JPS62292625A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS62292625A
JPS62292625A JP13347686A JP13347686A JPS62292625A JP S62292625 A JPS62292625 A JP S62292625A JP 13347686 A JP13347686 A JP 13347686A JP 13347686 A JP13347686 A JP 13347686A JP S62292625 A JPS62292625 A JP S62292625A
Authority
JP
Japan
Prior art keywords
sol
gel
pressure
surrounding
allowed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13347686A
Other languages
Japanese (ja)
Inventor
Mikio Aoki
三喜男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP13347686A priority Critical patent/JPS62292625A/en
Publication of JPS62292625A publication Critical patent/JPS62292625A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To produce glass free from bubbles by decompressing the surrounding of sol in the while till sol is allowed to gel and returning the pressure of the surrounding of sol to be ordinary pressure when sol is allowed to nearly gel in a gelation stage of the production of glass by a sol-gel method. CONSTITUTION:After performing the hydrolysis of a metal alkoxide soln., fine powder is added and homogeneous sol is produced by repeating the projection of ultrasonic wave and the stirring thereof. This is introduced into a cylindrical vessel 1 made of polyprene and the vessel is stopped and set on the bearing 3 of a rotating device. The cylindrical vessel 1 is rotated at about 1,000rpm number of revolutions by driving a motor 2 and the surrounding pressure is reduced to about 65mmHg. When the viscosity of sol suddenly rises and sol is allowed to nearly gel, the pressure of the surrounding of sol is returned to the ordinary pressure. After the pressure is returned to the ordinary pressure and about 3min elapse, sol is allowed to gel.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、ゾル−ゲル法によるガラスの製造方法に関す
る。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing glass by a sol-gel method.

〔従来の技術〕[Conventional technology]

従来のゾル−ゲル法によるガラスの製造方法は、整理寛
20672及び特願昭58−237577(土岐ら)に
記載されているように、金属アルコキシド溶液の加水分
解を行った後、微粉末を添加し、超音波照射、攪拌を繰
り返して均質なゾルを得、このゾルのpH1F]整を行
うことにより一定の時間でゲル化させ、ウェットゲルを
得ていた。このウェットゲルを数日間熟成した後、一定
の温度、プログラムのもとで乾燥、焼結を行いガラス化
させ、高品質、高純度なガラスを得ていた。
The conventional sol-gel method for manufacturing glass involves hydrolyzing a metal alkoxide solution and then adding fine powder, as described in Seikan 20672 and Japanese Patent Application No. 58-237577 (Toki et al.). Then, ultrasonic irradiation and stirring were repeated to obtain a homogeneous sol, and the sol was adjusted to pH 1F to form a gel in a certain period of time to obtain a wet gel. After aging this wet gel for several days, it was dried and sintered under a certain temperature and program to vitrify it, yielding high-quality, high-purity glass.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では、微粉末添加、超音波照射
、撹拌、pH調整等の多くの場合においてゾル中に空気
がとり込まれる。また、整理−20672に示されてい
る様に、回転ゲル化により円筒形ゲルを作成する際には
、回転の初期において多くの空気がとり込まれる。これ
らの一旦取り込まれた空気は、ゾルの粘性が大きいため
ゾルから抜は出すことは困難で、小さい気泡は多くがゾ
ル中に取り込まれたままゲル化してしまい、得られるゲ
ルに多少なりとも気泡が存在する。このようなゲルを乾
燥、焼結を行っても極端に小さい気泡板外は残ってしま
い、得られるガラスの品質をおとす原因の一つとなる。
However, in the above-mentioned conventional technology, air is incorporated into the sol in many cases such as addition of fine powder, ultrasonic irradiation, stirring, and pH adjustment. Furthermore, as shown in 20672, when a cylindrical gel is created by rotational gelation, a large amount of air is taken in at the initial stage of rotation. Once these air is taken in, it is difficult to extract it from the sol due to its high viscosity, and many of the small air bubbles remain trapped in the sol and turn into a gel, resulting in some air bubbles in the resulting gel. exists. Even if such a gel is dried and sintered, extremely small bubbles remain on the outside of the plate, which is one of the causes of deteriorating the quality of the resulting glass.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところはゾル中に含まれる気泡を無くし、
得られるガラスの品質を向上させることにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to eliminate air bubbles contained in the sol,
The purpose is to improve the quality of the glass obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のガラスの製造方法は、ゾル溶液の鋼製工程、ゲ
ル化工程、ゲルの乾燥工程、該ゲルの焼結工程よりなる
ガラスの製造方法のゲル化工程において、ゾルがゲル化
するまでの間、ゾルの周囲を減圧し、ゲル化付近に常圧
にもどしてゲル化させることを特徴とする。
The glass manufacturing method of the present invention includes a sol solution steel manufacturing process, a gelling process, a gel drying process, and a gel sintering process. During this period, the pressure around the sol is reduced, and the pressure is returned to normal pressure near gelation to cause gelation.

〔作 用〕[For production]

微粉末添加、超音波照射、攪拌、pH調整等において、
多くの空気がゾル中に取り込まれる。これらの空気のう
ち、直径1m1以上といった大きな気泡として取り込ま
れたものは、その浮力によりゾル外部に出ることができ
る。しかしながら、直径11以下の気泡、特に0.1−
1以下の気泡においては、ゾルの粘性が大きいためゾル
中にとどまり、そのままゲル化する)頃向にある。しか
しながら、本発明のように、ゾルの周囲を減圧すること
により、これらの細かい気泡はその体積が大きくなりゾ
ル外部へ抜は出すことが可能となる。気泡の抜は出した
このゾルをゲル化することにより、気泡の非常に少ない
ゲルを得ることができる0周囲を減圧する操作により、
ゲル中には新たに細かい気泡が生じる。これらの気泡は
、もともと非常に細かい気泡であったり、減圧によって
ゾル中のアルコールが気化したものである。しかしなが
らこれらの気泡も、ゾルのゲル化付近において周囲を常
圧にもどすことにより消える。したがって、ゲル化前に
周囲を減圧し、ゲル化付近で常圧にもどしゲル化させる
ことにより気泡の非常に少ないゲルを得ることが可能と
なる。また、減圧することによりゾル中のアルコールも
多少取り除かれるので、ゲル化時間の短縮、ゲルの強化
等の作用も有する。但しゲルの周囲の圧力は、601■
Hgより高い方が最も効果的で、60mlHgより低く
なり、500Hgあたりになるとゾルが沸騰してしまう
In fine powder addition, ultrasonic irradiation, stirring, pH adjustment, etc.
Much air is incorporated into the sol. Among these air, those taken in as large bubbles with a diameter of 1 m1 or more can escape to the outside of the sol due to their buoyancy. However, bubbles with a diameter of 11 or less, especially 0.1-
When the number of bubbles is 1 or less, the viscosity of the sol is high, so the bubbles remain in the sol and turn into a gel. However, by reducing the pressure around the sol as in the present invention, these fine bubbles increase in volume and can be drawn out of the sol. By removing the air bubbles, a gel with very few air bubbles can be obtained by gelling the released sol.0 By reducing the pressure around the surrounding area,
New fine air bubbles are generated in the gel. These bubbles are originally very fine bubbles, or the alcohol in the sol is vaporized due to reduced pressure. However, these bubbles also disappear when the surrounding pressure is returned to normal pressure near the gelation of the sol. Therefore, it is possible to obtain a gel with very few bubbles by reducing the surrounding pressure before gelation and returning to normal pressure near gelation to cause gelation. Furthermore, since some alcohol in the sol is removed by reducing the pressure, it also has the effect of shortening the gelation time and strengthening the gel. However, the pressure around the gel is 601■
It is most effective if it is higher than Hg, and if it is lower than 60mlHg and around 500Hg, the sol will boil.

〔実施例〕〔Example〕

以下本発明について実施例に基づいて詳細に説明する。 The present invention will be described in detail below based on examples.

〔実施例1〕 エチルシリケー) (Si(○Cz Hs)4) 40
0 ml、水284mj!、0.02N塩酸182mj
!、微粉末シリカ140gを混合、激しく攪拌し、超音
波照射、遠心分離、濾過を行い均質度の高いゾルを得た
。このゾルに0.INのアンモニア水を加え、pH値を
4.8に調整し、そのうちの650ccを48龍φxs
oo龍のポリブレン製円筒容器に投入した。この容器に
、中央に5龍の穴の開いている栓をして第1図に示す回
転装置に取りつけた。この後、ポリプレン製円筒形容器
を管軸のまわりに11000rpの回転数で回転させ、
周囲の圧力を65mmHgまで減圧した。また、同様の
ゲルを100cc程デイスポカツプに取り減圧下におい
てゲル化時を判定した。ディスポカップ内のゾルの粘度
が急激に上がりはしめて、ゲル化付近と思われる時点で
、ゾル周囲の圧力を常圧にもどした。常圧にもどしてか
ら約3分後にゲル化した。
[Example 1] Ethyl silicate) (Si(○Cz Hs)4) 40
0ml, water 284mj! , 0.02N hydrochloric acid 182 mj
! , 140 g of finely powdered silica was mixed, vigorously stirred, and subjected to ultrasonic irradiation, centrifugation, and filtration to obtain a highly homogeneous sol. This sol contains 0. Add IN ammonia water, adjust the pH value to 4.8, and add 650cc of it to 48Ryuφxs
It was put into a cylindrical container made of polybrene made by Ryu. This container was fitted with a stopper with a five-shaped hole in the center and attached to the rotating device shown in Figure 1. After this, the polyprene cylindrical container was rotated around the tube axis at a rotation speed of 11000 rpm,
The ambient pressure was reduced to 65 mmHg. Further, about 100 cc of the same gel was placed in a disposable cup and the gelation time was determined under reduced pressure. The viscosity of the sol in the disposable cup rose rapidly, and at a point when it seemed to be near gelation, the pressure around the sol was returned to normal pressure. It gelated about 3 minutes after returning to normal pressure.

この後もLOOQrpmで回転を4時間続はゲルが充分
に固くなるまで待った0回転を終了したゲルを5日間3
0℃で熟成し、一定の温度、プログラムのもとて乾燥、
焼結を行ったところ、23.5IIIφX 250 m
sの石英チューブが得られた。このチューブに気泡は1
−あたり3×10−3コの割合で直径0.1m−はどの
ものが存在しているだけであった。
After this, continue to rotate at LOOQ rpm for 4 hours.Wait until the gel becomes sufficiently hard.After completing 0 rotations, continue to rotate the gel for 5 days.
Aging at 0℃, drying at a constant temperature and program,
When sintered, it was 23.5IIIφX 250 m
A quartz tube of s was obtained. There is 1 air bubble in this tube.
The only ones with a diameter of 0.1 m were present at a rate of 3 x 10 -3 per -.

〔比較例1〕 実施例1と同様にエチルシリケート400m!、水28
4mm!、0.02N塩酸182周囲、微粉末シリカ1
40gを混合、激しく攪拌し、超音波照射、遠心分離、
濾過を行い均質度の高いゾルを得た。このゾルにO,I
Nのアンモニア水を加え、p)(値を48に調整し、そ
のうちの650 ccを48曹1φX 55 Q 璽s
のポリブレン製円筒容器に投入した。この容器を管軸の
まわりにlooorpmの回転数で回転させ、常圧下で
ゲル化させた。pH調整を行った後約25分でゲル化し
た。その後も11000rpで回転を4時間続はゲルが
充分固くなるまで待った。この後は実施例1と同様に海
藻、焼結を行い、23.51賞φ×250flの石英チ
ューブを得た。このチューブに気泡は1dあたり2 X
 10−”コの割合で直径0.5flはどのものが存在
していた。
[Comparative Example 1] Same as Example 1, 400m of ethyl silicate! ,Wed 28
4mm! , around 0.02N hydrochloric acid 182, fine powder silica 1
Mix 40g, stir vigorously, irradiate ultrasound, centrifuge,
Filtration was performed to obtain a highly homogeneous sol. O, I in this sol
Add N ammonia water, p) (adjust the value to 48, and add 650 cc of it to 48 Sodium 1φX 55 Q s
It was placed in a polybrene cylindrical container. This container was rotated around the tube axis at a rotation speed of LOOORPM to cause gelation under normal pressure. After pH adjustment, gelation occurred in about 25 minutes. Thereafter, rotation was continued for 4 hours at 11,000 rpm until the gel became sufficiently solid. After this, the seaweed was sintered in the same manner as in Example 1 to obtain a quartz tube with a diameter of 23.51 mm and a diameter of 250 fl. The number of air bubbles in this tube is 2X per 1d.
There was one with a diameter of 0.5 fl at a ratio of 10-''.

〔実施例2〕 エチルシリケート(Si(OCz Hs)4)800 
ml、水569mj!、0.02N塩酸365mj、 
微粉末シリカ281gを混合、激しく攪拌し、超音波照
射、遠心分離、濾過を行い均質度の高いゾルを得た。こ
のゾルに0.INのアンモニア水を加え、pH値を4.
8に調整し、そのうちの1344m1をポリプロピレン
製容器(縦420fix横32Q+nx深さ80mm)
に入れた。この後この容器を65nHgの圧力下におき
ゾル中に含まれる空気を取り除いた。ゾル中に発生する
泡が少な(なった時点で周囲の圧力を常圧にもどした。
[Example 2] Ethyl silicate (Si(OCz Hs)4) 800
ml, water 569mj! , 0.02N hydrochloric acid 365 mj,
281 g of finely powdered silica was mixed, vigorously stirred, and subjected to ultrasonic irradiation, centrifugation, and filtration to obtain a highly homogeneous sol. This sol contains 0. Add IN ammonia water and adjust the pH value to 4.
8, and 1344m1 of that is a polypropylene container (length 420fix width 32Q+nx depth 80mm)
I put it in. Thereafter, the container was placed under a pressure of 65 nHg to remove air contained in the sol. When the number of bubbles generated in the sol decreased, the surrounding pressure was returned to normal pressure.

この後は容器を静置し、ゲル化させた。こうして得たウ
ェットゲルを30℃で5日間熟成した後、一定のプログ
ラム、温度のもとて乾燥、焼結を行った結果、* 25
0 tm x横1571層×厚さ5關の板状石英ガラス
を得た。この仮に気泡は1dあたり3XIO−’コの割
合で直径0.1mmはどのものが存在しただけであった
After this, the container was allowed to stand still to allow gelation. After aging the wet gel thus obtained at 30°C for 5 days, drying and sintering under a certain program and temperature resulted in *25
A plate-shaped quartz glass of 0 tm x 1571 layers in width x 5 layers in thickness was obtained. In this hypothetical case, only some bubbles with a diameter of 0.1 mm were present at a ratio of 3XIO-' per 1 d.

〔比較例2〕 実施例2と同様にして得たゾルを0.INのアンモニア
水にてpH値を48に調整した後、1344m1をポリ
プレン製容器に入れ静かにゲル化させた。ゲル化後30
℃で5日間熟成した後一定のプログラム、温度のもとて
乾燥、焼結を行った結果、縦205tmX横157龍×
厚さ511の板状石英ガラスを得た。この仮にl−あた
り2×10−2コの割合で直径0.5mmはどの気泡が
存在していた。
[Comparative Example 2] A sol obtained in the same manner as in Example 2 was mixed with 0. After adjusting the pH value to 48 with IN ammonia water, 1344 ml of the solution was placed in a polyprene container and gently gelled. 30 days after gelation
After aging at ℃ for 5 days, drying and sintering under a certain program and temperature, the result was 205 tm long x 157 tm wide x
A plate-shaped quartz glass having a thickness of 511 mm was obtained. In this hypothetical case, there were bubbles with a diameter of 0.5 mm at a rate of 2 x 10 -2 cells per liter.

以上のように、ゲル化前に減圧下にゾルを置いてゲル内
の気泡を取り除き、ゲル化付近に常圧にもどしてゲル化
させることにより、気泡の少ないガラスが得られる。
As described above, a glass with few bubbles can be obtained by placing the sol under reduced pressure to remove air bubbles within the gel before gelation, and returning the sol to normal pressure near gelation to allow gelation.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、ゾルがゲル化する
までの間、ゾルの周囲を減圧し、ゲル化付近に常圧にも
どしてゲル化させるので、得られるガラス内に含まれる
気泡が小さく、また数も少ないものとなる。こうして得
られたガラスは、その品質が非常に良いために管状のも
のは光フアイバー用ジャケット管や半導体用炉芯管とし
て、また板状のものはマスク基板として等様々な分野で
利用できる。
As described above, according to the present invention, the pressure around the sol is reduced until the sol gels, and the pressure is returned to normal pressure near gelation to cause the gelation to occur, so air bubbles are contained in the resulting glass. will be smaller and fewer in number. The glass thus obtained is of very good quality and can be used in a variety of fields, including tubular ones as jacket tubes for optical fibers and furnace core tubes for semiconductors, and plate-shaped ones as mask substrates.

【図面の簡単な説明】 第1図は実施例1にて使用した回転装置の概略図を示す
図。 1・・・・・・円筒形容器 2・・・・・・モーター 3・・・・・・軸受は 以   上
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a schematic diagram of a rotating device used in Example 1. 1...Cylindrical container 2...Motor 3...Bearings are as follows.

Claims (1)

【特許請求の範囲】[Claims] ゾル溶液の鋼製工程、ゲル化工程、ゲルの乾燥工程、該
ゲルの焼結工程よりなるガラスの製造方法のゲル化工程
において、ゾルがゲル化するまでの間、ゾルの周囲を減
圧し、ゲル化付近に常圧にもどしてゲル化させることを
特徴とするガラスの製造方法。
In the gelling step of the glass manufacturing method, which includes a steelmaking step of the sol solution, a gelling step, a gel drying step, and a sintering step of the gel, the pressure around the sol is reduced until the sol gels, A method for producing glass characterized by gelling by returning the pressure to normal pressure near gelation.
JP13347686A 1986-06-09 1986-06-09 Production of glass Pending JPS62292625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13347686A JPS62292625A (en) 1986-06-09 1986-06-09 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13347686A JPS62292625A (en) 1986-06-09 1986-06-09 Production of glass

Publications (1)

Publication Number Publication Date
JPS62292625A true JPS62292625A (en) 1987-12-19

Family

ID=15105667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13347686A Pending JPS62292625A (en) 1986-06-09 1986-06-09 Production of glass

Country Status (1)

Country Link
JP (1) JPS62292625A (en)

Similar Documents

Publication Publication Date Title
JPS6191024A (en) Production of cylindrical silica glass
JP3708238B2 (en) Manufacturing method of gradient index optical element
RU2278079C2 (en) Sol-gel method for preparation of large-size dry gels and modified glasses
JPS62292625A (en) Production of glass
JPS59131538A (en) Production of quartz glass
JPS58167436A (en) Production of optical glass
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPS62283833A (en) Production of glass tube
JPS62288130A (en) Production of preform for quartz based optical fiber
JPS6096533A (en) Preparation of quartz glass tube
JP3668360B2 (en) Method for producing glass by sol-gel method
JP2577573B2 (en) Glass manufacturing method
JPS6246927A (en) Production of cylindrical or columnar glass
JPS63151623A (en) Production of organic substance-containing silica bulk material
US5810899A (en) Glass production
JPS62288122A (en) Production of glass body by sol-gel method
JPS6186429A (en) Preparation of glass
JPS6086037A (en) Production of quartz glass
JPS6278121A (en) Production of quartz based glass
JPS6345143A (en) Production of preform for optical fiber
JPS61186236A (en) Production of parent material for optical fiber
JPS6090834A (en) Manufacture of quartz glass
JPH09263413A (en) Production of glass
JPS62113737A (en) Production of quartz glass
JPS6217027A (en) Preparation of quartz glass