JPS6217027A - Preparation of quartz glass - Google Patents

Preparation of quartz glass

Info

Publication number
JPS6217027A
JPS6217027A JP15667085A JP15667085A JPS6217027A JP S6217027 A JPS6217027 A JP S6217027A JP 15667085 A JP15667085 A JP 15667085A JP 15667085 A JP15667085 A JP 15667085A JP S6217027 A JPS6217027 A JP S6217027A
Authority
JP
Japan
Prior art keywords
gel
obtd
quartz glass
solution
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15667085A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Sadao Kanbe
貞男 神戸
Haruo Nagafune
長船 晴夫
Yoshitaka Ito
嘉高 伊藤
Masanobu Motoki
元木 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15667085A priority Critical patent/JPS6217027A/en
Priority to US06/826,527 priority patent/US4622056A/en
Priority to FR868601762A priority patent/FR2577211B1/en
Priority to GB08603421A priority patent/GB2170799B/en
Priority to CA000501825A priority patent/CA1269250A/en
Priority to DE19863604529 priority patent/DE3604529A1/en
Publication of JPS6217027A publication Critical patent/JPS6217027A/en
Priority to SG605/90A priority patent/SG60590G/en
Priority to HK288/91A priority patent/HK28891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain quartz glass having high quality stably by mixing soln. prepd. by hydrolyzing alkyl silicate with a basic reagent and soln. prepd. by hydrolyzing alkyl silicate with an acidic reagent, and transforming obtd. sol to gel, and drying and sintering the gel. CONSTITUTION:Soln. contg. fine silica particles obtd. by hydrolyzing alkyl silicate such as ethyl silicate with a basic reagent such as aq. ammonia) is mixed with soln. obtd. by hydrolyzing alkyl silicate with an acidic reagent (e.g. dil. HCl) in a specified proportion to prepare sol. Then, obtd. sol is transferred to a specified vessel where it is transformed to gel. Obtd wet gel if dried to prepare dry gel, which is sintered to form a transparent glass body. By this method, quartz glass having high and uniform quality contg. quite small amt. of impurities such as metal ion, crystals, bubbles, or amorphous foreign matters is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゾル−ゲル法による石英ガラスの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass by a sol-gel method.

〔従来の技術〕[Conventional technology]

従来からゾル−ゲル法による石英ガラスの製造方法が何
例か報告されている。((1)野上、中谷ら、Tonr
nalof Won−Crystalline Sol
:ds。
Several methods for producing silica glass using the sol-gel method have been reported. ((1) Nogami, Nakatani et al., Tonr
nalof Won-Crystalline Sol
:ds.

57.191(1980) (2)ラビノーピッヒら、
Ionrnalof Non−Crystalline
 8o11ds、47,435(1982)  (8)
土岐ら、特願昭58−257577)なかでも土岐らの
方法は超微粉末シリカをよく均一に分散させた金属アル
コキシド加水分解溶液  □のPH値を5〜6に調整し
たゾルを用いて得られる多孔性のドライゲルを焼結する
という構成を有しているため、他の2例では作製するこ
との困難な大きさの石英ガラス(例えば15 cmX 
15 zXl 5 cm )を歩留りよく作製でき、石
英ガラスの製造方法としては最もすぐれている。
57.191 (1980) (2) Rabinopich et al.
Ionrnalof Non-Crystalline
8o11ds, 47, 435 (1982) (8)
Toki et al., Japanese Patent Application No. 58-257577) Among them, the method of Toki et al. is obtained by using a sol in which the pH value of a metal alkoxide hydrolysis solution □ is adjusted to 5 to 6, in which ultrafine powdered silica is well and uniformly dispersed. Because it has a structure in which porous dry gel is sintered, quartz glass of a size that is difficult to produce in the other two examples (for example, 15 cm
15 zXl 5 cm ) with a high yield, and is the most excellent method for producing quartz glass.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の土岐らの製造方法では、焼結して出来た
石英ガラス中に、金属イオン等の不純物、結晶、気泡、
不定形状の異物が含まれやすく、たとえば光フアイバ用
母材やフォトマスク用゛石英基板等の特に高品質を要求
される用途に使用する場合、品質的に問題があった。
However, in the conventional manufacturing method of Toki et al., impurities such as metal ions, crystals, bubbles, etc.
It tends to contain irregularly shaped foreign matter, which poses a quality problem when used in applications that require particularly high quality, such as base materials for optical fibers and quartz substrates for photomasks.

そこで、本発明は従来のこのような品質上の問題点を解
決するもので、その目的は、金属イオン等の不純物、結
晶、気泡、不定形状の異物のない均質で高品質な石英ガ
ラスを製造する方法を提供するところにある。
Therefore, the present invention solves these conventional quality problems, and its purpose is to manufacture homogeneous, high-quality quartz glass that is free from impurities such as metal ions, crystals, bubbles, and irregularly shaped foreign substances. We are here to provide you with a way to do so.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の石英ガラスの製造方法は、アルキルシリケート
を、塩基性試薬で加水分解して得られるシリカ微粒子を
溶液中に含む第一の溶液と、アルキルシリケートを、酸
性試薬で加水分解して得られる第二の溶液とを、所定の
割合で混合して得られるゾル溶液を所定の容器に移し入
れゲル化させてウェットゲルを作る工程、前記ウェット
ゲルを乾燥してドライゲルを作る工程、前記ドライゲル
を焼結して透明ガラス体とする工程からなることを特徴
とする。
The method for producing quartz glass of the present invention includes a first solution containing silica fine particles obtained by hydrolyzing an alkyl silicate with a basic reagent, and a first solution containing silica particles obtained by hydrolyzing an alkyl silicate with an acidic reagent. a second solution at a predetermined ratio, a step of transferring the obtained sol solution to a predetermined container and gelling it to make a wet gel, a step of drying the wet gel to make a dry gel, a step of drying the dry gel. It is characterized by a step of sintering it into a transparent glass body.

本発明の石英ガラスの製造方法は、原料として高純度な
液体原料を選べるので金属イオン等の不、鈍物や、ゴミ
、チリ、その他の異物がなく、本質的に高品質な石英ガ
ラスを作ることができるが、大きなサイズまで歩留りよ
く経済的に作製するためには以下の条件を選ぶことが望
ましい。
The method for producing quartz glass of the present invention allows the selection of high-purity liquid raw materials as raw materials, thereby producing essentially high-quality quartz glass without impurities such as metal ions, dull objects, dust, dirt, and other foreign substances. However, in order to economically produce large sizes with good yield, it is desirable to select the following conditions.

1)第一の溶液中に含まれるシリカ微粒子の平均粒径が
0.01〜1.0μmの範囲にあること 2)第一の溶液中に含まれるシリカ微粒子の濃度が10
5P/d以上であること 5)第一の溶液と第二の溶液を、含まれるシリコンのモ
ル比で20:80〜80:20の範囲の所定の割合で混
合すること 4)ゾル溶液中の有効シリカ分の濃度がQ、10ff/
@を以上であること 5)ゾル溶液のPH値を3以上の所定の値に調整した後
ゲル化させること 6ンウエツトゲルの乾燥を10%以下の開口率をもった
容器の中で行なうこと 7)ウェットゲルの乾燥を40℃から昇温速度120℃
/ h r以下で50〜160℃の範囲の所定の温度ま
で昇温することによりて行なうこと 8)ドライゲルを焼結して透明ガラス体とする工程が以
下の5つの工程からなること(1)脱吸着水処理をする
工程 (2)脱炭素処理をする工程 (8)  脱水縮合反応をする工程 (4)  閉孔化処理をする工程 (5)  透明ガラス化処理をする工程9)脱吸着水処
理を、昇温速度400℃/hr以下で20〜400℃の
範囲の所定の温度に昇温し、必要ならその温度で1時間
以上保持して行なうこと 10)脱炭素処理を、昇温速度TO〜400℃/ h 
rで400〜900℃の範囲内の所定の温度に昇温して
行なうこと 11)脱水縮合反応の促進処理を、昇温速度1〜400
℃/ h rで900〜1500℃の範囲内の所定の温
度に昇温し、必要ならその温度で30分以上保持して行
なうこと 12)閉孔化処理を、昇温速度30〜400℃/ h 
rで900〜1400℃の範囲内の所定の温度に昇温し
、必要ならその温度で1時間以上保持して行なうこと 15)透明ガラス化処理を、1200〜2000℃の範
囲の所定の温度に昇温し、所定の時間その温度で保持し
て行なうこと このうち条件1)3)5)は、主に焼結工程で割れにく
い多孔性のドライゲルを作製するための条件であり、条
件2)4)は主に乾燥工程で割れにくい組成のウェット
ゲルを作製するための条件であり、条件6)は歩留りよ
くドライゲルを作製するための乾燥条件であり、条件7
)8)9)10)11) 12) 15)は歩留りよく
透明ガラス体を作製するための焼結条件である。
1) The average particle size of the silica fine particles contained in the first solution is in the range of 0.01 to 1.0 μm. 2) The concentration of the silica fine particles contained in the first solution is 10 μm.
5 P/d or more 5) The first solution and the second solution are mixed at a predetermined molar ratio of silicon contained in the range of 20:80 to 80:20 4) In the sol solution The effective silica concentration is Q, 10ff/
5) Adjust the pH value of the sol solution to a predetermined value of 3 or higher and then gel it. 6) Dry the wet gel in a container with an opening ratio of 10% or less. 7) Drying wet gel at temperature increase rate from 40℃ to 120℃
/ hr or less to a predetermined temperature in the range of 50 to 160°C 8) The process of sintering the dry gel to form a transparent glass body consists of the following five steps (1) Process of deadsorbed water treatment (2) Process of decarbonization process (8) Process of dehydration condensation reaction (4) Process of pore closing process (5) Process of transparent vitrification process 9) Deadsorbed water process The treatment is carried out by raising the temperature to a predetermined temperature in the range of 20 to 400 °C at a temperature increase rate of 400 °C / hr or less, and maintaining it at that temperature for 1 hour or more if necessary. 10) The decarbonization treatment is carried out at a temperature increase rate of TO~400℃/h
11) The dehydration condensation reaction is accelerated at a heating rate of 1 to 400°C.
℃/hr to a predetermined temperature within the range of 900 to 1500℃, and if necessary, hold at that temperature for 30 minutes or more 12) Perform the pore-closing treatment at a heating rate of 30 to 400℃/hr. h
Raise the temperature to a predetermined temperature within the range of 900 to 1,400 °C with r, and if necessary, hold at that temperature for more than 1 hour. 15) Transparent vitrification treatment to a predetermined temperature in the range of 1,200 to 2,000 °C. Conditions 1), 3) and 5), which are performed by raising the temperature and holding it at that temperature for a predetermined period of time, are mainly conditions for producing a porous dry gel that is difficult to break during the sintering process, and condition 2). Condition 4) is mainly a condition for producing a wet gel with a composition that is difficult to break during the drying process, Condition 6) is a drying condition for producing a dry gel with a good yield, and Condition 7
)8)9)10)11)12)15) are sintering conditions for producing a transparent glass body with good yield.

以上の方法を用いることによって従来のものより、金属
イオン等の不純物、結晶、気泡、不定形状の異物が極め
て少ない高品質の石英芳ラスが作製できるが、以下の条
件を選ぶとさらに気泡、不定形状の異物を減らすことが
できる。
By using the above method, it is possible to produce high-quality quartz lath with significantly less impurities such as metal ions, crystals, bubbles, and irregularly shaped foreign substances than conventional methods. Foreign matter in shape can be reduced.

14)閉孔化処理を以下の3つの方法のうちいずれかの
方法を用いて行なうこと (1)He雰囲気中で閉孔化する (2)減圧下で閉孔化する (8)He雰囲気にした後減圧にして閉孔化する この条件は、閉孔の内部をHeで満たすか、あるいは減
圧にし、透明ガラス化する時に生成しやすかった主に1
μm以下の微小な気泡や異物に含まれる空間を消滅させ
るための条件であり、この方法を用いることによって、
例えば光フアイバ用母材やフォトマスク用石英基板等の
特に高品質を要求される用途に用いられる極めて高品質
な石英ガラスを容易に作製することができる。
14) The pore-closing treatment is performed using one of the following three methods. (1) Pore-closing in a He atmosphere (2) Pore-closing under reduced pressure (8) In a He atmosphere This condition, in which the inside of the closed pore is filled with He or the pressure is reduced and the pores are closed by reducing the pressure, is mainly due to
This is a condition for eliminating the spaces contained in micro bubbles and foreign matter of micrometers or less, and by using this method,
For example, it is possible to easily produce extremely high-quality quartz glass used in applications that require particularly high quality, such as optical fiber base materials and quartz substrates for photomasks.

またこうして作製できる極めて高品質な石英ガラスを以
下の方法を併用することによってさらに安定して歩留ま
り良く製造することができる。
Moreover, the extremely high quality quartz glass produced in this manner can be produced more stably and with a high yield by using the following method in combination.

1)第一の溶液と第二の溶液の原料は高純度のものを使
用し、蒸留、濾過等によって微小なゴミ、異物を除いて
おくこと 2)ゾル溶液を所定の容器に移し入れるまでの操作をク
ラス3000以下、望ましくはクラス100以下のクリ
ーンな環境で行なうこと3)第一の溶液に50〜100
00()の遠心力をかけた後、そのうわずみ液を用いて
第二の溶  □液と混合すること 4)第一の溶液を50μ隅より細かいフィルターを用い
て1回以上−過した後、第二の溶液と混合すること 5)第二の溶液を50μ渦より細かいフィルターを用い
て1回以上濾過した後、第一の溶液と混合すること 6)ゾル溶液を50μ溝より細かいフィルターを用いて
1回以上濾過すること 7)ゾル溶液をゲル化までの工程の中で少なくとも一度
、減圧処理を行なうこと 8)ゾル溶液を所定の容器に移し入れ、50〜500G
の遠心力をかけながらゲル化させること 9)閉孔化処理を行なう前に脱OH基処理をする工程と
脱塩素処理、あるいは脱フツ素処理を行なう工程をもっ
ていること 〔実施例1〕 ■ 第一の溶液の作製 エチルシリケー)167aor、無水エタノール558
5@j、29%アンモニア水109m、水58(L6f
を混合し、2時間激しく攪拌した後、冷暗所にて一晩静
置しシリカ微粒子を成長させた。この溶液を減圧濃縮し
た後、乾燥工程の歩留りを上げるために濃縮液のアルコ
ール分を水と置換した。その後、加水分解溶液と混合し
た際に急激なゲル化を起こさないようにPH値を2規定
の塩酸を用いて4.0に調整し、さらにα6μ、のメン
ブランフィルタ−を用いて濾過し、平均粒径Q、18μ
mのシリカ微粒子の分散溶液を作り、第一の溶液とした
1) Use high-purity raw materials for the first solution and the second solution, and remove minute dust and foreign matter by distillation, filtration, etc. 2) Before transferring the sol solution to the designated container, The operation must be performed in a clean environment of class 3000 or less, preferably class 100 or less. 3) The first solution contains 50 to 100
After applying a centrifugal force of 00 (), the vasa is used to mix with the second solution 4) After the first solution is passed through a filter with a 50 μm diameter or more at least once. , mixing with the second solution; 5) filtering the second solution one or more times using a filter finer than a 50μ vortex and then mixing with the first solution; 6) filtering the sol solution through a filter finer than a 50μ groove. 7) Apply vacuum treatment to the sol solution at least once during the process up to gelation 8) Transfer the sol solution to a designated container and apply 50 to 500G
gelatinization while applying centrifugal force of Preparation of solution (ethyl silicate) 167 aor, absolute ethanol 558
5@j, 29% ammonia water 109m, water 58 (L6f
After stirring vigorously for 2 hours, the mixture was allowed to stand overnight in a cool, dark place to grow fine silica particles. After concentrating this solution under reduced pressure, the alcohol content of the concentrated solution was replaced with water in order to increase the yield of the drying process. After that, the pH value was adjusted to 4.0 using 2N hydrochloric acid to prevent rapid gelation when mixed with the hydrolysis solution, and the pH was further filtered using an α6μ membrane filter. Particle size Q, 18μ
A dispersion solution of silica fine particles of m was prepared and used as a first solution.

■ 第二の溶液の作製 エチルシリケート157L9fに1lLo2規定の塩酸
95(Lotを加え、激しく攪拌して加水分解し、第二
の溶液を作製した。
(2) Preparation of second solution 1 lLo2 normal hydrochloric acid 95 (Lot) was added to ethyl silicate 157L9f and hydrolyzed with vigorous stirring to prepare a second solution.

■ ゾル溶液の作製とゲル化 第−の溶液と第二の溶液を混合し、その後a、2規定の
アンモニア水と水を用いてPH値を4.69  ″に調
整し、かつ体積を4000−に調整し、ゾル  □溶液
を作製した。(有効シリカ濃度α22 o t/−j”
)このゾル溶液を円筒状容器(内径50 mm 、高さ
2100 tea )に深さ2000■になるように移
し入れた後、50 torr で2分間脱気を行なった
後、7タをして密閉したみPH調整してから40分後に
ゲル化が起こり、ウェットゲルが得られた以上の■■■
の工程はすべてクラス100のクリーンルーム内で行な
った。また、エチルシリケート、エタノール、水は蒸溜
により精製したものを用い、塩酸、アンモニア水につい
ては、金属イオン不純物の極めて少ないブレードの試薬
を0.2μ毒のメンブランフィルタ−で濾過したものを
用いた。
■ Preparation of sol solution and gelation Mix the first solution and the second solution, then adjust the pH value to 4.69″ using 2N aqueous ammonia and water, and adjust the volume to 4000″ A sol □ solution was prepared. (Effective silica concentration α22 o t/-j"
) This sol solution was transferred to a cylindrical container (inner diameter 50 mm, height 2100 tea) to a depth of 2000 cm, degassed at 50 torr for 2 minutes, and sealed with 7 taps. Gelation occurred 40 minutes after adjusting the pH of the stain, and a wet gel was obtained.
All steps were performed in a class 100 clean room. Ethyl silicate, ethanol, and water were purified by distillation, and hydrochloric acid and aqueous ammonia were obtained by filtering blade reagents with extremely low metal ion impurities through a 0.2μ membrane filter.

■乾燥 同様な方法で作製したウェツトゲル1o本を密、閉状態
のままで5日間熟成し、その後0.2%の開口率をもっ
た回転乾燥容器に移し入れて、該ウェットゲルを01r
pmの速度で回転させながら60℃で乾燥したところ1
7日間で、室温に放置しても割れないドライゲルが歩留
り90%で9本得られた。なお該ドライゲルのかさ密度
は(L72?/ctAであった。
■Drying 10 wet gels prepared in the same manner were aged for 5 days in a closed state, and then transferred to a rotating drying container with an opening ratio of 0.2%.
When dried at 60℃ while rotating at a speed of 1
In 7 days, nine pieces of dry gel that did not crack even when left at room temperature were obtained at a yield of 90%. The bulk density of the dry gel was (L72?/ctA).

次に前記ドライゲル9本を焼結炉に入れ、昇温速度30
℃/ h rで200”Cまで加熱し、この温度で5時
間保持し、その後昇温速度S O”C/ h rで30
0℃まで加熱し、この温度で5時間保持して脱吸着水処
理を行なりた。つづいて昇温速度60°C/ h rで
300℃から9020℃まで加熱し、この温度で2時間
保持して、脱炭素、脱塩化アンモニウム処理と脱水縮合
反応の促進処理を行なった。つづいて800℃まで降温
し、He2t/iの混合ガスを流しながら30分保持し
、その後昇温速度60℃で900℃まで加熱し、その温
度で1時間保持し、その後昇温速度60℃/ h rで
1000℃まで加熱し、その温度で5時間保持し、脱O
H基処理を行なった。つづいて02ガス117mを流し
ながら昇温速度60℃/ h rで1100℃まで加熱
し、この温度で50時間保持して脱塩素処理を行なった
。つづいてHeガスのみを流しながら昇温速度30℃で
1250℃まで加熱し、この温度で30分保持して閉孔
化処理を行なった。つづいて試料を1250℃から昇温
速度60℃/ h rで1450℃まで加熱し、この温
度で1時間保持すると無孔化し、円筒状の透明ガラスが
歩留り100%で9本得られた。
Next, the nine pieces of dry gel were placed in a sintering furnace, and the heating rate was 30.
Heat to 200"C at °C/hr, hold at this temperature for 5 hours, then increase temperature to 30"C at a heating rate of SO"C/hr.
It was heated to 0°C and kept at this temperature for 5 hours to perform desorption water treatment. Subsequently, it was heated from 300° C. to 9020° C. at a temperature increase rate of 60° C./hr, and held at this temperature for 2 hours to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Next, the temperature was lowered to 800°C, held for 30 minutes while flowing a He2t/i mixed gas, then heated to 900°C at a heating rate of 60°C, held at that temperature for 1 hour, and then heated at a heating rate of 60°C/ Heat to 1000℃ at hr, hold at that temperature for 5 hours, and remove O2.
H group treatment was performed. Subsequently, while flowing 117 m of 02 gas, it was heated to 1100° C. at a temperature increase rate of 60° C./hr, and was maintained at this temperature for 50 hours to perform dechlorination treatment. Subsequently, while flowing He gas only, the material was heated to 1250° C. at a temperature increase rate of 30° C., and held at this temperature for 30 minutes to perform a pore-closing treatment. Subsequently, the sample was heated from 1250° C. to 1450° C. at a heating rate of 60° C./hr, and when held at this temperature for 1 hour, it became non-porous, and nine cylindrical transparent glasses were obtained with a yield of 100%.

該透明ガラスの大きさは外径212 m 、長さ928
 fur *重さ862?であり、原料の収率はほぼ1
00%でありた。
The size of the transparent glass is 212 m in outer diameter and 928 m in length.
fur *Weight 862? Therefore, the yield of raw material is approximately 1
It was 00%.

また該透明ガラスは目視によって均質度にすぐれ透明感
があふれていることが確認された。
Furthermore, it was confirmed by visual inspection that the transparent glass had excellent homogeneity and was full of transparency.

該透明ガラスを線引きし、フッ素系ポリマーをクラッド
として用いることによりて、該透明ガラス1本からコア
径200μm、クラツド径300μmの光ファイバが1
0Km以上得られた。該光ファイバの伝送損失はα85
μ溝で4 (L B / K m以上であり、LAN用
の光ファイバとして十分使用できることが確認できた。
By drawing the transparent glass and using fluoropolymer as the cladding, one optical fiber with a core diameter of 200 μm and a cladding diameter of 300 μm can be produced from one transparent glass.
Obtained more than 0km. The transmission loss of the optical fiber is α85
It was confirmed that the μ groove was 4 (L B / K m or more) and that it could be used as an optical fiber for LAN.

また該透明ガラスはこれ自身光透過性が極めて良いので
、このまま、あるいはQファイバとして直径数百μ溝〜
数譚の光伝送用石英棒として用いることができる。この
光伝送用石英棒は、宇宙ステージ冒ン内部につくられる
農場の照明のために、あるいは海底牧場の照明のために
使われ得る。
In addition, since the transparent glass itself has extremely good light transmittance, it can be used as is or as a Q fiber with a groove of several hundred microns in diameter.
It can be used as a quartz rod for several light transmissions. This light transmitting quartz rod can be used for lighting of farms built inside the space stage or for lighting of underwater farms.

〔実施例2〕 実施例1と同様にして作ったゾル溶液を回転ゲル化の手
法を用いてゲル化させ、外径50閣、内径、25 m 
、長さ2000mの管状のウェットゲルを作製した。該
ウェットゲル10本を実施例1と同様な方法を用いて乾
燥、焼結したところ歩留り100%で10本の透明ガラ
スが得られた。
[Example 2] A sol solution prepared in the same manner as in Example 1 was gelled using a rotation gelling method, and the outer diameter was 50 m and the inner diameter was 25 m.
A tubular wet gel with a length of 2000 m was prepared. When 10 pieces of the wet gel were dried and sintered using the same method as in Example 1, 10 pieces of transparent glass were obtained with a yield of 100%.

該透明ガラスの大きさは外径2五2 ras 、内径1
1.6瓢、長さ928+1!IIであった。
The size of the transparent glass is outer diameter 252 ras, inner diameter 1
1.6 gourds, length 928+1! It was II.

該透明ガラスを線引きし、フッ素系ポリマーをクラッド
として用いることによって、該透明ガラス管1本から、
コア径200μm、クラツド径300μ洛の光7アイパ
が8 ICm以上得られた。該光ファイバの伝達損失は
a、85μmで4 dBΔ以下であり、LAN用の光フ
ァイバとして十分使用できることが確認できた。
By drawing the transparent glass and using a fluorine-based polymer as a cladding, from one transparent glass tube,
With a core diameter of 200 .mu.m and a cladding diameter of 300 .mu.m, an optical power of 7 IPA of 8 ICm or more was obtained. The transmission loss of the optical fiber was 4 dBΔ or less at a and 85 μm, and it was confirmed that it could be sufficiently used as an optical fiber for LAN.

また該透明ガラスは管状であるので、MOVI)法のサ
ポートチェーブ、WAD法、MCJVD法で使われる母
材のジャケット管、ロッドインチューブ法で使われるタ
ララドチューブに使用できる。
Furthermore, since the transparent glass is tubular, it can be used for support tubes in the MOVI method, jacket tubes as base materials used in the WAD method and MCJVD method, and Talarad tubes used in the rod-in-tube method.

特に該透明ガラス中には水分がほとんど含まれていない
ので(100ppb 以下)、特に高品質な光ファイバ
を製造する際に使用される。
In particular, since the transparent glass contains almost no water (100 ppb or less), it is used especially when manufacturing high-quality optical fibers.

〔実施例3〕 実施例1と同様にして作ったゾル溶液を200mm’ 
X 100rmの内寸をもつテフロン容器に80閣の深
さまで移し入れた後ゲル化させ、実施例1よりもゆっく
り乾燥・焼結したところ、92traR0×37闘厚の
石英ガラスが作られた。該石英ガラスは紫外、可視光を
よく透過し、200%溝の波長の光をも十分通すため、
1Mビット以上の超LSI製造の際に使用するフォトマ
スクに使うことが可能である。また、本実施例で得られ
た石英ガラスは肉厚なので、レンズ、プリズム等に加工
できた。このようにして作られたレンズは256に1)
 i t S RAMの製造の際使用することができた
〔発明の効果〕 以上述べたように本発明によれば、アルキルシリケート
を、塩基性試薬で加水分解して得られるシリカ微粒子を
溶液中に含む第一の溶液と、アルキルシリケートを、酸
性試薬で加水分解して得られる第二の溶液とを、所定の
割合で混合して得られる高純度なゾル溶液を所定の容器
に移し入れてゲル化させてウェットゲルを作り、該ウェ
ットゲルを乾燥して多孔性のドライゲルとした後焼結し
透明ガラスとするため、金属イオン等の不純物、結晶、
気泡、不定形状の異物の極めて少ない高品質の石英ガラ
スが作製できる。また焼結工程において閉孔化処理をH
e雰囲気で、あるいは減圧下で、あるいはHe雰囲気に
した後減圧にしながら行なうことによって1μm以下の
微小な気泡や不定形状の異物をもほぼ完全に取り除くこ
とができ極めて高品質の石英ガラスが作製できる。さら
にゴミ、異物等の混入を防ぐ手段と、それらを取り除く
手段を併用することによって、上記の極めて高品質の石
英ガラスを安定して歩留りよく製造することができる。
[Example 3] The sol solution prepared in the same manner as in Example 1 was
The mixture was transferred to a Teflon container with an inner dimension of 100 rms to a depth of 80 rms, gelled, dried and sintered more slowly than in Example 1, and a quartz glass with a thickness of 92 tR0 x 37 mm was produced. The quartz glass transmits ultraviolet and visible light well, and also sufficiently transmits light at the wavelength of the 200% groove.
It can be used as a photomask for use in manufacturing VLSIs of 1M bits or more. Furthermore, since the quartz glass obtained in this example was thick, it could be processed into lenses, prisms, etc. Lenses made in this way are 256 in 1)
[Effects of the Invention] As described above, according to the present invention, fine silica particles obtained by hydrolyzing an alkyl silicate with a basic reagent are added to a solution. A high-purity sol solution obtained by mixing a first solution containing the alkyl silicate and a second solution obtained by hydrolyzing an alkyl silicate with an acidic reagent at a predetermined ratio is transferred to a predetermined container to form a gel. In order to make a wet gel by drying the wet gel to make a porous dry gel and then sintering it to make a transparent glass, impurities such as metal ions, crystals, etc.
High-quality quartz glass with very few air bubbles and irregularly shaped foreign matter can be produced. In addition, in the sintering process, H
By performing the process in an E atmosphere, under reduced pressure, or under reduced pressure after creating a He atmosphere, even minute bubbles of 1 μm or less and irregularly shaped foreign matter can be almost completely removed, and extremely high quality quartz glass can be produced. . Furthermore, by using means for preventing the incorporation of dust, foreign matter, etc., and means for removing them, the above-mentioned extremely high quality quartz glass can be produced stably and with a high yield.

以上 ′ζ7’that's all ′ζ7′

Claims (2)

【特許請求の範囲】[Claims] (1)アルキルシリケートを、塩基性試薬で加水分解し
て得られるシリカ微粒子を溶液中に含む第一の溶液と、
アルキルシリケートを、酸性試薬で加水分解して得られ
る第二の溶液とを、所定の割合で混合して得られるゾル
溶液を所定の容器に移し入れゲル化させてウェットゲル
を作る工程、前記ウェットゲルを乾燥してドライゲルを
作る工程、前記ドライゲルを焼結して透明ガラス体とす
る工程からなることを特徴とする石英ガラスの製造方法
(1) a first solution containing fine silica particles obtained by hydrolyzing an alkyl silicate with a basic reagent;
A step of preparing a wet gel by transferring a sol solution obtained by mixing a second solution obtained by hydrolyzing an alkyl silicate with an acidic reagent at a predetermined ratio into a predetermined container and gelling it; A method for producing quartz glass, comprising the steps of drying a gel to form a dry gel, and sintering the dry gel to form a transparent glass body.
(2)特許請求の範囲第1項の焼結して透明ガラス体と
する工程において、開孔化処理を以下の3つの方法のう
ちいずれかの方法を用いて行なうことを特徴とする特許
請求の範囲第1項記載の石英ガラスの製造方法。 1)He雰囲気中で閉孔化する 2)減圧下で閉孔化する 3)He雰囲気にした後減圧にして閉孔化する
(2) A patent claim characterized in that in the step of sintering to form a transparent glass body according to claim 1, the pore-forming treatment is performed using one of the following three methods. A method for producing quartz glass according to item 1. 1) Close the pores in a He atmosphere 2) Close the pores under reduced pressure 3) Close the pores under reduced pressure after creating a He atmosphere
JP15667085A 1985-02-13 1985-07-16 Preparation of quartz glass Pending JPS6217027A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP15667085A JPS6217027A (en) 1985-07-16 1985-07-16 Preparation of quartz glass
US06/826,527 US4622056A (en) 1985-02-13 1986-02-06 Method of preparing silica glass
FR868601762A FR2577211B1 (en) 1985-02-13 1986-02-10 PROCESS FOR THE PREPARATION OF SILICA GLASS
GB08603421A GB2170799B (en) 1985-02-13 1986-02-12 Method of preparing silica glass
CA000501825A CA1269250A (en) 1985-02-13 1986-02-13 Method for preparing silica glass
DE19863604529 DE3604529A1 (en) 1985-02-13 1986-02-13 METHOD FOR PRODUCING QUARTZ GLASS
SG605/90A SG60590G (en) 1985-02-13 1990-07-19 Method of preparing silica glass
HK288/91A HK28891A (en) 1985-02-13 1991-04-18 Method of preparing silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15667085A JPS6217027A (en) 1985-07-16 1985-07-16 Preparation of quartz glass

Publications (1)

Publication Number Publication Date
JPS6217027A true JPS6217027A (en) 1987-01-26

Family

ID=15632736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15667085A Pending JPS6217027A (en) 1985-02-13 1985-07-16 Preparation of quartz glass

Country Status (1)

Country Link
JP (1) JPS6217027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180035838A (en) * 2015-07-28 2018-04-06 데. 스바로프스키 카게 Continuous sol-gel method for making quartz glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180035838A (en) * 2015-07-28 2018-04-06 데. 스바로프스키 카게 Continuous sol-gel method for making quartz glass
CN107912036A (en) * 2015-07-28 2018-04-13 D.施华洛世奇两合公司 It is used to prepare the continuous sol-gal process of quartz glass

Similar Documents

Publication Publication Date Title
CN1100727C (en) Manufacture of vitreous silica product
US5250096A (en) Sol-gel method of making multicomponent glass
EP0293064B1 (en) Sol-gel method for making ultra-low expansion glass
CA1269250A (en) Method for preparing silica glass
Celzard et al. Applications of the sol-gel process using well-tested recipes
JPH11171585A (en) Silica glass composition and production of silica glass using same
US4902650A (en) Gradient-index glass
WO2002074704A1 (en) Process for reducing or eliminating bubble defects in sol-gel silica glass
US5919280A (en) Method for fabricating silica glass
JPS6217027A (en) Preparation of quartz glass
JPS59131538A (en) Production of quartz glass
CA2246153C (en) Method for fabricating silica glass
KR100248062B1 (en) Composition for forming silica glass and the method for preparing silica glass using the same
JPS61186227A (en) Production of quartz glass
JPS62113737A (en) Production of quartz glass
JPS60239329A (en) Manufacture of quartz glass
KR100243327B1 (en) Method of preparing silica glass with sol-gel process
JPH059036A (en) Production of quartz glass having refractive index distribution
JPS62288130A (en) Production of preform for quartz based optical fiber
JPS62288117A (en) Production of doped silica glass
JPS6065735A (en) Production of quartz glass
JPS60108325A (en) Production of glass
JPS6278121A (en) Production of quartz based glass
KR20010028000A (en) Composition for making silica glass with sol-gel process
JPS63291824A (en) Production of quartz glass transmitting short wavelength laser light