合に特に効果を著しく発現する。
このようにして得られたゲルは、水分や溶媒等の液体成分を多量に含んだウェットゲルである。このウェットゲルを予め乾燥するか、或は、そのまま粉砕することにより、任意の粒度に調製する。ゲルでの粒度分布がこれを焼成して得られる合成石英ガラス粉の粒度を支配するため、目的とする合成石英ガラス粉の粒度分布を見込み、乾燥・焼成による粒子の収縮分を考慮してシリカゲルの最適粒度を決めればよい。
【0011】
通常は、1000ミクロン以下、好ましくは、900ミクロン以下のウェットゲルとし、これを100℃以上で加熱し、水分及び加水分解反応で生成したアルコール等の有機成分等を除去して水分含有量30重量%以下、好ましくは20重量%以下、更に好ましくは、1〜10重量%程度のドライゲルとすることができる。この加熱に先駆けるか或は加熱後に分級することによって、ドライゲルの粒度分布を100〜500ミクロン程度としておけば、これを焼成して得られる合成石英ガラス粉の粒度分布を容易に望ましい範囲に制御することができる。
【0012】
このようにして得られたドライゲルを更に焼成し残基のカーボン及びシラノールを除去し閉孔させ、合成石英ガラス粉とする。
本発明により得られる合成石英ガラス粉は、製品中に含まれる黒色異物の量が極めて少なく、このような合成石英ガラス粉を溶融成形すると、非常に泡の少ないインゴットやルツボを製造することができる。
【0013】
以下、実施例によって、本発明を更に具体的に説明する。
【0014】
【実施例】
実施例1
リボン型攪拌翼を有するジャケット付き横型円筒反応機に、超純水15kgを仕込んだ後、20rpmで攪拌を開始した。その後、テトラメトキシシラン25kgを3分間で仕込んだ。仕込み後の液温は、32℃であった。ジャケットに45℃の温水を通液し、その後、均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。その後、再度、攪拌翼の回転を開始し、反応機底部に設けられたバルブを開放して、塊状ゲルを反応機から取り出した。
【0015】
この塊状ゲルをSUS304製コーンミル型粉砕機で粉砕し、得られた粉状ゲルを真空乾燥機を用いて、200℃、5時間で乾燥を行い、ドライゲルを得た。続いて、このドライゲルを分級して、106〜500μmの粒径に整えた。このドライゲル分級品を石英ガラス容器に、100g仕込み、大気中で、1000℃まで2時間で昇温し、1000℃で10分間保持した後、これを取り出し急冷した。この焼成品中の黒色異物の数を目視で検定した。
その結果、製品50g(粒子数にして、約500万個)中に、2個の黒色異物を検出した。また、同様の操作を更に2回繰り返したところ、各々3個,5個の黒色異物を検出した。
実施例2
実施例1と同様の装置に、超純水15kgを仕込んだ後、テトラメトキシシラン25kgを25分間で仕込み、20rpmで攪拌を開始した。仕込み後の液温は、42℃であった。ジャケットに45℃の温水を通液し、その後、均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。その後の操作は、実施例1と同様に行なった。その結果、製品50g中に、4個の黒色異物を検出した。
実施例3
実施例1と同様の装置に、超純水15kgを仕込んだ後、テトラメトキシシラン25kgを15分間で仕込み、20rpmで攪拌を開始した。仕込み後の液温は、38℃であった。ジャケット温度は、65℃で行なった。その後、均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。その後の操作は、実施例1と同様に行なった。その結果、製品50g中に、6個の黒色異物を検出した。
実施例4
実施例1と同様の装置に、超純水15kgを仕込み、テトラメトキシシラン25kgを3分間で仕込んだ後、攪拌を開始した。仕込み後の液温は、36℃であった。ジャケットに45℃の温水を通液し、その後、均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。その後の操作は、実施例1と同様に行なった。その結果、製品50g中に、3個の黒色異物を検出した。
比較例1
実施例1と同様の装置において、超純水を15kg仕込み、攪拌を開始した。その後、テトラメトキシシラン25kgを25分間で仕込んだ。仕込み後の液温は、55℃であった。ジャケット温度は、40℃で行なった。均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。その後の操作は、実施例1と同様に行なった。その結果、製品50g中に、26個の黒色異物を検出した。また、同様の操作を繰り返した結果、34個の黒色異物を検出した。
【0016】
【発明の効果】
本発明により、高純度石英ガラス製品の原料に適した合成石英ガラス粉を得ることができる。
[0001]
[Industrial application fields]
The present invention relates to a synthetic quartz glass powder suitable for use as a raw material for a synthetic quartz glass powder used in the field of semiconductors and optical cables and the like, particularly an ultra-high purity quartz glass product for semiconductor production used in a high temperature region of 1000 ° C. It is to provide.
Conventionally, crucibles and jigs for manufacturing semiconductor single crystals have been manufactured by melting natural quartz powder obtained by pulverizing natural quartz. It was not satisfactory from the viewpoint of purity. In particular, high-purity single crystals required for higher performance in the semiconductor industry will adversely affect the performance of semiconductors when mixed with metal impurities. Etc. cannot be used. For this reason, recently, high-purity quartz glass powder by synthesis has become necessary. In recent years, silica glass based on a sol-gel method using alkoxysilane as a raw material has been introduced as a highly pure silicic acid source. For example, in JP-A-62-176928, alkoxysilane is hydrolyzed in the presence of an acid or alkali to prepare a gel, which is pulverized, dried and then fired to produce a synthetic quartz glass powder. The method is shown.
[0002]
[Problems to be solved by the invention]
In the production of synthetic quartz glass powder by the sol-gel method, first, alkoxysilane is used as a raw material, which is hydrolyzed and polycondensed to form a wet gel, and by-produced alcohol and water are removed by drying to obtain a dry gel. This is fired to produce synthetic quartz glass powder. However, when actually operating on a large-scale mounting production line, we faced the problem that a large amount of black foreign matter was generated in the synthetic quartz powder product. When this black foreign substance is mixed in a synthetic quartz powder product, when it is melted to form a crucible or ingot, it becomes CO or CO 2 gas, causing foaming. Foamed quartz crucibles and furnace core tubes are It is known to cause problems such as dimensional stability when used at high temperatures, and bubbles that bounce when the single crystal is pulled up, causing liquid surface fluctuations and crystal defects. However, since the mechanism that suppresses the generation of this black foreign substance has not been sufficiently elucidated, it has reached today without being able to elucidate what is the control point in manufacturing. Especially in a large scale production line, unlike the lab scale, it is difficult to control the temperature and hydrolysis reaction, and because large equipment is used, there is contamination from shaft seals, valves, etc. This is not easy, and has been a major obstacle to mass production of synthetic quartz powder.
[0003]
[Means for Solving the Problems]
In order to efficiently obtain a synthetic quartz glass powder having no disadvantages as described above, the present inventors have conducted intensive studies, and as a result, at least until alkoxysilane and water are completely charged in the raw material preparation in the hydrolysis step. The synthetic quartz glass powder that keeps the liquid temperature of the raw material charged in the reaction vessel at 50 ° C. or lower, preferably 40 ° C. or lower, and suppresses the generation of bubbles during melt molding by using a reactor with a jacket as the reaction vessel. The present invention was reached.
[0004]
That is, in the present invention, when a silica gel powder obtained by hydrolysis of an alkoxysilane by hydrolysis of a hydrolyzable silicon compound is baked to produce a synthetic quartz glass powder, at least in the raw material preparation in the hydrolysis step, Until the preparation of silane and water is completed, the liquid temperature of the raw material charged in the reaction vessel is kept at 50 ° C. or lower, and a jacketed reactor is used as the reaction vessel, a method for producing synthetic quartz glass powder, Exist.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The synthetic quartz glass powder of the present invention is obtained by drying and firing a silica gel obtained by hydrolyzing an alkoxysilane. Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water.
[0006]
The alkoxysilane used as a raw material is preferably a C4 to C4 lower alkoxysilane such as tetramethoxysilane or tetraethoxysilane or an oligomer thereof. The amount of water used is usually selected from 1 to 10 equivalents of alkoxy groups in alkoxysilane.
Under the present circumstances, you may mix organic solvents, such as alcohol and ethers, as needed. Examples of the alcohol include methanol, ethanol, propanol, and butanol, and examples of the ether include acetones. Further, an acid such as hydrochloric acid or acetic acid or an alkali such as ammonia may be used as a catalyst. In order to obtain high-purity synthetic quartz glass powder, it is preferable that all the materials used, such as raw material alkoxysilane, water, solvent, etc., have high purity. Although the gel can be obtained immediately by heating the hydrolysis product, it gels in several hours even if it is left at room temperature, so the gelation time can be adjusted by adjusting the degree of heating. .
[0007]
In order to increase productivity, it is effective to shorten the hydrolysis reaction time. Conventionally, it is common to finish the preparation of raw materials at a normal liquid temperature, but this tends to increase the reaction time because the initial temperature of the reaction decreases. Naturally, the higher the temperature at the end of the raw material charging, the shorter the reaction time and the higher the production efficiency. However, as will be described later, it has been newly found out by the present inventors that finishing the raw material at a certain temperature or more leads to a reduction in the reaction time, but worsens the product quality. Specifically, the temperature at the end of the raw material charging is 50 ° C. or less, preferably 40 ° C. or less, usually 20 ° C. or more, and more preferably 30 to 40 ° C. When the raw material liquid temperature is too low, the hydrolysis reaction time becomes long and the productivity is lowered. On the other hand, if it is too high, a large amount of black foreign matter is generated in the product, making it unsuitable as a raw material for quartz glass products. The mechanism by which black foreign matter is likely to be generated when the temperature at the end of raw material charging is too high is not clear, but is presumed to be due to the following mechanism. When the temperature at the end of raw material charging is increased, the hydrolysis reaction proceeds rapidly and a non-uniform gel is generated. In the non-uniform gel, hydrolysis reaction does not proceed sufficiently, and a large amount of unreacted organic groups remain. This cannot be removed during firing, and becomes unburned carbon. It is thought that it remains in the powder and becomes a black foreign substance. In addition, when the temperature at the end of the raw material charging is increased, volatile components such as alcohol and alkoxysilane may evaporate during the hydrolysis reaction, which may have some influence on the gel composition.
[0008]
Control of the temperature at the end of raw material charging can be performed by adjusting the jacket temperature of the reaction vessel being charged or the temperature of the raw material before charging, but by using the heat of reaction by controlling the raw material charging speed. The temperature of the charged raw material can also be adjusted.
Thus, by controlling the temperature at the end of raw material charging to 50 ° C. or less, preferably 40 ° C. or less, usually 20 ° C. or more, more preferably 30 to 40 ° C., it is included in the product after firing. Synthetic quartz glass powder with an extremely small amount of black foreign matter can be obtained.
[0009]
The reaction vessel used in the hydrolysis step is not particularly limited, but a vessel having physical stirring means such as a stirring blade and a stirring blade is preferable because stirring is easy and a uniform gel can be easily obtained. The shape and the like of these physical stirring means are not particularly limited as long as the contents can be stirred. Moreover, since it is easy to discharge | emit the obtained gel, what is called a ribbon type stirring blade is especially preferable.
[0010]
Further, the volume of the reaction vessel is not particularly limited, but the present invention is particularly effective when a large-capacity vessel of 150 liters or more is used.
The gel thus obtained is a wet gel containing a large amount of liquid components such as moisture and solvent. The wet gel is preliminarily dried or pulverized as it is to prepare an arbitrary particle size. Since the particle size distribution in the gel governs the particle size of the synthetic quartz glass powder obtained by firing the silica gel, the particle size distribution of the target synthetic quartz glass powder is expected, and the shrinkage of the particles due to drying and firing is taken into consideration. What is necessary is just to determine the optimal particle size of.
[0011]
Usually, a wet gel of 1000 microns or less, preferably 900 microns or less, is heated at 100 ° C. or more to remove moisture and organic components such as alcohol generated by the hydrolysis reaction, and a moisture content of 30 wt. % Or less, preferably 20% by weight or less, more preferably about 1 to 10% by weight. Prior to this heating or classification after heating, if the particle size distribution of the dry gel is set to about 100 to 500 microns, the particle size distribution of the synthetic quartz glass powder obtained by firing the gel is easily controlled to a desired range. be able to.
[0012]
The dry gel thus obtained is further baked to remove residual carbon and silanol and close the pores to obtain synthetic quartz glass powder.
The synthetic quartz glass powder obtained by the present invention has an extremely small amount of black foreign matter contained in the product, and when such synthetic quartz glass powder is melt-molded, an ingot or crucible with very few bubbles can be produced. .
[0013]
Hereinafter, the present invention will be described more specifically with reference to examples.
[0014]
【Example】
Example 1
After charging 15 kg of ultrapure water into a jacketed horizontal cylindrical reactor having a ribbon type stirring blade, stirring was started at 20 rpm. Thereafter, 25 kg of tetramethoxysilane was charged in 3 minutes. The liquid temperature after preparation was 32 ° C. Hot water of 45 ° C. was passed through the jacket, and when the mixture became uniform sol, stirring was stopped and the contents were allowed to stand for 30 minutes. Thereafter, the rotation of the stirring blade was started again, the valve provided at the bottom of the reactor was opened, and the massive gel was taken out from the reactor.
[0015]
This massive gel was pulverized with a SUS304 corn mill type pulverizer, and the resulting powdered gel was dried at 200 ° C. for 5 hours using a vacuum dryer to obtain a dry gel. Subsequently, this dry gel was classified and adjusted to a particle size of 106 to 500 μm. 100 g of this dry gel classified product was charged in a quartz glass container, heated in air to 1000 ° C. over 2 hours, held at 1000 ° C. for 10 minutes, then taken out and rapidly cooled. The number of black foreign substances in the fired product was visually examined.
As a result, two black foreign objects were detected in 50 g of the product (about 5 million particles). Further, when the same operation was further repeated twice, three and five black foreign matters were detected, respectively.
Example 2
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged, then 25 kg of tetramethoxysilane was charged for 25 minutes, and stirring was started at 20 rpm. The liquid temperature after preparation was 42 ° C. Hot water of 45 ° C. was passed through the jacket, and when the mixture became uniform sol, stirring was stopped and the contents were allowed to stand for 30 minutes. Subsequent operations were performed in the same manner as in Example 1. As a result, four black foreign objects were detected in 50 g of the product.
Example 3
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged, then 25 kg of tetramethoxysilane was charged for 15 minutes, and stirring was started at 20 rpm. The liquid temperature after preparation was 38 ° C. The jacket temperature was 65 ° C. Then, when it became uniform sol, stirring was stopped and the contents were left still for 30 minutes. Subsequent operations were performed in the same manner as in Example 1. As a result, six black foreign objects were detected in 50 g of the product.
Example 4
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged and 25 kg of tetramethoxysilane was charged for 3 minutes, and then stirring was started. The liquid temperature after preparation was 36 ° C. Hot water of 45 ° C. was passed through the jacket, and when the mixture became uniform sol, stirring was stopped and the contents were allowed to stand for 30 minutes. Subsequent operations were performed in the same manner as in Example 1. As a result, three black foreign objects were detected in 50 g of the product.
Comparative Example 1
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged and stirring was started. Thereafter, 25 kg of tetramethoxysilane was charged in 25 minutes. The liquid temperature after preparation was 55 ° C. The jacket temperature was 40 ° C. When uniform sol was obtained, stirring was stopped and the contents were allowed to stand for 30 minutes. Subsequent operations were performed in the same manner as in Example 1. As a result, 26 black foreign objects were detected in 50 g of the product. As a result of repeating the same operation, 34 black foreign objects were detected.
[0016]
【The invention's effect】
According to the present invention, a synthetic quartz glass powder suitable for a raw material of a high purity quartz glass product can be obtained.

Claims (6)

アルコキシシランの加水分解により得られたシリカゲルの粉末を焼成し合成石英ガラス粉を製造するにあたり、加水分解工程の原料仕込みにおいて、少なくともアルコキシシランと水を仕込み終えるまでの間、反応容器に仕込まれた原料の液温を50℃以下に保つとともに、反応容器としてジャケット付き反応機を用いることを特徴とする合成石英ガラス粉の製造方法。When the silica gel powder obtained by hydrolysis of alkoxysilane was baked to produce synthetic quartz glass powder, it was charged into the reaction vessel until at least the alkoxysilane and water were charged in the raw material preparation in the hydrolysis step. A method for producing synthetic quartz glass powder, characterized in that the liquid temperature of the raw material is kept at 50 ° C. or lower and a reactor with a jacket is used as a reaction vessel . 加水分解に用いる反応容器が内部に物理的撹拌手段を有するものである請求項1に記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to claim 1, wherein the reaction vessel used for the hydrolysis has a physical stirring means inside. 物理的撹拌手段がリボン型の攪拌翼である請求項2に記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to claim 2, wherein the physical stirring means is a ribbon type stirring blade. 反応容器の内容積が150リットル以上である請求項1〜3のいずれかに記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to any one of claims 1 to 3, wherein the internal volume of the reaction vessel is 150 liters or more. アルコキシシランがテトラアルコキシシランである請求項1〜4のいずれかに記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to any one of claims 1 to 4, wherein the alkoxysilane is tetraalkoxysilane. テトラアルコキシシランがテトラメトキシシランである請求項5に記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to claim 5, wherein the tetraalkoxysilane is tetramethoxysilane.
JP25999695A 1995-10-05 1995-10-06 Method for producing synthetic quartz glass powder Expired - Fee Related JP3847818B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25999695A JP3847818B2 (en) 1995-10-06 1995-10-06 Method for producing synthetic quartz glass powder
PCT/JP1996/002916 WO1997012837A1 (en) 1995-10-05 1996-10-07 Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
KR1019980702483A KR19990064006A (en) 1995-10-05 1996-10-07 Synthetic quartz glass powder and manufacturing method thereof, and method for producing quartz glass molded body
EP96932838A EP0854113A4 (en) 1995-10-05 1996-10-07 Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25999695A JP3847818B2 (en) 1995-10-06 1995-10-06 Method for producing synthetic quartz glass powder

Publications (2)

Publication Number Publication Date
JPH09100109A JPH09100109A (en) 1997-04-15
JP3847818B2 true JP3847818B2 (en) 2006-11-22

Family

ID=17341852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25999695A Expired - Fee Related JP3847818B2 (en) 1995-10-05 1995-10-06 Method for producing synthetic quartz glass powder

Country Status (1)

Country Link
JP (1) JP3847818B2 (en)

Also Published As

Publication number Publication date
JPH09100109A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
US5516350A (en) Process for producing synthetic quartz glass powder
EP0474158B1 (en) Silica glass powder and a method for its production and a silica glass body product made thereof
JP3413873B2 (en) Synthetic quartz glass powder
JPH0826742A (en) Synthetic quartz glass powder
JP4371565B2 (en) Quartz glass precursor and method for producing the same
JP3847818B2 (en) Method for producing synthetic quartz glass powder
JP3847819B2 (en) Method for producing synthetic quartz glass powder
JP3806956B2 (en) Method for producing synthetic quartz glass powder
JP3832113B2 (en) Aluminum-containing synthetic quartz glass powder, aluminum-containing quartz glass molded body, and methods for producing them
JP4313851B2 (en) Method for producing synthetic quartz glass powder
JP4322262B2 (en) Method for producing synthetic quartz glass powder
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH09118515A (en) Production of synthetic quartz glass powder
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
WO1997012837A1 (en) Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body
JPH09100114A (en) Production of synthetic quartz glass powder
JPH11349340A (en) Production of synthetic silica glass powder and production of silica glass molded form
JP3689926B2 (en) High-purity synthetic quartz glass powder, method for producing the same, and high-purity synthetic quartz glass molded body using the same
JPH10182140A (en) Production of synthetic quartz glass powder and formed quartz glass
JPH07157308A (en) Production of synthetic quartz glass powder
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH0986919A (en) Production of synthetic quartz glass powder
JPH11349337A (en) Production of synthetic silica glass powder and production of silica glass molded form

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees