JPS58167436A - Production of optical glass - Google Patents

Production of optical glass

Info

Publication number
JPS58167436A
JPS58167436A JP57047084A JP4708482A JPS58167436A JP S58167436 A JPS58167436 A JP S58167436A JP 57047084 A JP57047084 A JP 57047084A JP 4708482 A JP4708482 A JP 4708482A JP S58167436 A JPS58167436 A JP S58167436A
Authority
JP
Japan
Prior art keywords
sol
vacuum
gel
optical glass
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57047084A
Other languages
Japanese (ja)
Inventor
Jiyuu Kee Goo
ゴ−・ジユ−・ケ−
Makoto Sato
信 佐藤
Iwao Matsuyama
松山 「巌」
Kenzo Susa
憲三 須佐
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP57047084A priority Critical patent/JPS58167436A/en
Publication of JPS58167436A publication Critical patent/JPS58167436A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:After a porous gel resulting from hydrolysis of a metal alkoxide is deaerated, the product is sintered by heating, processed at elevated temperatures to give a clear optical glass free from bubbling even when processed or treated at elevated temperatures. CONSTITUTION:For example, Si(OCH3)4 is combined with a prescribed amount of Ge(OCH3)4 and mixed with methanol, further with aqueous ammonium hydroxide solution to prepare a sol by stirring. Then, a vessel 2 containing the above sol 3 is placed in the vacuum vessel 1 of a deaeration system consisting of vacuum gauge 4, vacuum valve 5, leak valve 6 and vacuum pump 7. Then, the vessel 1 is adjusted in vacuum to less than 10<-1>torr, before the sol 3 changes into gel to effect deaeration, thus removing the air dissolving in the sol 3. Further, deaeration is continued until the sol loses its flowability at all into a gel. Then, the resultant gel is dried, sintered by heating to give the objective clear glass. During the sintering, there is no bubbling caused by the air.

Description

【発明の詳細な説明】 本発明は金属アルコキシドの加水分解反応により得られ
る多孔質ゲルを加熱焼結することに上り透明ガラス体を
製造する方法に関するものにして特に光ファイバ等の光
学装置用の光学ガラスの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a transparent glass body by heating and sintering a porous gel obtained by a hydrolysis reaction of a metal alkoxide, and particularly relates to a method for manufacturing a transparent glass body for optical devices such as optical fibers. The present invention relates to a method for manufacturing optical glass.

従来、加水分解反応を利用したガラスの製造方法の一つ
として、アルコキシシランもしくは添加、元素のアルコ
キシドが添加されたアルコキシシランを加水分解してシ
リカゲルもしくは添加酸化物を含むシリカゲルを得たの
ち、1000℃以上の温度に酸化性゛雰囲気中で徐々に
昇温加熱することにより、脱吸着水、脱残留有機物、無
孔化等のプロセスを行い、 密なガラスを得ろ方法が知
られている(例えば、特開昭51−34219号公報;
ジャーナル・オブ・マテリアル・サイエンス、第14巻
(1979年)、第607頁〜第611頁)。
Conventionally, as one method for producing glass using a hydrolysis reaction, an alkoxysilane or an alkoxysilane to which an elemental alkoxide has been added is hydrolyzed to obtain silica gel or a silica gel containing an added oxide, and then 1000 There is a known method for obtaining a dense glass by gradually heating it to a temperature above ℃ in an oxidizing atmosphere to perform processes such as removing adsorbed water, removing residual organic matter, and making it non-porous (for example, , Japanese Patent Application Publication No. 51-34219;
Journal of Materials Science, Vol. 14 (1979), pp. 607-611).

しかしながら、上記の方法で熱処理する場合、熱処理過
程でクラックが発生したり、発泡したりすることがあっ
た。特に高温、例えば1300℃以上で加工する場合、
発泡することが多かった。
However, when heat treatment is performed using the above method, cracks may occur or foaming may occur during the heat treatment process. Particularly when processing at high temperatures, e.g. 1300°C or higher,
It often foamed.

従ってその用途は極めて限られたものにならざるを得な
かった。
Therefore, its use had to be extremely limited.

一方、多孔質ンリカガラスの残留水分を効果的に除去す
る方法として、これを600〜1000℃の温度で塩素
含有雰囲気に晒す処理(脱0■処理)を行った後に12
00〜1300℃で無孔化する方法が知られている(特
公昭42−23036号公報)。
On the other hand, as a method for effectively removing residual moisture from porous phosphor glass, it is necessary to expose it to a chlorine-containing atmosphere at a temperature of 600 to 1000°C (de-zero treatment) and then
A method of making the material non-porous at 00 to 1300°C is known (Japanese Patent Publication No. 42-23036).

本発明者等の実験的検討によると、この方法を添加物を
含むノリ力ゲルの脱01−1処理に適用すると発泡を著
しく減少させることはできるが、完全に抑えることはで
きないことがわかった。つまり高温における発泡は単に
ガラス体に残存する水分の蒸発に基づくものだけではな
く、人以外のガラスによるものがあることが判明した。
According to the experimental studies conducted by the present inventors, it was found that when this method is applied to the 01-1 removal treatment of Noriyoku gel containing additives, foaming can be significantly reduced, but it cannot be completely suppressed. . In other words, it has been found that foaming at high temperatures is not simply caused by the evaporation of water remaining in the glass body, but is also caused by glass caused by people other than humans.

本発明の目的は、上記の本発明者等の実験的検討に基づ
き、上記に述べた従来技術の問題点を解決した、高温に
加工・処理しても発泡しない透明な光学ガラスを製造す
る方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, based on the experimental studies of the present inventors, and to produce a transparent optical glass that does not foam even when processed and treated at high temperatures. Our goal is to provide the following.

本発明者等は、1000〜2000℃の高温において発
生する発泡現象について綿密に観察し、OIl含有址が
少ない(1000ppm 以下)ガラス体の発泡気体の
成分分析を行った。その結果、発泡気体の成分はほとん
ど空気の成分(窒素、酸素、アルゴン等)であること、
および、混合液体を調合した直後、つまりゲル化がまだ
起こらないゾル状態の段階でゾルに溶解している空気を
十分に除去することにより、高温加熱してもほとんど発
泡が起こらないものにすることができる事実を見出すに
至った。
The present inventors carefully observed the foaming phenomenon that occurs at a high temperature of 1000 to 2000° C., and conducted a component analysis of the foaming gas of a glass body containing a small amount of OIl (1000 ppm or less). As a result, the components of the foaming gas are mostly air components (nitrogen, oxygen, argon, etc.);
And, by sufficiently removing the air dissolved in the sol immediately after preparing the mixed liquid, that is, in the sol state where gelation has not yet occurred, almost no foaming occurs even when heated at high temperatures. We have come to discover the fact that this is possible.

そこで、本発明の光学ガラスの製造方法の特徴とすると
ころは、金属アルコキシドを加水分解反応に基づき、ゾ
ル液とし、そのものをゲル化した後、加熱焼結してガラ
ス化するものにおいて、前記のゲル化する前のゾルの状
態において、ゾル液に溶解しているガス、主として空気
を脱気する処理を施すことにある。
Therefore, the feature of the method for manufacturing optical glass of the present invention is that a metal alkoxide is made into a sol solution based on a hydrolysis reaction, and after that is gelled, it is heated and sintered to vitrify it. The purpose of this process is to perform a process to remove gas, mainly air, dissolved in the sol before it becomes a gel.

このような本発明によれば、高温加工においても発泡し
ない光学ガラスを、容易確実に製造することができるも
のである。
According to the present invention, it is possible to easily and reliably produce optical glass that does not foam even during high-temperature processing.

以下に、本発明を試験例につき、さらに具体的に、詳細
に説明する。
Below, the present invention will be explained more specifically and in detail with reference to test examples.

試験例 1 Si(OCi−13)4’+モルに対して10モルチの
Ge(OCH3)4 を加え、さらに6.5モルノCl
l30I「を加え混合したのち、濃度5×10 モル/
lのNH4OH水溶液の4.8モルを加えてマグネチッ
ク・スターラーでよく混合した。
Test Example 1 10 mol of Ge(OCH3)4 was added to 4'+ mol of Si(OCi-13), and further 6.5 mol of Cl was added.
After adding l30I and mixing, the concentration was 5 x 10 mol/
4.8 mol of NH4OH aqueous solution was added and mixed well with a magnetic stirrer.

次に、第1図に示すような真空圧力計4、真空バルブ5
、リークバルブ6、真空ポンプ7を備えた減圧脱気装置
の真空容器1内に、上記のように調製した混合液(ゾル
)3を入れたゾル液の容器2を置き、混合液がゾル状態
からまだゲル化していないうちに、上記真空装置におけ
る真空容器1の真空度を10 ’ Torr以下に調整
して、15分間減圧による脱気処理を行い、ゾル液中に
溶解している空気を除去した。
Next, a vacuum pressure gauge 4 and a vacuum valve 5 as shown in FIG.
A sol liquid container 2 containing the mixed liquid (sol) 3 prepared as described above is placed in a vacuum container 1 of a vacuum degassing device equipped with a leak valve 6 and a vacuum pump 7, and the mixed liquid is in a sol state. While the sol has not yet gelatinized, adjust the degree of vacuum in the vacuum container 1 in the vacuum device to 10' Torr or less and perform deaeration treatment by reducing pressure for 15 minutes to remove air dissolved in the sol solution. did.

以上のようにして減圧脱気処理をしたゾルを、内径1[
]mmφ、長さ20 [1mmのシリコンコーティング
した円筒形のゲル作製用のガラス容器内に8割程度にな
るように充填し、再び上記の真空装置の真空容器1の中
に置き、ゾル液が完全に流動性がなくなるまで脱気処理
を行いゲル化させた。
The sol subjected to vacuum degassing treatment as described above was prepared with an inner diameter of 1[
] mmφ, length 20 [A 1 mm silicon-coated cylindrical glass container for gel preparation is filled to about 80%, and placed again in the vacuum container 1 of the vacuum device described above, and the sol liquid is Deaeration treatment was performed until the fluidity completely disappeared to form a gel.

本試験における脱気処理時間は約30分であった。The deaeration treatment time in this test was approximately 30 minutes.

次いで、真空容器からゲル作製用のガラス容器を増9出
し、空気中にてゲル作製用ガラス容器の頭部をアルミ箔
で覆い、ゾルの蒸発を防いだ。この試料を試料m1とす
る。
Next, a glass container for gel preparation was removed from the vacuum container, and the top of the glass container for gel preparation was covered with aluminum foil to prevent evaporation of the sol. This sample is referred to as sample m1.

別に、比較試料として、上記の試料部1におけると全く
同一条件で、同一組成となるように調製した混合液(ゾ
ル)を、脱気処理をすることなくそのままガラス容器に
充填した後、容器の頭部をアルミ箔で覆い室温でゲル化
させた。この試料を試料Na2とする。
Separately, as a comparative sample, a mixed solution (sol) prepared under exactly the same conditions and with the same composition as in Sample Part 1 above was filled into a glass container as it was without degassing, and then The head was covered with aluminum foil and allowed to gel at room temperature. This sample is referred to as sample Na2.

上記の試料N11および蝿2におけるゲルは、いずれも
水、アルコールを多量に内部に包含しているものである
ので、次いで、ゲル内から水、アルコールを徐々に蒸発
させるため、密閉した上部のアルミ箔の蓋に直径1mm
のピンホールを数個(miとN112と同数)開け、7
0℃の温度に1週間保持したあと、120℃で1昼夜乾
燥し2て、かさ密度約0.6 g/crt+3 の乾燥
ゲルを得た。
The gels in samples N11 and Flies 2 above both contain large amounts of water and alcohol, so in order to gradually evaporate water and alcohol from inside the gels, the gels were sealed in an aluminum upper part. 1mm diameter on foil lid
Drill several pinholes (same number as mi and N112), 7
After being maintained at a temperature of 0° C. for one week, it was dried at 120° C. for one day and night to obtain a dry gel having a bulk density of about 0.6 g/crt+3.

両試料N[Llおよびl@2につき、このようにして作
製した乾燥ゲルを容器から増り出し、電気炉に入れ、酸
素雰囲気中で800℃まで200℃/ h rの昇温速
度で加熱し、その後20℃/hrの昇温速度でHe雰囲
気中で1200℃まで加熱焼結して、いずれについても
、透明ガラス体を得た。これらの透明ガラス体をさらに
1400℃以上(光フアイバ製造の場合、線引きできる
ような温度)に加熱変形させた。
For both samples N[Ll and l@2, the dried gels prepared in this way were taken out of the container, placed in an electric furnace, and heated to 800°C at a heating rate of 200°C/hr in an oxygen atmosphere. , and then heated and sintered to 1200° C. in a He atmosphere at a heating rate of 20° C./hr to obtain transparent glass bodies in each case. These transparent glass bodies were further heated and deformed to 1400° C. or higher (a temperature at which drawing can be performed in the case of optical fiber production).

以上の結果、ゾル状態で脱気処理を行わなかった試料高
2のものは、ガラス体に気泡が発生したそれに対して、
ゾル状態で脱気処理を行った試料−1のものは、ガラス
体に気泡の発生が見出せなかった。試料高2との比較に
おいて本発明の効果が確認された。
As a result of the above, the sample height 2 which was not degassed in the sol state had air bubbles in the glass body, whereas the
In sample-1, which was subjected to deaeration treatment in a sol state, no bubbles were found in the glass body. The effect of the present invention was confirmed in comparison with sample height 2.

上記においては、ゾル液中に溶解しているガスを脱気処
理するためには、ゾル液に調製した液を減圧脱気処理し
たが、ゾル液中に溶解しているガスを脱気処理する方法
としては、上記の方法以外に、ゾル液を調製する前に各
金属アルコキシド原料液、アルコール、水等を別々に減
圧脱気処理してから真空中もしくはHe雰囲気中で混合
しゾル液を調製してもよいものである。この方法は、特
にゲル化時間が極端に短く、数分以内という場合に有効
である。
In the above, in order to degas the gas dissolved in the sol liquid, the liquid prepared as a sol liquid was degassed under reduced pressure, but the gas dissolved in the sol liquid was degassed. In addition to the above method, before preparing the sol liquid, each metal alkoxide raw material liquid, alcohol, water, etc. are separately degassed under reduced pressure, and then mixed in a vacuum or in a He atmosphere to prepare the sol liquid. It is okay to do so. This method is particularly effective when the gelation time is extremely short, within several minutes.

試験例 2 試験例1の場合と同一の条件方法で、5r(QC)13
)Gc (OCI−13)4. メp ノール、 NH
4OH水溶液を用いて混合液(ゾル)を調製した。
Test Example 2 Under the same conditions and method as Test Example 1, 5r (QC) 13
)Gc (OCI-13)4. Mepnor, NH
A mixed solution (sol) was prepared using a 4OH aqueous solution.

このゾルを試験例1の試料miの場合の脱気処理と同様
に、ゾル状態からまだゲル化していないうちに真空度1
Q’Torr  以下の真空容器の中に置き、約10分
間、減圧による脱気処理を行い、ゾル液中に溶解してい
る空気を除去した。
Similar to the degassing treatment for sample mi in Test Example 1, this sol was removed from the sol state to a vacuum degree of 1.
The sol was placed in a vacuum container of Q'Torr or less, and degassed under reduced pressure for about 10 minutes to remove air dissolved in the sol.

減圧脱気処理後のゾルを内径10mmφ、長さ200m
mのシリコンコーティングした円筒形のゲル作製ガラス
容器に約8割程度となるように充填し、空気中、常温で
ゲル化させた。ゾル充填後ゲル化までの時間は約10分
であった。
The sol after vacuum degassing treatment has an inner diameter of 10 mmφ and a length of 200 m.
A cylindrical gel preparation glass container coated with silicone was filled to about 80% of the volume, and gelatinized in air at room temperature. The time from filling the sol to gelation was about 10 minutes.

このゲルを70℃で1週間、その後さらに120℃で1
昼夜乾燥し、かさ密度約0.6 g/cm3の乾燥ゲル
を作製した。
This gel was heated at 70°C for 1 week and then at 120°C for 1 week.
It was dried day and night to produce a dried gel with a bulk density of about 0.6 g/cm3.

この試料を試料l1a3とする。This sample is designated as sample l1a3.

この乾燥ゲルの試料高6を、試験例1の場合と同じ条件
で焼結し、得られたガラス体をさらに高温で加熱し、発
泡のようすを、試験例1の試料高1およびNa2と比較
したところ、以下のような結果が得られた。
Sample height 6 of this dry gel was sintered under the same conditions as in Test Example 1, the resulting glass body was heated at an even higher temperature, and the foaming behavior was compared with sample height 1 and Na2 of Test Example 1. As a result, the following results were obtained.

(1)未脱気の試料Nα2のものより発泡が少ながった
(1) Foaming was less than that of undegassed sample Nα2.

(2)シかし、真空中でゲル化させた試料高1のものに
比べ、若干発泡量が多かった。
(2) However, the amount of foaming was slightly larger than that of the sample height 1 which was gelled in vacuum.

以上の結果から、ゾルを脱気処理するだけでも発泡を低
減する効果はあるが、空気中でゲル化させると、脱気さ
れたゾルに空気が再び溶解し、それが発泡の原因になっ
たと考えられる。従って、ゲル化時間が長いゾルに対し
ては、He雰囲気中でゲル化させるが、試験例1の試料
高1のように脱気処理はゾル液がゲル化するまで継続し
て行うこと、すなわち、真空中でゲル化することが望ま
しいことがわかった。
From the above results, it seems that degassing the sol alone has the effect of reducing foaming, but when it is gelled in the air, air re-dissolves in the degassed sol, which causes foaming. Conceivable. Therefore, for a sol with a long gelation time, it is gelled in a He atmosphere, but as in sample height 1 of Test Example 1, the degassing treatment must be continued until the sol solution gels. , gelation in vacuum was found to be desirable.

なお、上記の試験例では、減圧によって脱気処理する方
法について述べたが、その他の方法例えば、 (a)所望のガス雰囲気、例えばIce 、中でゾルを
蒸溜する方法; (1))  ゾル中に所望のガスを導入してバブルし、
空気をこのガスで置換脱気する方法; などがある。
In addition, in the above test example, a method of degassing treatment by reduced pressure was described, but other methods such as (a) a method of distilling the sol in a desired gas atmosphere, such as Ice; (1)) a method of distilling the sol in the sol; Bubble by introducing the desired gas into the
There is a method of replacing air with this gas and degassing it.

まだ、上記試験例ではGe O2とS i 02の二成
分系ガラスについて述べたが、−成分、二成分以上の金
属アルコキシドの加水分解によるガラス製造においても
本発明の方法が適用できることはいうまでもないことで
ある。
In the above test example, a binary glass of GeO2 and Si02 was described, but it goes without saying that the method of the present invention can also be applied to the production of glass by hydrolysis of -component, metal alkoxide of two or more components. There is no such thing.

以上に述べたように、本発明の光学ガラスの製造方法は
、光学ガラス体を発泡なく高温において加工成形する上
において著しい効果を有するものである。
As described above, the method for manufacturing optical glass of the present invention has a remarkable effect in processing and molding an optical glass body at high temperatures without foaming.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ゾル・ゲル法におけろ減圧によるゾル液の脱
気装置の説明図である。 1・・真空容器     2・・・ゾル液容器6・・・
ゾル液      4・・・真空圧力計5・・真空バル
ブ    6・・・リークバルブ7・・・真空ポンプ 代理人弁理士 中村純之助 第1頁の続き 地株式会社日立製作所中央研究 所内 番2号
FIG. 1 is an explanatory diagram of a degassing device for a sol liquid using reduced pressure in the sol-gel method. 1... Vacuum container 2... Sol liquid container 6...
Sol liquid 4...Vacuum pressure gauge 5...Vacuum valve 6...Leak valve 7...Vacuum pump attorney Junnosuke Nakamura Continuation of page 1 Hitachi, Ltd. Central Research Laboratory No. 2

Claims (4)

【特許請求の範囲】[Claims] (1)金属アルコキシドを加水分解反応に基つきゾル液
とし、そのものをゲル化した後、加熱焼結してガラス化
する方法において、前記のゾル液中に溶解しているガス
を脱気処理することを特徴とする光学ガラスの製造方法
(1) A method in which a metal alkoxide is made into a sol liquid through a hydrolysis reaction, which is then gelled and then vitrified by heating and sintering, in which the gas dissolved in the sol liquid is degassed. A method for manufacturing optical glass, characterized by:
(2)  前記のガスは空気である特許請求の範囲第1
項記載の光学ガラスの製造方法。
(2) Claim 1, wherein the gas is air.
A method for producing optical glass as described in Section 1.
(3)  前記の脱気処理はゾル液がゲル化する捷で継
続して行うものである特許請求の範囲第1項1だに第2
項記載の光学ガラスの製造方法。
(3) The above degassing treatment is performed continuously in a bowl where the sol solution gels.
A method for producing optical glass as described in Section 1.
(4)前記の脱気処理は10 ’ Torr  以下の
貞空中で行うものである特許請求の範囲第1項ないし第
6項のいずれにか記載の光学ガラスの製造方法6゜
(4) The method for manufacturing optical glass according to any one of claims 1 to 6, wherein the degassing treatment is performed in a clean atmosphere of 10' Torr or less.
JP57047084A 1982-03-26 1982-03-26 Production of optical glass Pending JPS58167436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047084A JPS58167436A (en) 1982-03-26 1982-03-26 Production of optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047084A JPS58167436A (en) 1982-03-26 1982-03-26 Production of optical glass

Publications (1)

Publication Number Publication Date
JPS58167436A true JPS58167436A (en) 1983-10-03

Family

ID=12765303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047084A Pending JPS58167436A (en) 1982-03-26 1982-03-26 Production of optical glass

Country Status (1)

Country Link
JP (1) JPS58167436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296325A (en) * 1985-10-21 1987-05-02 Hoya Corp Production of glass by sol gel method
JPS6465029A (en) * 1987-09-04 1989-03-10 Toshiba Ceramics Co Production of glass
JP2008510139A (en) * 2004-08-10 2008-04-03 スリーエム イノベイティブ プロパティズ カンパニー Leakage detection method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296325A (en) * 1985-10-21 1987-05-02 Hoya Corp Production of glass by sol gel method
JPH0556292B2 (en) * 1985-10-21 1993-08-19 Hoya Corp
JPS6465029A (en) * 1987-09-04 1989-03-10 Toshiba Ceramics Co Production of glass
JP2577573B2 (en) * 1987-09-04 1997-02-05 東芝セラミックス株式会社 Glass manufacturing method
JP2008510139A (en) * 2004-08-10 2008-04-03 スリーエム イノベイティブ プロパティズ カンパニー Leakage detection method and system

Similar Documents

Publication Publication Date Title
US4059658A (en) Low temperature production of high purity fused silica
US4432956A (en) Preparation of monolithic silica aerogels, the aerogels thus obtained and their use for the preparation of silica glass articles and of heat-insulating materials
US5023208A (en) Sol-gel process for glass and ceramic articles
US6099792A (en) Sol-gel process using porous mold
JP3690806B2 (en) Subcritical drying of sol-gel porous objects
US4806328A (en) Method of manufacturing monolithic glass members
US4622056A (en) Method of preparing silica glass
US4747863A (en) Method of manufacturing glass bodies
KR100501759B1 (en) Sol-gel process for the production of tridimensional dry gels, and silica dry gels and silica glasses produced therefrom
US4684385A (en) Method for the manufacture of glass bodies
GB2113200A (en) Process for producing optical glass
JPS58167436A (en) Production of optical glass
AU6294799A (en) Sol-gel process using porous mold
US20010009102A1 (en) Method for fabricating high-purity silica glass using sol-gel processing
JPS6027615A (en) Production of optical glass
CA1260712A (en) Method of manufacturing monolithic glass members
JPH01183421A (en) Production of quartz glass
JP2007510532A (en) Improved sol-gel method, product obtained by the method, and method for storing nuclear material using the product
JPS61256928A (en) Production of glass
JPH08231213A (en) Production of transparent porous body having water repellency
KR900002259B1 (en) Method for preparing optical-fiber preform
GB2075003A (en) Method for Producing Optical Glass
JP3519012B2 (en) Method for producing multi-component glass
JPS6186429A (en) Preparation of glass
JPH04325424A (en) Production of glass