JPS61186226A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS61186226A
JPS61186226A JP2503085A JP2503085A JPS61186226A JP S61186226 A JPS61186226 A JP S61186226A JP 2503085 A JP2503085 A JP 2503085A JP 2503085 A JP2503085 A JP 2503085A JP S61186226 A JPS61186226 A JP S61186226A
Authority
JP
Japan
Prior art keywords
glass
silica
sol
fine powder
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2503085A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Masatake Matsuo
誠剛 松尾
Masanobu Motoki
元木 正信
Sadao Kanbe
貞男 神戸
Haruo Nagafune
長船 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2503085A priority Critical patent/JPS61186226A/en
Publication of JPS61186226A publication Critical patent/JPS61186226A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:In sol-gel method using a metallic alkoxide and fine powder silica, to obtain high-quality quartz glass suitable as a parent material for optical fiber, etc. easily in improved economic efficiency, by adding a doping material to the fine powder silica. CONSTITUTION:Fine powder silica is previously blended with a doping material by a method to disperse the fine powder silica into ethyl alcohol, etc. and to blend the dispersion with the doping agent (e.g., germanium oxide powder) uniformly, etc. The fine powdery silica blended with the doping agent and a metallic alkoxide (e.g., ethyl silicate) as main raw materials are processed by sol-gel method, to produce quartz glass. Consequently, since the doping agent added is used as fine powder particles but not a metallic alkoxide, a uniform and high-purity sol solution can be easily prepared, so high-quality glass can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はドープ材を混入した微粉末シリカを用いた石英
糸ガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing quartz fiber glass using finely powdered silica mixed with a dopant.

〔従来の技術〕[Conventional technology]

石英系ガラスの製造方法の1つとして、(特願昭58−
237577)にあるようGこ、微粉末シリカと金属ア
ルコキシドを用いたゾル−ゲル法が知られている。一般
にこの製法は金属アルコキシドの加水分解溶液と種々の
方法により調製した微粉末シリカとを混合して得られる
ゾル溶液を縮重合反応させ、焼結ガラスの前駆体となる
ゲルを調整する。次に、このゲル体を十分に乾燥させた
後、所定の温度で焼結して透明ガラス体を得るものであ
り、この微粉末シリカを用いたゾル−ゲル法では、従来
、微粉末粒子を用いないゾル−ゲル法や、溶融を伴なう
その他の方法では実現が難しいとされていた、高品質か
つ大面積、大体積なガラス体を容易に得ることができる
As one of the manufacturing methods of quartz glass,
237577), a sol-gel method using finely powdered silica and metal alkoxide is known. Generally, in this manufacturing method, a sol solution obtained by mixing a hydrolyzed solution of a metal alkoxide and finely powdered silica prepared by various methods is subjected to a polycondensation reaction to prepare a gel that becomes a precursor of sintered glass. Next, this gel body is sufficiently dried and then sintered at a predetermined temperature to obtain a transparent glass body. Conventionally, in the sol-gel method using fine powder silica, fine powder particles were It is possible to easily obtain a high-quality, large-area, large-volume glass body, which has been difficult to achieve using the sol-gel method that does not use the method or other methods that involve melting.

〔発明が解決しようとする間顧点〕[Problems that the invention attempts to solve]

従来の微粉末シリカを用いたゾル−ゲル法では、ドープ
材を金属アルコキシドの形で用いて、得られる石英系ガ
ラスに様々な特徴を持たせていた。しかし、この方法で
は、ドープ材として用いる金属アルコキシドが液体であ
るため原料の混合が容易であるという利点がある反面、
以下の様な問題点が指摘される。
In the conventional sol-gel method using finely powdered silica, a dopant in the form of a metal alkoxide is used to impart various characteristics to the resulting quartz-based glass. However, this method has the advantage that it is easy to mix the raw materials because the metal alkoxide used as the dopant is a liquid.
The following problems are pointed out.

(1)  ドープ材として用いる金属アルコキシドの中
には反応性に富むものが多く、雰囲気中の微鼠な水分と
素早く反応し、たやすく酸化物などに分解する。したが
って、取扱いが難しい。
(1) Many of the metal alkoxides used as doping materials are highly reactive, react quickly with minute amounts of moisture in the atmosphere, and easily decompose into oxides and the like. Therefore, it is difficult to handle.

(2)  反応性に富むがために局部的な反応が進行し
やすく、必ずしも均質なゾルが得られない場合がある。
(2) Because of its high reactivity, local reactions tend to proceed, and a homogeneous sol may not always be obtained.

(3)  ドープ材を反応性に富んだ金属アルコキシド
として用いるため、局部的不均一反応をおさえる目的か
ら、工程数が多く複雑なものとなる。
(3) Since the doping material is a highly reactive metal alkoxide, the number of steps is large and complicated in order to suppress local heterogeneous reactions.

(4) 一部に例外はあるものの、ドープ材として用い
る金属アルコキシドは、一般に非常に高価であるため、
製品のコストアップにつながりやすいゾル−ゲル法では
、焼結体であるガラス体の品質はゾルの品質、つまり、
均質性、純度2粒子の分散性などに依存する所が極めて
大きいため、高品質のゾルを得ることが非常に重要であ
る。そこで本発明はこのような問題点を解決するもので
、その目的とするところは、ドープ材を金属アルコキシ
ドの形で用いるのではなく、微粉末粒子の形で用いるこ
とにより、従来よりも高品質なゾル溶液を容易に調整し
、優れた機能を有する焼結ガラス体を製造することを目
的としている。
(4) Although there are some exceptions, metal alkoxides used as dopants are generally very expensive, so
In the sol-gel method, which tends to increase the cost of the product, the quality of the sintered glass body is the quality of the sol, that is,
It is extremely important to obtain a high-quality sol, as it greatly depends on the homogeneity, purity, and dispersibility of the particles. The present invention is intended to solve these problems, and its purpose is to use the doping material in the form of fine powder particles rather than in the form of metal alkoxide, thereby achieving higher quality than before. The aim is to easily prepare a sol solution and produce a sintered glass body with excellent functionality.

〔問題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明の石英系ガラスの
製造方法は、金属アルコキシドおよび微粉末シリカを主
原料として用いるゾル−ゲル法において、ドープ材を微
粉末シリカに混入させることを特徴とする。さらに、こ
の時ドープ材として1種類以上の微粉末を微粉末シリカ
と物理的に混合、又は、化学的に固溶、あるいは、その
両方を同等に用いることを特徴とする。
In order to solve the above problems, the method for manufacturing silica-based glass of the present invention is characterized in that a dopant is mixed into finely powdered silica in a sol-gel method using metal alkoxide and finely powdered silica as main raw materials. do. Furthermore, at this time, one or more kinds of fine powders are physically mixed with the fine powder silica, or chemically dissolved in solid solution, or both are equally used as a doping material.

この製造方法は、微粉末粒子と金属アルコキシドを原料
としたゾル−ゲル法を用いるものならばどのようなガラ
スの製造時にも応用でき、通常の平板ガラスに限らず、
光ファイバ用ガラスなどの多層構造を有するガラスの製
造時にも非常に有効である。もちろん、石英系のガラス
に限らず、他のゲルマニウム系、フッ素系、カルコゲナ
イド系、窒化物系ガラスなど、あらゆる種類のガラス製
造時に応用できることも明らかである。
This manufacturing method can be applied to any type of glass that uses the sol-gel method using fine powder particles and metal alkoxide as raw materials, and is not limited to ordinary flat glass.
It is also very effective when manufacturing glass having a multilayer structure such as glass for optical fibers. Of course, it is clear that it can be applied to the production of all types of glasses, including not only quartz-based glasses but also other germanium-based, fluorine-based, chalcogenide-based, and nitride-based glasses.

〔実施例〕〔Example〕

以下に本発明を石英系ガラスの製造を例にとり詳しく説
明する。
The present invention will be explained in detail below using the production of quartz glass as an example.

〔実施例1〕 精製した市販のエチルシリケート(商品名ニコル:+−
) 28 、 :ffルコ−)K、に、) 520.8
 fと0.02規定の塩酸溶液i s o、 o rを
混合攪拌し、約1時間で加水分解溶液(以下溶液Aと呼
ぶ)を調製した。
[Example 1] Purified commercially available ethyl silicate (trade name Nicol: +-
) 28, :ffruco-)K,ni,) 520.8
A hydrolysis solution (hereinafter referred to as solution A) was prepared by mixing and stirring f and a 0.02N hydrochloric acid solution iso, or, in about 1 hour.

次に、シリカ超微粒子(商品名:アエロジル0×50.
日本アエロジル社)150f’を99.5%エチルアル
コール(関東化学に、に、) 300 i、1m徐々に
添加し十分攪拌した後、超音波を3時間照射してシリカ
超微粒子を均一に分散させた。さらに大粒径シリカおよ
び異物を除去する目的で、500Gの遠心力下で遠心F
下を行ないシリカ超微粒子溶液(以下溶液Bと呼ぶ)を
調製した。
Next, ultrafine silica particles (product name: Aerosil 0x50.
Nippon Aerosil Co., Ltd.) 150 f' was gradually added to 99.5% ethyl alcohol (Kanto Kagaku, Ni,) 300 i, 1 m, and after thorough stirring, ultrasonic waves were irradiated for 3 hours to uniformly disperse the silica ultrafine particles. Ta. Furthermore, in order to remove large particle size silica and foreign substances, centrifugation was performed under a centrifugal force of 500G.
A silica ultrafine particle solution (hereinafter referred to as solution B) was prepared by performing the following steps.

溶液Aの4と溶液Bの4 とを混合攪拌し均一になった
ところで、02規定のアンモニア水を用いて混合溶液の
水素イオン濃度(以下PH値と呼ぶ)を5.6に調整し
た。このクラッド用溶液を塩化ビニル製の回転円筒容器
(内径40 mlr a長さ250mm、内面シリコー
ト済み)に所定量を流し込み、図1に示す装置を用い毎
分1200回転の速度で円筒容器を回転させながらゲル
化させ円筒状で、かつ回転軸方向に中空部が存在するク
ラッドゲルを得た。ゲル化時間は約55分であった。
4 of Solution A and 4 of Solution B were mixed and stirred to become homogeneous, and then the hydrogen ion concentration (hereinafter referred to as PH value) of the mixed solution was adjusted to 5.6 using 02N ammonia water. A predetermined amount of this cladding solution was poured into a rotating cylindrical container made of vinyl chloride (inner diameter 40 ml, length 250 mm, inner surface silicated), and the cylindrical container was rotated at a speed of 1200 revolutions per minute using the apparatus shown in Figure 1. A cylindrical clad gel having a hollow portion in the direction of the rotation axis was obtained. Gelation time was approximately 55 minutes.

次に溶液Bの115に非晶質の高純度二酸化ゲルマニウ
ム粉末(平均粒径0.13μm ) 3.14 f/を
除去に添加し十分均質になるまで攪拌した後、超音波を
約1時間照射して酸化ゲルマニウム粒子の分散性を高め
た。その後、この溶液と溶液Aの115とを混合し十分
に攪拌した後、0,2規定のアンモニア水を用いて溶液
のPH値を4.8に調整した。
Next, 3.14 f/ of amorphous high-purity germanium dioxide powder (average particle size 0.13 μm) was added to solution B 115 for removal, stirred until it became sufficiently homogeneous, and then irradiated with ultrasonic waves for about 1 hour. The dispersibility of germanium oxide particles was improved. Thereafter, this solution and Solution A 115 were mixed and sufficiently stirred, and then the pH value of the solution was adjusted to 4.8 using 0.2N aqueous ammonia.

このコア用溶液を、前記タララドゲル製造時に生じた円
筒状中空部に流し込み、図2に示す装置を用い、毎分2
00回転の速度で円筒容器を回転させながらゲル化させ
、クラッド、コア一体ゲルを得た。ゲル化時間は約28
分であった。
This core solution was poured into the cylindrical hollow part created during the production of the Talarad gel, and was applied at a rate of 2 min.
The gel was formed while rotating the cylindrical container at a speed of 0.00 rpm to obtain a cladding and core integrated gel. Gel time is approximately 28
It was a minute.

このクラッド・コア一体ゲルをポリプロピレン製容器(
600岨×250叫×150調)に入れ、開口率が0.
2%になるように直径1叫の穴を多数個開けた上ぶたを
して、55℃の恒温乾燥機に入れ約14日間で乾燥一体
ゲルを、得た。この乾燥ゲルを炭化硅素発熱体電気炉中
、大気雰囲気で、1°C/Mの昇温速度で850℃まで
加熱しその温度でヘリウムガスをキャリヤーとして塩素
ガスを、その後酸素ガスを流すことにより乾燥ゲル体中
に存在する水分子、水酸基、有機分子等を十分に除去し
た。その後、再度1°C/―の昇温速度で1650℃ま
で加熱することによりゲル体の無孔化を行い透明焼結体
を得た。
This clad/core integrated gel is packed in a polypropylene container (
600 x 250 x 150), and the aperture ratio is 0.
The top lid was covered with a number of holes with a diameter of 2%, and the gel was placed in a constant temperature dryer at 55°C for about 14 days to obtain a dried solid gel. This dried gel was heated to 850°C in an electric furnace with a silicon carbide heating element in an air atmosphere at a heating rate of 1°C/M, and at that temperature, chlorine gas was introduced using helium gas as a carrier, followed by oxygen gas. Water molecules, hydroxyl groups, organic molecules, etc. present in the dried gel were sufficiently removed. Thereafter, the gel body was made non-porous by heating again to 1650°C at a temperature increase rate of 1°C/- to obtain a transparent sintered body.

得られた透明焼結体の品質を調べたところ、存在する1
μm以上の不定形異物、気泡の数は0.1alあたり各
々1個以下であり、また光散乱も極めて小さいことから
、光ファイバ用母材として用いた場合十分な光学的特性
が得られることが期待された。
When the quality of the obtained transparent sintered body was examined, it was found that 1
The number of amorphous foreign particles of μm or larger and bubbles is less than one each per 0.1 al, and light scattering is extremely small, so it is believed that sufficient optical properties can be obtained when used as a base material for optical fibers. It was expected.

本方法で得られた光ファイバ用母材は、従来の製造方法
(整理N[L19205)である、ドープ材を金属アル
コキシドとして用いて得られた光ファイバ用母材と同様
に高品質であった。さらに、従来の製造方法に比べ必要
な工程数が少ないため、より一層の歩留シの向上が可能
であり、また、使用する原材料が安価であることから、
低コストで高品質の光ファイバ用母材が容易に得られる
ものであった。
The optical fiber base material obtained by this method had the same high quality as the optical fiber base material obtained by the conventional manufacturing method (Organization N [L19205) using the dope material as a metal alkoxide. . Furthermore, since fewer steps are required compared to conventional manufacturing methods, yields can be further improved, and the raw materials used are inexpensive.
It was possible to easily obtain a low-cost, high-quality optical fiber base material.

〔実施例2〕 精製した市販のエチルシリケート(商品名!コvコ−)
2B 、=+ルコー)K、に、)1041.5rと0.
02規定の塩酸溶液561vを混合攪拌し無色透明な均
一溶液を調製した。次に、四塩化硅素と四塩化チタンを
出発原料として気相合成法により、非晶質の二酸化チタ
ンをモル比で4%同溶した、平均粒径が0.13μmで
ある非晶質の高純度のシリカ微粒子を合成した。このシ
リカ微粒子304、5 Fを前記エチルシリケート加水
分解溶液に徐々に添加し、約2時間攪拌した後、超音波
を約4時間照射して溶液中にシリカ微粒子を均一に分散
させた。さらに、一様に分散せずに凝集して生じた大粒
径シリカ微粒子を除去するため、500Gの遠心力下で
遠心濾過を行いシリカ超微粒子溶液(以下ゾル溶液と呼
ぶ)を調製した。このゾル溶液の水素イオン製置を0.
2規定のアンモニア水を用いてPH=5.1に調整し、
ポリプロピレン製の容器(150mmX 150++o
++X 70mm)に溶液の深さが10調程度になるよ
うに流し込み(約220−)、液もれかないように容器
を密閉した後゛、第3図に示す回転装置に装着した。回
転装置を動かし500G (G=980crn/ B2
  )の遠心力下でゾル溶液をゲル化させ、第4図に示
すような形状を有する平板状ゲル体を得た。ゲル化まで
の時間は約95分であった。このゲル体を別のポリプロ
ピレン製容器(300mmX 250mnX 150m
)に移し、開口率が口、2%になるように直径1Wの穴
を多数個開けた上ぶたをして、55℃の恒温乾燥機に入
れ、約14日間で乾燥ゲルを得た。この乾燥ゲルを炭化
硅素発熱体電気炉中、大気雰囲気で、1℃/jthの昇
温速度で800℃まで加熱しその温度で4時間保持した
。さらにヘリウムガスをキャリヤーとして塩素ガスを、
さらに酸素ガスを流して乾燥ゲル中に残存する水分子、
水酸基。
[Example 2] Purified commercially available ethyl silicate (trade name! Covco)
2B, = + Leco) K, to) 1041.5r and 0.
02N hydrochloric acid solution was mixed and stirred to prepare a colorless and transparent homogeneous solution. Next, silicon tetrachloride and titanium tetrachloride were used as starting materials, and amorphous titanium dioxide was dissolved at a molar ratio of 4% using a vapor phase synthesis method to form an amorphous high-grade material with an average particle size of 0.13 μm. Pure silica particles were synthesized. The silica fine particles 304,5F were gradually added to the ethyl silicate hydrolysis solution, stirred for about 2 hours, and then irradiated with ultrasonic waves for about 4 hours to uniformly disperse the silica particles in the solution. Further, in order to remove large-sized silica fine particles that were not uniformly dispersed but agglomerated, centrifugal filtration was performed under a centrifugal force of 500 G to prepare an ultrafine silica particle solution (hereinafter referred to as a sol solution). The hydrogen ion concentration of this sol solution was 0.
Adjust the pH to 5.1 using 2N ammonia water,
Polypropylene container (150mm x 150++o
++X 70 mm) to a depth of about 10 degrees (approximately 220 mm), and after sealing the container to prevent liquid leakage, it was mounted on the rotating device shown in FIG. 3. Move the rotating device to 500G (G=980crn/B2
) The sol solution was gelled under centrifugal force to obtain a flat gel body having the shape shown in FIG. The time until gelation was approximately 95 minutes. This gel body was placed in another polypropylene container (300mm x 250mn x 150m).
), the gel was placed in a constant-temperature dryer at 55° C. with a lid on which a number of holes with a diameter of 1 W were made so that the opening ratio was 2%, and a dried gel was obtained in about 14 days. This dried gel was heated to 800° C. at a heating rate of 1° C./jth in an electric furnace with a silicon carbide heating element in an air atmosphere, and maintained at that temperature for 4 hours. Furthermore, chlorine gas using helium gas as a carrier,
Furthermore, water molecules remaining in the dried gel by flowing oxygen gas,
hydroxyl group.

有機分子等を除去した。その後、再度1℃/馴の昇温速
度で1350℃まで加熱し平板状の透明焼結体を得た。
Organic molecules etc. were removed. Thereafter, it was heated again to 1350° C. at a temperature increase rate of 1° C./cm to obtain a flat plate-shaped transparent sintered body.

焼結途中に外部汚染により試料表面の一部が結晶化した
が、大部分は透明なガラス体であった。得られた透明ガ
ラス体の品質を調べたところ存在する1μm以上の不定
形異物、結晶。
Part of the sample surface crystallized due to external contamination during sintering, but most of the sample was a transparent glass body. When examining the quality of the obtained transparent glass body, it was found that there were amorphous foreign substances and crystals of 1 μm or more.

微小気泡の数は、” 1 ct/1あたり各々2個、2
個゛。
The number of microbubbles is 2 and 2 per 1 ct/1, respectively.
Individual.

0個以下という高品質なものであった。ここで作製した
二酸化チタンを数モル%含有したシリカガラスは、極低
膨張ガラスとして知られ200〜−100℃付近の温度
範囲ではほとんど膨張しない(低膨張で知られる石英ガ
ラスよりもさらに低膨張である。)という優れた特性を
有する。しかし、この系のガラスは従来より溶融法で′
製造されて来たが、大型で均一なガラスを得ることが非
常に難かしいことから、製造コストが高く、シたがって
極限られた分野にしか使用されてこなかった。しかし、
本発明の製造法を用いれば、高品質かつ大面積のシリカ
・チタニアガラスが低コストで製造できることから、今
後の発展が大いに期待される宇宙産業分野などで大いに
その利用が期待されるものである。
It was of high quality with less than 0 pieces. The silica glass produced here containing several mol% of titanium dioxide is known as an extremely low expansion glass and hardly expands in the temperature range of 200 to -100℃ (it has even lower expansion than quartz glass, which is known for its low expansion). ). However, this type of glass has traditionally been produced using a melting method.
However, since it is very difficult to obtain large and uniform glass, the manufacturing cost is high, and therefore it has been used only in extremely limited fields. but,
By using the manufacturing method of the present invention, high-quality, large-area silica-titania glass can be manufactured at low cost, so it is highly anticipated that it will be used in fields such as the space industry, where future development is highly anticipated. .

以上の実施例で示したように、ドープ材を微粒子として
用いたゾル−ゲル法による石英系ガラスの製造方法は、
従来の金属アルコキシドの形でドープ材を添加する場合
に比べ、少ない工程で同等以上の高品質なガラスを容易
に得ることができる。ここでは、石英系ガラスを例にと
り実施例を示してきたが、金属アルコキシドと微粒子を
用いたゾル−ゲル法を応用したものであるならば、石英
糸ガラスに限らず、ゲルマニウム系、フッ素系。
As shown in the above examples, the method for producing quartz glass by the sol-gel method using dopants as fine particles is as follows:
Compared to the conventional case of adding dopants in the form of metal alkoxides, glass of the same or higher quality can be easily obtained with fewer steps. Here, examples have been shown using quartz glass as an example, but if the sol-gel method using metal alkoxide and fine particles is applied, it is not limited to quartz fiber glass, but can also be applied to germanium-based and fluorine-based glass.

カルコゲナイド系、窒化物系ガラスなど広範囲のガラス
製造法として応用できるものである。
This method can be applied to a wide range of glass manufacturing methods, including chalcogenide and nitride glasses.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、添加するドープ材を金属
アルコキシドとして用いるのではなく、微粉末粒子とし
て用いることにより、容易に均質かつ高純度なゾル溶液
を調整することができる。
As explained above, in the present invention, a homogeneous and highly pure sol solution can be easily prepared by using the dopant to be added as fine powder particles instead of as a metal alkoxide.

ゾル−ゲル法では用いるゾルの品質が最終製品となるガ
ラス体の品質を大きく左右するため、高品質なゾルを得
やすい上記の方法は石英系ガラスの製造上、特に有効で
ある。また、一般に高価である金属アルコキシドの使用
量を低減できると同時に工程数も短縮できることから、
経済的にも非常に有効である。上記の方法により合成さ
れた石英系ガラスは、その高品質性から各種光学用材料
、例えば光ファイバー用母材、光学部品、フォトマスク
用ガラスプレートなどに、あるいは、各種電子材料とし
て幅広い応用が可能である。
In the sol-gel method, the quality of the sol used greatly influences the quality of the final glass body, so the above-mentioned method, which facilitates the production of high-quality sol, is particularly effective in producing quartz glass. In addition, it is possible to reduce the amount of metal alkoxides used, which are generally expensive, and at the same time shorten the number of steps.
It is also very effective economically. Due to its high quality, silica-based glass synthesized by the above method can be widely applied to various optical materials, such as base materials for optical fibers, optical components, glass plates for photomasks, etc., and as various electronic materials. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は容器の長手方向と平行な方向に回転軸が存在す
る回転装置を示した図。 1・・・・・・回転中心線 2・・・・・・軸受け 3・・・・・・回転用円筒容器 4・・・・・・容器固定用ホルダー 5・・・・・・回転用モーター 6・・・・・・支持台 第2図は、第1図の回転軸の法線方向に回転軸の存在す
る回転装置を示した図。 1・・・・・・回転台 2・・・・・・回転用円筒容器 3・・・・・・容器固定用ホルダー 4・・・・・・回転中心線 5・・・・・・回転軸 6・・・・・・軸受け 7・・・・・・回転用モーター 8・・・・・・支持台 第3図は平板状ガラス製造時の回転装置を示した図。 1・・・・・・原料注入容器 2・・・・・・密閉用のふた 5・・・・・・原料溶液、ゲル体 4・・・・・・回転容器 5・・・・・・回転用モーター 第4FAは、第3図の回転装置を用いて得られた平板状
ゲル体の模式図である。 第1図 第4図
FIG. 1 is a diagram showing a rotating device in which the rotating shaft is parallel to the longitudinal direction of the container. 1... Center line of rotation 2... Bearing 3... Cylindrical container for rotation 4... Holder for fixing the container 5... Motor for rotation 6...Support stand FIG. 2 is a diagram showing a rotating device in which a rotating shaft exists in the normal direction of the rotating shaft in FIG. 1. 1...Rotary table 2...Rotating cylindrical container 3...Holder for fixing the container 4...Rotation center line 5...Rotation axis 6...Bearing 7...Rotation motor 8...Support stand FIG. 3 is a diagram showing a rotation device used in manufacturing flat glass. 1... Raw material injection container 2... Sealing lid 5... Raw material solution, gel body 4... Rotating container 5... Rotating Motor No. 4FA is a schematic diagram of a flat gel body obtained using the rotating device of FIG. 3. Figure 1 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)金属アルコキシドおよび微粉末シリカを主原料と
して用いるゾル−ゲル法による石英系ガラスの製造方法
において、ドープ材を混入した微粉末シリカを用いるこ
とを特徴とする石英系ガラスの製造方法。
(1) A method for producing quartz glass by a sol-gel method using metal alkoxide and finely powdered silica as main raw materials, which is characterized in that finely powdered silica mixed with a dopant is used.
(2)一種類以上のドープ材を物理的に混合した微粉末
シリカを用いることを特徴とする特許請求の範囲第1項
記載の石英系ガラスの製造方法。
(2) The method for producing quartz-based glass according to claim 1, characterized in that finely powdered silica is used which is physically mixed with one or more types of dopants.
(3)一種類以上のドープ材を化学的に固溶させた微粉
末シリカを用いることを特徴とする特許請求の範囲第1
項又は、第2項記載の石英系ガラスの製造方法。
(3) Claim 1, characterized in that finely powdered silica in which one or more types of doping materials are chemically dissolved is used.
or 2. The method for producing quartz-based glass according to item 2.
(4)特許請求の範囲第1項記載の石英系ガラスの製造
方法において、その石英系ガラスが光ファイバ用母材で
あることを特徴とする特許請求の範囲第1項〜第3項記
載の石英系ガラスの製造方法。
(4) In the method for manufacturing silica-based glass as set forth in claim 1, the quartz-based glass is a base material for an optical fiber. A method for producing quartz glass.
(5)特許請求の範囲第1項記載の石英系ガラスの製造
方法において、その石英系ガラスが板状ガラスあるいは
光学用ガラスあるいは電子材料用ガラスであることを特
徴とする特許請求の範囲第1項〜第3項記載の石英系ガ
ラスの製造方法。
(5) In the method for producing quartz-based glass according to claim 1, the silica-based glass is plate glass, optical glass, or electronic material glass. A method for producing quartz-based glass according to items 1 to 3.
JP2503085A 1985-02-12 1985-02-12 Production of quartz glass Pending JPS61186226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2503085A JPS61186226A (en) 1985-02-12 1985-02-12 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2503085A JPS61186226A (en) 1985-02-12 1985-02-12 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPS61186226A true JPS61186226A (en) 1986-08-19

Family

ID=12154511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2503085A Pending JPS61186226A (en) 1985-02-12 1985-02-12 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS61186226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104178A1 (en) * 2005-03-29 2006-10-05 Asahi Glass Company, Limited Quartz-type glass and process for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104178A1 (en) * 2005-03-29 2006-10-05 Asahi Glass Company, Limited Quartz-type glass and process for its production

Similar Documents

Publication Publication Date Title
US4680045A (en) Method of preparing tubular silica glass
KR100294312B1 (en) Synthetic quartz glass powder and its manufacturing method
JPS61186226A (en) Production of quartz glass
JPS59131538A (en) Production of quartz glass
JPS6054929A (en) Production of quartz glass
JPS6065735A (en) Production of quartz glass
JPS6126524A (en) Production of quartz glass
JPH0258214B2 (en)
JPS60171228A (en) Manufacture of quartz glass
JPS60239329A (en) Manufacture of quartz glass
JPS6096533A (en) Preparation of quartz glass tube
JPH0114177B2 (en)
JPS61186236A (en) Production of parent material for optical fiber
JPS6191033A (en) Production of optical fiber preform
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPS6191023A (en) Production of tubular quartz glass
JPS6144720A (en) Production of quartz glass
JPS62288122A (en) Production of glass body by sol-gel method
JPS60131833A (en) Manufacture of quartz glass
JPS6126525A (en) Production of quartz glass
JPH03159911A (en) Production of spherical silica particle
JPS60171227A (en) Manufacture of quartz glass
JPS61186232A (en) Production of tubular quartz glass
JPS60108324A (en) Production of quartz glass
JPS62283833A (en) Production of glass tube