JP3847819B2 - Method for producing synthetic quartz glass powder - Google Patents

Method for producing synthetic quartz glass powder Download PDF

Info

Publication number
JP3847819B2
JP3847819B2 JP25999795A JP25999795A JP3847819B2 JP 3847819 B2 JP3847819 B2 JP 3847819B2 JP 25999795 A JP25999795 A JP 25999795A JP 25999795 A JP25999795 A JP 25999795A JP 3847819 B2 JP3847819 B2 JP 3847819B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
glass powder
gel
producing synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25999795A
Other languages
Japanese (ja)
Other versions
JPH09100115A (en
Inventor
隆伸 香月
芳雄 勝呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25999795A priority Critical patent/JP3847819B2/en
Priority to PCT/JP1996/002916 priority patent/WO1997012837A1/en
Priority to EP96932838A priority patent/EP0854113A4/en
Priority to KR1019980702483A priority patent/KR19990064006A/en
Publication of JPH09100115A publication Critical patent/JPH09100115A/en
Application granted granted Critical
Publication of JP3847819B2 publication Critical patent/JP3847819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体分野、及び、光ケーブル等に使用される合成石英ガラス粉、特に1000℃以上の高温度領域で使用される半導体製造用超高純度石英ガラス製品の原料として好適な合成石英ガラス粉を提供するものである。
従来、半導体単結晶製造用のルツボや治具等は、天然石英を粉砕して得た天然石英粉を溶融して製造されていたが、天然石英は良質のものであっても種々の金属不純物を含んでおり、純度の面から十分満足し得るものではなかった。特に、半導体産業の高性能化に伴って要求される高純度単結晶には、金属不純物が混入すると半導体の性能に悪影響を与えるので、金属不純物等の混入が懸念されるようなルツボや治具等を使用することは出来ない。この為、最近では、合成による高純度な石英ガラス粉末が必要になってきている。近年、純度的にすぐれたケイ酸源として、アルコキシシランを原科としたゾル・ゲル法による石英ガラスが紹介されている。例えば、特開昭62一176928号公報には、アルコキシシランを酸又はアルカリの存在下、加水分解してゲルを調製し、これを粉砕、乾燥した後、焼成して合成石英ガラス粉を製造する方法が示されている。
【0002】
【発明が解決しようとする課題】
ゾル・ゲル法による合成石英ガラス粉の製造では、まず、原料としてアルコキシシランを用い、これを加水分解・縮重合させてウエットゲルとし、副生したアルコールや水を乾燥除去してドライゲルとする。これを焼成して合成石英ガラス粉を製造している。ところが、スケールが大きな実装生産ラインで連続的に運転を行なうと、焼成後、カーボンの残留した黒色異物が合成石英粉の製品中に大量に混入することが判明した。この黒色異物が合成石英粉の製品中に混入すると、ルツボやインゴットに成形するために溶融した際、COやCO2ガスとなって発泡の原因となり、泡を含んだ石英ルツボや炉心管等は、高温使用時の寸法安定性や、単結晶引き上げ時に泡が弾けて液面揺動、結晶欠陥となる等の間題を引き起こす。しかしながら、この黒色異物の発生を抑制する機構が十分解明されていないため、製造上の制御ポイントは何なのか解明できないまま今日に至っている。また、安全性の観点から、有毒なアルコキシシランの残留は好ましくなく、完全に加水分解反応を進めることが望まれている。
【0003】
【課題を解決するための手段】
本発明者等は、上記のような不都合のない合成石英ガラス粉末を得るため、鋭意検討を重ねた結果、加水分解工程において、原料仕込み終了から、ゲル化に至るまでの時間が短いと、焼成後に多数の黒色異物が発生することを見出し、本発明に到達した。すなわち、本発明は、アルコキシシランの加水分解により得られたシリカゲルの粉末を焼成し合成石英ガラス粉を製造するにあたり、加水分解工程において、少なくともアルコキシシランと水を仕込み終えてから、ゲル化するまでの時間を、10分以上とするとともに、反応容器としてジャケット付き反応機を用いることを特徴とする合成石英ガラス粉の製造方法、にある。
【0004】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の合成石英ガラス粉は、アルコキシシランを加水分解して得られるシリカゲルを乾燥後、焼成して得られるものである。ゾルゲル法によるアルコキシシランの加水分解は、アルコキシシランと水を反応させることによって行なわれる。
【0005】
原料として用いられるアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン等のCl〜C4の低級アルコキシシラン或いはそのオリゴマーが、得られる合成石英ガラス粉中の黒色異物の発生が少なく好ましい。
水の使用量は通常、アルコキシシラン中のアルコキシ基の1倍当量以上10倍当量以下から選択する。この際、必要に応じてアルコール類やエ一テル類等の有機溶媒を混合してもよい。アルコールとしては、メタノール、エタノール、プロパノール、ブタノール等が、エ一テルとしてはアセトン類が挙げられる。また、触媒として塩酸、酢酸のような酸やアンモニアのようなアルカリを用いてもよい。高純度の合成石英ガラス粉末を得る為、使用する原料アルコキシシラン、水、溶媒等使用する物質は、すべて高純度であるのが好適である。加水分解生成物を加熱することによって直ちにゲルを得ることができるが、常温で放置しても数時間でゲル化するので、加温の程度を調節することによってゲル化時間を調節することができる。
【0006】
本発明においては、この加水分解工程において、少なくともアルコキシシランと水の双方を仕込み終えてから、ゲル化するまでの時間を、10分以上とするとともに、反応容器としてジャケット付き反応機を用いることによって、焼成後に製品中に含まれる黒色異物の発生量が少なくなることを見出した。このような効果が得られる機構は、明確ではないが、以下のような機構によるものと考えられる。
【0007】
原料仕込み終了からゲル化に至るまでの時間が短いと、アルコキシシランの加水分解反応が十分に進行しないまま、ゲル化してしまう。そのため、目的とした組成のウェットゲルを得ることができなかったり、ウエットゲル中に、未反応の有機基が残留すると考えられる。この様な未反応原料を吸収したゲル、若しくは未反応有機基を有するゲルは、その有機基が炭化して、焼成後に黒色異物となるものと考えられる。この黒色異物の生成を抑制するためには、有機基の残留カーボンを完全に燃焼させるために、焼成時間を長くしたり、焼成時の酸素濃度を大きくするなどの特別な操作が必要となり、生産性を著しく低下させることになる。
【0008】
なお、毒性をもつアルコキシシランが未反応のまま、ウェットゲル中に取り込まれて、そのまま排出されることになる。特に、テトラメトキシシランは、その蒸気に曝露すると角膜剥離、気管支炎等の障害を人体に引き起こすことが知られており、未反応原料の残留はこのように極めて少量であっても、安全上好ましくないものである。
【0009】
なお、仕込み終了からゲル化までの時間は10分以上であれば特に制限されず、長時間を要しても、得られるゲルやこれを焼成してなる合成石英粉の物性が低下することはない。そこで、生産性を考慮し、仕込みから数時間以内、特に好ましくは1時間以内とするのが実用的である。
原料仕込み終了からゲル化に至るまでの時間を制御する手段については、原料仕込み終了まで反応容器内の液温を低く保ち、加水分解反応速度を遅くする方法や原料の仕込み時間を短縮して、ゲル化に至るまでの時間を稼ぐ方法などを適宜採用することができる。
【0010】
尚、内容物がゲル化する時点は、目視により容易に確認可能である。一般に、ゲル化直前には液体は、突沸状態であり、泡がぐるぐると動きまわっていたものが、急激に粘性が大きくなり、泡の動きが止まってゲル化する、等の挙動が観察できる。
加水分解工程に用いる反応容器は特に限定されないが、撹拌が容易であり均一なゲルを容易に得ることができるため、内部に撹拌翼、撹拌羽根等の、物理的撹拌手段を有するものが好ましい。これらの物理的撹拌手段の形状等は特に制限されず、内容物を撹拌しうるものであれば足りる。また、得られたゲルを排出することが容易であることから、いわゆるリボン型撹拌翼が特に好ましい。
【0011】
また,反応容器の容積も特に制限されるものではないが、本発明は、150リットル以上の大容量の容器を用いた場合に特に効果を著しく発現する。
以上に述べた方法に従って、原料を仕込んで、加水分解反応を行なうと、焼成後の製品中に含まれる黒色異物の量を抑制することが可能となり、また安全性も向上する。
【0012】
このようにして得られたゲルは、水分や溶媒等の液体成分を多量に含んだウェットゲルである。このウェットゲルを予め乾燥するか、或は、そのまま粉砕することにより、任意の粒度に調製する。ゲルでの粒度分布がこれを焼成して得られる合成石英ガラス粉の粒度を支配するため、目的とする合成石英ガラス粉の粒度分布を見込み、乾燥・焼成による粒子の収縮分を考慮してシリカゲルの最適粒度を決めればよい。
【0013】
通常は、1000ミクロン以下、好ましくは、900ミクロン以下のウェットゲルとし、これを100℃以上で加熱し、水分及び加水分解反応で生成したアルコール等の有機成分等を除去して水分含有量30重量%以下、好ましくは20重量%以下、更に好ましくは、1〜10重量%程度のドライゲルとすることができる。この加熱に先駆けるか或は加熱後に分級することによって、ドライゲルの粒度分布を100〜500ミクロン程度としておけば、これを焼成して得られる合成石英ガラス粉の粒度分布を容易に望ましい範囲に制御することができる。
【0014】
このようにして得られたドライゲルを更に焼成し残基のカーボン及びシラノールを除去し閉孔させ、合成石英ガラス粉とする。
本発明により得られる合成石英ガラス粉は、製品中に含まれる黒色異物の量が極めて少なく、このような合成石英ガラス粉を溶融成形すると、非常に泡の少ないインゴットやルツボを製造することが出来る。
【0015】
以下、実施例によって本発明を更に具体的に説明する。
【0016】
【実施例】
実施例1
リボン型攪拌翼を有するジャケット付き横型円筒反応機に、超純水15kgを仕込んだ後、20rpmで攪拌を開始した。その後、テトラメトキシシラン25kgを3分間で仕込んだ。ジャケットに通液する温水の温度は、45℃とした。その後、均一なゾルになったところで攪拌を停止し、内容物を30分間静置した。内容物の変化を反応容器のガラス窓から目視していたところ、仕込み終了後の40分後にゲル化した。その後、再度、攪拌翼の回転を開始し、反応機底部に設置したバルブを開放して、こぶし大の塊状ゲルを反応機から取り出した。
【0017】
この塊状ゲルをSUS304製コーンミル型粉砕機で粉砕し、得られた粉状ゲルを真空乾燥機を用いて、200℃、5時間で乾燥を行い、ドライゲルを得た。続いて、このドライゲルを分級して、106〜500μmの粒径に整えた。このドライゲル分級品を石英ガラス容器に、100g仕込み、大気中で、1000℃まで2時間で昇温し、1000℃で10分間保持した後、これを取り出し急冷した。この焼成品中の黒色異物の数を目視で検定した。
【0018】
その結果、製品50g(粒子数にして、約500万個)中に、2個の黒色異物を検出した。また、同様の操作を更に2回繰り返したところ、各々3,5個の黒色異物を検出した。
実施例2
実施例1と同様の装置に、超純水15kgを仕込み、テトラメトキシシラン25kgを25分間で仕込んだ後、20rpmで攪拌を開始した。ジャケットに通液する温水の温度は、45℃とした。均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。仕込み終了後の25分後にゲル化した。
【0019】
その後の操作は、実施例1と同様に行なった。
その結果、製品50g中に、4個の黒色異物を検出した。
実施例3
実施例1と同様の装置に、超純水15kgを仕込み、テトラメトキシシラン25kgを15分間で仕込んだ後、攪拌を開始した。ジャケット温度は、65℃で行なった。均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。仕込み終了後の13分後にゲル化した。
【0020】
その後の操作は、実施例1と同様に行なった。
その結果、製品50g中に、6個の黒色異物を検出した。
実施例4
実施例1と同様の装置に、超純水15kgを仕込んみ、テトラメトキシシラン25kgを3分間で仕込んだ後、20rpmで攪拌を開始した。ジャケットに通液する温水の温度は、65℃とした。均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。仕込み終了後の15分後にゲル化した。
その後の操作は、実施例1と同様に行なった。
その結果、製品50g中に、3個の黒色異物を検出した。
比較例1
実施例1と同様の装置に、超純水15kgを仕込み、20rpmで攪拌を開始した。その後、テトラメトキシシラン25kgを25分間で仕込んだ。ジャケットに通液する温水の温度は40℃で行なった。均一なゾルになったところで、攪拌を停止し、内容物を30分間静置した。仕込み終了後の5分後にゲル化した。
【0021】
その後の操作は、実施例1と同様の操作を行なった。
その結果、製品50g中に、26個の黒色異物を検出した。また、超純水15kg仕込み以降の操作を繰り返した結果、34個の黒色異物を検出した。
【0022】
【発明の効果】
本発明により、高純度石英ガラス製品の原料に適した、合成石英ガラス粉を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic quartz glass powder suitable for use as a raw material for a synthetic quartz glass powder used in the field of semiconductors and optical cables and the like, particularly an ultra-high purity quartz glass product for semiconductor production used in a high temperature region of 1000 ° C. or higher. It is to provide.
Conventionally, crucibles and jigs for manufacturing semiconductor single crystals have been manufactured by melting natural quartz powder obtained by pulverizing natural quartz. It was not satisfactory from the viewpoint of purity. In particular, high-purity single crystals required for higher performance in the semiconductor industry will adversely affect the performance of semiconductors when mixed with metal impurities. Etc. cannot be used. For this reason, recently, high-purity quartz glass powder by synthesis has become necessary. In recent years, silica glass based on a sol-gel method based on alkoxysilane has been introduced as a highly pure silicic acid source. For example, in JP-A-62-176928, alkoxysilane is hydrolyzed in the presence of an acid or alkali to prepare a gel, which is pulverized, dried and then fired to produce a synthetic quartz glass powder. The method is shown.
[0002]
[Problems to be solved by the invention]
In the production of synthetic quartz glass powder by the sol-gel method, first, alkoxysilane is used as a raw material, which is hydrolyzed and polycondensed to form a wet gel, and by-produced alcohol and water are removed by drying to obtain a dry gel. This is fired to produce synthetic quartz glass powder. However, it has been found that when the operation is continuously performed on a mounting production line having a large scale, a large amount of black foreign matter with carbon remaining after firing is mixed in the synthetic quartz powder product. When this black foreign substance is mixed in a synthetic quartz powder product, when it is melted to form a crucible or ingot, it becomes CO or CO 2 gas, causing foaming. Foamed quartz crucibles and furnace core tubes are This causes problems such as dimensional stability at the time of high temperature use, bubbles popping when the single crystal is pulled up, liquid level fluctuation, and crystal defects. However, since the mechanism that suppresses the generation of this black foreign substance has not been sufficiently elucidated, it has reached today without being able to elucidate what is the control point in manufacturing. In addition, from the viewpoint of safety, it is not preferable that toxic alkoxysilane remains, and it is desired to proceed the hydrolysis reaction completely.
[0003]
[Means for Solving the Problems]
In order to obtain a synthetic quartz glass powder having no disadvantages as described above, the present inventors have intensively studied. As a result, in the hydrolysis process, if the time from the completion of raw material charging to the gelation is short, firing is performed. Later, it was found that a large number of black foreign matters were generated, and the present invention was reached. That is, according to the present invention, when the silica gel powder obtained by hydrolysis of alkoxysilane is baked to produce synthetic quartz glass powder, in the hydrolysis step, at least after alkoxysilane and water are charged, it is gelled. And a method for producing synthetic quartz glass powder, wherein a reactor with a jacket is used as a reaction vessel .
[0004]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The synthetic quartz glass powder of the present invention is obtained by drying and firing a silica gel obtained by hydrolyzing an alkoxysilane. Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water.
[0005]
As the alkoxysilane used as a raw material, Cl to C4 lower alkoxysilanes such as tetramethoxysilane and tetraethoxysilane or oligomers thereof are preferable because black foreign matters are not generated in the resulting synthetic quartz glass powder.
The amount of water used is usually selected from 1 to 10 equivalents of alkoxy groups in alkoxysilane. Under the present circumstances, you may mix organic solvents, such as alcohol and ethers, as needed. Examples of the alcohol include methanol, ethanol, propanol, and butanol, and examples of the ether include acetones. Further, an acid such as hydrochloric acid or acetic acid or an alkali such as ammonia may be used as a catalyst. In order to obtain high-purity synthetic quartz glass powder, it is preferable that all the materials used, such as raw material alkoxysilane, water, solvent, etc., have high purity. Although the gel can be obtained immediately by heating the hydrolysis product, it gels in several hours even if it is left at room temperature, so the gelation time can be adjusted by adjusting the degree of heating. .
[0006]
In the present invention, in this hydrolysis step, at least 10 minutes from the completion of charging both alkoxysilane and water to gelation, and using a jacketed reactor as a reaction vessel It has been found that the amount of black foreign matter contained in the product after firing is reduced. The mechanism for obtaining such an effect is not clear, but is considered to be due to the following mechanism.
[0007]
If the time from the completion of the raw material charging to the gelation is short, the alkoxysilane hydrolysis reaction will not proceed sufficiently and gelation will occur. For this reason, it is considered that a wet gel having the intended composition cannot be obtained, or that unreacted organic groups remain in the wet gel. Such a gel that has absorbed unreacted raw materials or a gel that has unreacted organic groups is considered to carbonize the organic groups and become black foreign matter after firing. In order to suppress the formation of this black foreign matter, special operations such as extending the firing time or increasing the oxygen concentration during firing are required to completely burn the residual carbon of the organic group. Will significantly reduce the performance.
[0008]
In addition, the toxic alkoxysilane remains unreacted and is taken into the wet gel and discharged as it is. In particular, tetramethoxysilane is known to cause damage to the human body when exposed to its vapor, such as corneal detachment and bronchitis. Even if such unreacted material remains in such a small amount, it is preferable for safety. There is nothing.
[0009]
In addition, the time from the completion of preparation to gelation is not particularly limited as long as it is 10 minutes or longer, and even if a long time is required, the physical properties of the obtained gel and the synthetic quartz powder obtained by firing the gel are reduced. Absent. Therefore, in consideration of productivity, it is practical to set the time within several hours from the preparation, and particularly preferably within one hour.
Regarding the means to control the time from the completion of raw material charging to gelation, the liquid temperature in the reaction vessel is kept low until the raw material charging is completed, the method of slowing the hydrolysis reaction rate and the raw material charging time are shortened, A method of gaining time until gelation can be appropriately employed.
[0010]
In addition, the time when the contents are gelled can be easily confirmed visually. In general, immediately before gelation, the liquid is in a bumping state, and when the bubbles move around, the viscosity suddenly increases and the behavior of the bubbles stops and gels can be observed.
The reaction vessel used in the hydrolysis step is not particularly limited, but a vessel having physical stirring means such as a stirring blade and a stirring blade is preferable because stirring is easy and a uniform gel can be easily obtained. The shape and the like of these physical stirring means are not particularly limited as long as the contents can be stirred. Moreover, since it is easy to discharge | emit the obtained gel, what is called a ribbon type stirring blade is especially preferable.
[0011]
Further, the volume of the reaction vessel is not particularly limited, but the present invention is particularly effective when a large-capacity vessel of 150 liters or more is used.
When the raw material is charged and the hydrolysis reaction is performed according to the method described above, the amount of black foreign matter contained in the fired product can be suppressed, and the safety is improved.
[0012]
The gel thus obtained is a wet gel containing a large amount of liquid components such as moisture and solvent. The wet gel is preliminarily dried or pulverized as it is to prepare an arbitrary particle size. Since the particle size distribution in the gel governs the particle size of the synthetic quartz glass powder obtained by firing the silica gel, the particle size distribution of the target synthetic quartz glass powder is expected, and the shrinkage of the particles due to drying and firing is taken into consideration. What is necessary is just to determine the optimal particle size of.
[0013]
Usually, a wet gel of 1000 microns or less, preferably 900 microns or less, is heated at 100 ° C. or more to remove moisture and organic components such as alcohol generated by the hydrolysis reaction, and a moisture content of 30 wt. % Or less, preferably 20% by weight or less, and more preferably about 1 to 10% by weight. Prior to this heating or classification after heating, if the particle size distribution of the dry gel is set to about 100 to 500 microns, the particle size distribution of the synthetic quartz glass powder obtained by firing the gel is easily controlled to a desired range. be able to.
[0014]
The dry gel thus obtained is further baked to remove residual carbon and silanol and close the pores to obtain synthetic quartz glass powder.
The synthetic quartz glass powder obtained by the present invention has a very small amount of black foreign matter contained in the product, and when such synthetic quartz glass powder is melt-molded, ingots and crucibles with very few bubbles can be produced. .
[0015]
Hereinafter, the present invention will be described more specifically with reference to examples.
[0016]
【Example】
Example 1
After charging 15 kg of ultrapure water into a jacketed horizontal cylindrical reactor having a ribbon type stirring blade, stirring was started at 20 rpm. Thereafter, 25 kg of tetramethoxysilane was charged in 3 minutes. The temperature of the hot water flowing through the jacket was 45 ° C. Thereafter, the stirring was stopped when the sol became uniform, and the contents were allowed to stand for 30 minutes. When the change of the contents was visually observed from the glass window of the reaction vessel, it gelled 40 minutes after the completion of the preparation. After that, the rotation of the stirring blade was started again, the valve installed at the bottom of the reactor was opened, and the fist-sized massive gel was taken out from the reactor.
[0017]
This massive gel was pulverized with a SUS304 corn mill type pulverizer, and the resulting powdered gel was dried at 200 ° C. for 5 hours using a vacuum dryer to obtain a dry gel. Subsequently, this dry gel was classified and adjusted to a particle size of 106 to 500 μm. 100 g of this dry gel classified product was charged in a quartz glass container, heated in air to 1000 ° C. over 2 hours, held at 1000 ° C. for 10 minutes, then taken out and rapidly cooled. The number of black foreign substances in the fired product was visually examined.
[0018]
As a result, two black foreign objects were detected in 50 g of the product (about 5 million particles). Further, when the same operation was further repeated twice, three or five black foreign matters were detected respectively.
Example 2
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged, 25 kg of tetramethoxysilane was charged for 25 minutes, and then stirring was started at 20 rpm. The temperature of the hot water flowing through the jacket was 45 ° C. When uniform sol was obtained, stirring was stopped and the contents were allowed to stand for 30 minutes. Gelation occurred 25 minutes after the completion of the preparation.
[0019]
Subsequent operations were performed in the same manner as in Example 1.
As a result, four black foreign objects were detected in 50 g of the product.
Example 3
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged and 25 kg of tetramethoxysilane was charged for 15 minutes, and then stirring was started. The jacket temperature was 65 ° C. When uniform sol was obtained, stirring was stopped and the contents were allowed to stand for 30 minutes. Gelation occurred 13 minutes after the completion of the preparation.
[0020]
Subsequent operations were performed in the same manner as in Example 1.
As a result, six black foreign objects were detected in 50 g of the product.
Example 4
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged, 25 kg of tetramethoxysilane was charged for 3 minutes, and stirring was started at 20 rpm. The temperature of warm water flowing through the jacket was 65 ° C. When uniform sol was obtained, stirring was stopped and the contents were allowed to stand for 30 minutes. Gelation occurred 15 minutes after the completion of the preparation.
Subsequent operations were performed in the same manner as in Example 1.
As a result, three black foreign objects were detected in 50 g of the product.
Comparative Example 1
In the same apparatus as in Example 1, 15 kg of ultrapure water was charged, and stirring was started at 20 rpm. Thereafter, 25 kg of tetramethoxysilane was charged in 25 minutes. The temperature of warm water flowing through the jacket was 40 ° C. When uniform sol was obtained, stirring was stopped and the contents were allowed to stand for 30 minutes. Gelation occurred 5 minutes after the completion of the preparation.
[0021]
Subsequent operations were the same as in Example 1.
As a result, 26 black foreign objects were detected in 50 g of the product. In addition, as a result of repeating the operation after 15 kg of ultrapure water was charged, 34 black foreign objects were detected.
[0022]
【The invention's effect】
According to the present invention, synthetic quartz glass powder suitable for a raw material for high-purity quartz glass products can be obtained.

Claims (6)

アルコキシシランの加水分解により得られたシリカゲルの粉末を焼成し合成石英ガラス粉を製造するにあたり、加水分解工程において、少なくともアルコキシシランと水を仕込み終えてから、ゲル化するまでの時間を、10分以上とするとともに、反応容器としてジャケット付き反応機を用いることを特徴とする合成石英ガラス粉の製造方法。In the production of synthetic quartz glass powder by firing the silica gel powder obtained by hydrolysis of alkoxysilane, the time from the completion of charging at least alkoxysilane and water to the gelation in the hydrolysis step is 10 minutes. A method for producing synthetic quartz glass powder characterized by using a reactor with a jacket as a reaction vessel . 加水分解工程に用いる反応容器が、その内部に物理的撹拌手段を有するものである請求項1記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to claim 1, wherein the reaction vessel used in the hydrolysis step has a physical stirring means inside thereof. 物理的撹拌手段がリボン型の攪拌翼である請求項2記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to claim 2, wherein the physical stirring means is a ribbon type stirring blade. 加水分解工程に用いる反応容器の内容積が150リットル以上である請求項1〜3のいずれかに記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to any one of claims 1 to 3, wherein the internal volume of the reaction vessel used in the hydrolysis step is 150 liters or more. アルコキシシランとしてテトラアルコキシシランを用いる請求項1〜4のいずれかに合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to any one of claims 1 to 4, wherein tetraalkoxysilane is used as the alkoxysilane. テトラアルコキシシランとしてテトラメトキシシランを用いる請求項5記載の合成石英ガラス粉の製造方法。The method for producing synthetic quartz glass powder according to claim 5, wherein tetramethoxysilane is used as the tetraalkoxysilane.
JP25999795A 1995-10-05 1995-10-06 Method for producing synthetic quartz glass powder Expired - Fee Related JP3847819B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25999795A JP3847819B2 (en) 1995-10-06 1995-10-06 Method for producing synthetic quartz glass powder
PCT/JP1996/002916 WO1997012837A1 (en) 1995-10-05 1996-10-07 Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
EP96932838A EP0854113A4 (en) 1995-10-05 1996-10-07 Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
KR1019980702483A KR19990064006A (en) 1995-10-05 1996-10-07 Synthetic quartz glass powder and manufacturing method thereof, and method for producing quartz glass molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25999795A JP3847819B2 (en) 1995-10-06 1995-10-06 Method for producing synthetic quartz glass powder

Publications (2)

Publication Number Publication Date
JPH09100115A JPH09100115A (en) 1997-04-15
JP3847819B2 true JP3847819B2 (en) 2006-11-22

Family

ID=17341867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25999795A Expired - Fee Related JP3847819B2 (en) 1995-10-05 1995-10-06 Method for producing synthetic quartz glass powder

Country Status (1)

Country Link
JP (1) JP3847819B2 (en)

Also Published As

Publication number Publication date
JPH09100115A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
JPH072513A (en) Production of synthetic quartz glass powder
EP0474158B1 (en) Silica glass powder and a method for its production and a silica glass body product made thereof
JP3413873B2 (en) Synthetic quartz glass powder
JPH0826742A (en) Synthetic quartz glass powder
JP4371565B2 (en) Quartz glass precursor and method for producing the same
JP3847819B2 (en) Method for producing synthetic quartz glass powder
JP3847818B2 (en) Method for producing synthetic quartz glass powder
JP3806956B2 (en) Method for producing synthetic quartz glass powder
JP4313851B2 (en) Method for producing synthetic quartz glass powder
JP4322262B2 (en) Method for producing synthetic quartz glass powder
JP2000169163A (en) Synthetic quartz glass powder containing aluminum, synthetic quartz glass formed body containing aluminum, and production of the same
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH09118515A (en) Production of synthetic quartz glass powder
JP4075193B2 (en) Niobium-containing synthetic quartz glass powder, quartz glass molded body, and production method thereof
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JPH10182140A (en) Production of synthetic quartz glass powder and formed quartz glass
JPH07157308A (en) Production of synthetic quartz glass powder
WO1997012837A1 (en) Synthetic silica glass powder, process for the production thereof, and process for the production of moldings of silica glass
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body
JPH0521855B2 (en)
JP3526591B2 (en) Manufacturing method of synthetic quartz glass
JP3772453B2 (en) Method for producing aluminum-containing synthetic quartz powder
JPH11349340A (en) Production of synthetic silica glass powder and production of silica glass molded form
JPH11349337A (en) Production of synthetic silica glass powder and production of silica glass molded form

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees