JPS6296337A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS6296337A
JPS6296337A JP23554985A JP23554985A JPS6296337A JP S6296337 A JPS6296337 A JP S6296337A JP 23554985 A JP23554985 A JP 23554985A JP 23554985 A JP23554985 A JP 23554985A JP S6296337 A JPS6296337 A JP S6296337A
Authority
JP
Japan
Prior art keywords
gel
drying
optical fiber
temperature
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23554985A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Sadao Kanbe
貞男 神戸
Masahisa Ikejiri
昌久 池尻
Teiichirou Mori
森 禎一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23554985A priority Critical patent/JPS6296337A/en
Publication of JPS6296337A publication Critical patent/JPS6296337A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Abstract

PURPOSE:To uniformize drying of an optical fiber preform in the production of the preform by sol-gel process, to eliminate the deformation of the preform and to improve the yield, by drying a wet gel under rotation. CONSTITUTION:In the production of an optical fiber preform by sol-gel process, a wet gel 1 is put into a drying vessel 5 and dried under rotation with rollers 4. The drying can be uniformized by this process, the yield can be improved and the warpage of the product is minimized. Since gravitational force is uni formly applied along radial direction, an optical fiber preform having improved roundness and high quality can be produced at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾル−ゲル法による光ファイバ用母材の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an optical fiber base material by a sol-gel method.

〔発明の概要〕[Summary of the invention]

本発明は、ゾル−ゲル法による光7アイパ用母材の製造
方法において、ウェットゲルを回転させながら乾燥を行
なうことにより、乾燥が均一になり、歩留りが改善され
、反りが小さくなる。また重力が生伍方向に均等に加わ
るたり、真円度が改善される。さらに乾燥速度を大きく
することができるため、乾燥期間を大幅に短縮でも、曖
産性を著しく改善することができるものである。
The present invention is a method for manufacturing a base material for Hikari 7 eyewear using a sol-gel method, in which wet gel is dried while being rotated, thereby making drying uniform, improving yield, and reducing warpage. In addition, gravity is applied evenly in the direction of the finish, and roundness is improved. Furthermore, since the drying speed can be increased, even if the drying period is significantly shortened, the dryness can be significantly improved.

〔従来の技術〕[Conventional technology]

従来のゾル−ゲル法による光ファイバ用母材の製造方法
においては、管状あるいは円柱状のゲルの乾燥は、ウェ
ットゲルを乾燥容器に入れ、所定の温度に放置していた
In the conventional sol-gel method for manufacturing an optical fiber preform, tubular or cylindrical gel is dried by placing wet gel in a drying container and leaving it at a predetermined temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では、ゲル乾燥中、ゲルが乾燥
容器に採している部分は他の部分に比べ乾燥が遅いため
、乾燥が不均一になり、ゲルが乾燥中に刷れてしまった
り、反ってしまったりする。
However, with the above-mentioned conventional technology, during gel drying, the area where the gel is placed in the drying container dries more slowly than other areas, resulting in uneven drying and the gel may be printed during drying. , it may warp.

また、乾燥容器中の、水やアルコールの蒸気圧の空間分
布の不均一により、ゲルの乾燥が不均一になり、ゲルの
乾燥が不均一になり、ゲルの乾燥中に刷れてしまったり
、反ってしまったりする。またゲルの軸を水平にして乾
燥した場合、ゲルに含まれていた水やアルコールがゲル
の下部に接触し、反ってしまったりする。このような乾
燥の不均一をi!llるため乾燥容器の開口率を小さく
するなどして、乾燥速度を小さくすると、乾燥に長期間
を要し、量産性が著しく悪化し、実用的でなくなってし
まう。さらにゲルは乾燥初期では、まだ柔らかいので、
重力で変形してしまう。したがって、ゲルの軸を垂直に
して乾燥した場合を除き、得られるゲルの真円度が悪く
なってしまう。ゲルの軸を垂直にして乾燥した場合、こ
の問題はないが、長いゲルでは、自重でつぶれてしまう
ため、長い大型の光ファイバ用母材を作ることができな
い。
In addition, due to the uneven spatial distribution of the vapor pressure of water and alcohol in the drying container, the drying of the gel becomes uneven, resulting in uneven gel drying, which may cause printing during gel drying. It may warp. Furthermore, if the gel is dried with its axis horizontal, the water or alcohol contained in the gel will come into contact with the lower part of the gel, causing it to warp. i! If the drying speed is reduced by, for example, reducing the opening ratio of the drying container in order to prevent the drying process, the drying process will take a long period of time, and mass productivity will be significantly deteriorated, making it impractical. Furthermore, the gel is still soft in the early stages of drying, so
It deforms due to gravity. Therefore, unless the gel is dried with its axis vertical, the roundness of the resulting gel will be poor. If the gel is dried with its axis vertical, this problem does not occur, but a long gel will collapse under its own weight, making it impossible to make a long, large optical fiber preform.

そこで本発明は、このような問題点を一挙に解決するも
ので、その目的とするところは、ゲルを、変形すること
なく、均一に、しかも歩留りよく速く乾燥させ、高品質
な光ファイバ用母材をtffl性良く得るための、光フ
ァイバ用母材の製造方法を提供するところにある9 〔問題点を解決するための手段〕 本発明の元ファイバ用母材の製造方法は、ゾル−ゲル法
による光ファイバ用母材の製造方法において、ウェット
ゲルを回転させながら乾燥を行なうことを特徴とする。
Therefore, the present invention aims to solve these problems all at once.The purpose of the present invention is to dry the gel uniformly and quickly without deformation, and with a good yield, and to produce a high-quality optical fiber matrix. The present invention provides a method for manufacturing an optical fiber preform in which a material with good tffl properties can be obtained. The method for manufacturing an optical fiber preform by the method is characterized in that the wet gel is dried while being rotated.

〔作用〕[Effect]

ゲルを軸のまわりに回転させながら乾燥させることによ
り、ゲルの外周が、乾燥容器と均等に接触するため、乾
燥の不均一がなくなりゲルが乾燥中に割れてしまったり
、反ってしまうことがなくなる。また、乾燥容器中に、
水やアルコールの蒸気圧の空1田分布の不均一があって
も、無視することができ、乾燥の不均一がなくなり、ゲ
ルが乾燥中に割れてしまったり、反ってしまうことがな
くなる。また、ゲルに含まれていた水やアルコールが容
器の底にたまって、ゲルと接触することもなくなり、ゲ
ルが乾燥中に割れてしまったり、反ってしまうことがな
くなる。このように、乾燥速度を大きくしても、ゲルが
乾燥中に割れてしまったり、反ってしまうことがなくな
る。さらに、重力がゲルの半径方向に均等に加わるので
、得られるゲルの真円度が悪くなることがなくなる。
By drying the gel while rotating it around the axis, the outer periphery of the gel comes into even contact with the drying container, which eliminates uneven drying and prevents the gel from cracking or warping during drying. . Also, in the drying container,
Even if there is non-uniformity in the vapor pressure distribution of water or alcohol, it can be ignored, non-uniformity in drying is eliminated, and the gel does not crack or warp during drying. In addition, the water and alcohol contained in the gel no longer accumulate at the bottom of the container and come into contact with the gel, which prevents the gel from cracking or warping during drying. In this way, even if the drying speed is increased, the gel will not crack or warp during drying. Furthermore, since gravity is applied evenly in the radial direction of the gel, the roundness of the resulting gel will not deteriorate.

以上述べたように、本発明によれば、ゲルを変形するこ
となく、均一に、しかも歩留り良く乾燥させることがで
きる。
As described above, according to the present invention, the gel can be dried uniformly and with a high yield without deforming the gel.

以下実施例により詳しく説明する。This will be explained in detail below using examples.

〔実施例1〕 エチル/リケード686.4 Pに0.02規定の塩酸
475、Ofを加えよく撹拌し、クラッド用加水分解m
液とした。
[Example 1] Add 0.02N hydrochloric acid 475, Of to ethyl/Licade 686.4P and stir well to prepare hydrolyzed m for cladding.
It was made into a liquid.

エチル7リケー)159.6rに[L2規定の塩酸22
−3Fを加え、激しく撹拌しながら反応させ、溶液が透
明になったところでテトラエトキ7ゲルマニウム1&9
2を少しずつ加えよく攪拌した。
ethyl chloride) 159.6r [L2 normal hydrochloric acid 22
-3F was added and reacted with vigorous stirring. When the solution became clear, tetraethoxy7 germanium 1 & 9
2 was added little by little and stirred well.

50分反応させた後、この反応溶液に02規定の塩# 
57.1 Fを加え、反応させ、さらに水594tを加
えよく攪拌させコア用加水分解溶液とした。
After reacting for 50 minutes, 02N salt # was added to the reaction solution.
57.1 F was added and reacted, and further 594 tons of water was added and stirred well to obtain a hydrolyzed solution for the core.

なおコア用加水分解溶液を作る工程中反応溶液は10C
以下に保つ念。
In addition, during the process of making the hydrolyzed solution for the core, the reaction solution was 10C.
Please keep the following in mind.

次にエチル7リケー) 104a7F、無水エタノール
1527F、29% アンモニア水25.9 f、水5
62.8fを混合し、2時間激しく攪拌した後、冷暗所
にて一晩装置し、7リ力微粒子を含む溶液を合流した。
Next, ethyl 7 liquefaction) 104a7F, anhydrous ethanol 1527F, 29% ammonia water 25.9F, water 5
62.8f were mixed and stirred vigorously for 2 hours, and then kept in a cool, dark place overnight, and the solution containing 7 Lilifine particles was combined.

この溶孜を減圧濃縮した後、溶液中のアルコール分を水
と置換した。その後、希塩酸を用いてPM値を4.0に
調整し、つづいて1,0μmのメンブランフィルタ−を
用いて濾過し、IIL18μmの平均粒径をもつシリカ
微粒子分散溶液とした。
After concentrating this melt under reduced pressure, the alcohol content in the solution was replaced with water. Thereafter, the PM value was adjusted to 4.0 using diluted hydrochloric acid, followed by filtration using a 1.0 μm membrane filter to obtain a silica fine particle dispersion solution having an average particle size of IIL 18 μm.

つぎにクラッド用加水分解溶液とシリカ微粒子分散溶液
の5分の4を混合し、[12現定のアンモニア水と水を
用いてPH値を4.69に調整し、かつ体積を2000
mtに調整し、クラッド用ゾル溶液とした。
Next, four-fifths of the hydrolyzed solution for cladding and the silica fine particle dispersion solution were mixed, [12] The pH value was adjusted to 4.69 using aqueous ammonia and water, and the volume was adjusted to 2000.
This was adjusted to mt and used as a sol solution for cladding.

またコア用加水分解溶液と7リ力微粒子分散溶液の5分
の1を混合し、Q、2現定のアンモニア水と水を用いて
PH値を4.46に調整し、かつ体、債を500mtに
調整し、コア用ゾル溶液とした。このとき該コア用ゾル
液、温は150以下に保った。
In addition, one-fifth of the hydrolyzed solution for the core and the 7-liquid particle dispersion solution were mixed, and the pH value was adjusted to 4.46 using the ammonia water and water specified in Q.2. It was adjusted to 500 mt and used as a core sol solution. At this time, the temperature of the core sol solution was kept at 150° C. or less.

なぜなら150以上にするとゲル化時間があまりにも軟
かくなって操作上不利だからである。
This is because if it exceeds 150, the gelation time becomes too soft, which is disadvantageous in terms of operation.

なお不実、怖列で用いた原料はすべて蒸留、濾過等の構
製を行ない、工程はすべてクリーン度クラス100((
L5μro)のクリーンルーム内で行なった〇次に前記
クランド用ゾル溶液を円筒状回転容器(円径50膚、長
さ1020m+、円容積1963m l )に移し入れ
た。この円筒状回転容61ζフタをして回転装置に取り
付け1500rpmで回転させながらゲル化させた。そ
の後ゲル化後に生じた中央の穴にコア用ゾル浴液を移し
入れゲル化させたところ外径50鴎、長さ10004@
、コア部の外径20B円柱ウェットゲルを得た。
Furthermore, all the raw materials used in the process are distilled, filtered, etc., and all processes are cleanliness class 100 ((
Next, the sol solution for crand was transferred to a cylindrical rotating container (diameter: 50 mm, length: 1020 m+, circular volume: 1963 ml). This cylindrical rotating container 61ζ was covered with a lid and attached to a rotating device, and was gelled while rotating at 1500 rpm. After that, the sol bath solution for the core was transferred to the center hole created after gelation, and it was gelled. The outer diameter was 50mm and the length was 10004mm.
A cylindrical wet gel with a core portion having an outer diameter of 20B was obtained.

同様にして作られた円柱状ウェットゲル4本を第1図に
示したように乾燥容器に移し入れ、開口率LL2%とし
、1rpmの回転数で回転式せながら、60Cで乾燥さ
せたところ、19日間で外径3五11、長さ662 ’
egg、コア部の外径1五2喝のドライゲルが4本得ら
れた。該ドライゲルの反りはQ、8器真円度は5.0μ
mであり、回転せずに乾燥させた従来のドライゲルに比
べて反り、真円支ともに一桁以上改善された。
Four cylindrical wet gels made in the same manner were transferred to a drying container as shown in Fig. 1, the opening ratio was set to LL2%, and the gel was dried at 60C while rotating at a rotation speed of 1 rpm. Outer diameter 3511, length 662' in 19 days
Four pieces of dry gel with a core outer diameter of 1.52 mm were obtained. The dry gel has a warpage of Q and a roundness of 5.0μ.
m, and compared to conventional dry gel that was dried without rotation, both warpage and perfect circular support were improved by more than an order of magnitude.

得られたドライゲルを以下に示す焼結条件で焼結したと
ころ、透明ガラス化し、コアークランドが一体となった
光7アイパ用母材が得られた。
When the obtained dry gel was sintered under the sintering conditions shown below, a base material for Hikari 7 Eyepa which was transparent and vitrified and had an integrated core land was obtained.

収光ファイバ用母材を石英型ジャケット管の中に入れ融
着した後線引きしたところ、シングルモード光ファイバ
が得られた。
A single-mode optical fiber was obtained by placing the light-collecting fiber preform into a quartz-type jacket tube, fusing it, and drawing it.

得られた元ファイバの伝導損失は1.3μmで1.0d
B/Km以下であり、任損失であることを確認した。
The conduction loss of the obtained original fiber was 1.0d at 1.3μm.
It was confirmed that it was less than B/Km and was a loss.

〔焼結条件〕[Sintering conditions]

ドライゲルを石英製管状炉に入れ昇温速度50C/hr
で30Cから200Cまで加熱し、このIa+[で5時
間保持し、つづいて昇温速度50c/hrで2DCから
3000まで加熱し、この温度で5時間保持して脱吸着
水を行なった。つづいて昇温速度30C/hrで300
Cから920Cまで加熱し、この温度で30分間保持し
て脱炭系、脱塩化アンモニウム処理、脱水総合反応の促
進処理を行なった。つづいてHe 2t/m i ns
 C@ Q、2t/m i nの混合ガスを流しながら
その温度で1時間保持し、そのまま920Cから10口
aCまで昇温し、1000℃で2時間保持し脱OH基処
理を行なった。つづいて0.をIL/1n Lながら昇
温速K 60 C/h rで1100Cまで昇温し、そ
の温度で20時間保持して脱塩系処理を行なった。つづ
いてH・のみを流しながら昇温速度50C/hrで12
50Cまで/>oML、この温度で1時間保持して閉孔
化処理を行なった。
Place the dry gel in a quartz tubular furnace and heat up at a rate of 50C/hr.
The sample was heated from 30C to 200C and held at this Ia+[ for 5 hours, then heated from 2DC to 3000C at a temperature increase rate of 50c/hr, and held at this temperature for 5 hours to perform desorption water. Continue to 300 at a heating rate of 30C/hr.
C to 920 C and held at this temperature for 30 minutes to perform decarburization, dechlorination ammonium treatment, and dehydration comprehensive reaction acceleration treatment. Next, He 2t/mins
C@Q, the temperature was maintained at that temperature for 1 hour while flowing a mixed gas of 2 t/min, the temperature was raised from 920 C to 10 aC, and the temperature was maintained at 1000 C for 2 hours to perform OH group removal treatment. Followed by 0. was heated to 1100C at a temperature increase rate of K 60 C/hr at IL/1 nL, and held at that temperature for 20 hours to perform desalination treatment. Next, while flowing only H., the temperature was increased at a rate of 50C/hr for 12
The temperature was maintained at 50C/>oML for 1 hour to perform pore-closing treatment.

つづいて試料を昇温速度60 C/h rで1400C
まで加熱し、この一度で30分保持すると無孔化し透明
ガラスとなった。
Next, the sample was heated to 1400C at a heating rate of 60C/hr.
When the glass was heated to a temperature of 30 minutes and held for 30 minutes at one time, it became non-porous and became transparent glass.

〔実施列2〕 エチルシリケート185α6F、無水エタノール231
6f’、29%アンモニア水7α5?、水6532を混
合し、2時間激しく攪拌した後、冷暗所にて熟成し、7
9力微粒子を成長させた。この溶液を減圧濃縮した後、
乾燥工程の山留りを上げるために#縮液のアルコール分
を水と部分的に置換した。その後、加水分解溶成と混合
した際に急激なゲル化を起こさないようにPH値を2現
定の塩酸を用いて4.0に調整し、さらに160μmの
メンブランフィルタ−を用いて濾過し平均粒径Q、28
μmのソリカ微粒子の分散m液を作り、第一の溶液とし
た。
[Run 2] Ethyl silicate 185α6F, absolute ethanol 231
6f', 29% ammonia water 7α5? , water 6532 were mixed, stirred vigorously for 2 hours, and aged in a cool dark place.
Nine force particles were grown. After concentrating this solution under reduced pressure,
In order to increase the drying process, the alcohol content of #condensed liquid was partially replaced with water. After that, the pH value was adjusted to 4.0 using two-dimensional hydrochloric acid to prevent rapid gelation when mixed with the hydrolyzed solution, and then filtered using a 160 μm membrane filter to average the Particle size Q, 28
A dispersion m solution of μm-sized Solica particles was prepared and used as a first solution.

エチル/リケード122CL3Fにα02昶定の塩11
fi844 ?を加え、激しく攪拌して加水分解し、第
二の溶液とした。
Ethyl/Licade 122CL3F with α02 change salt 11
fi844? was added and hydrolyzed with vigorous stirring to obtain a second solution.

次に第一の#1液ともこの溶液を混合し、その後(L2
規定のアンモニア水と水を用いてPH値を4.85にa
l整し、かつ体積を4000mtにrA、tし、ゾルl
@g、な作製した。
Next, mix this solution with the first #1 solution, and then (L2
Adjust the pH value to 4.85 using specified ammonia water and water.
Adjust the volume to 4000 mt, and add sol
@g, I made it.

該ゾル溶液を円筒状8器(内径40mm5 高さ550
■)に深さ500■になるように移し入れた後、50t
orrで2分間脱気を行なった後、フタをして密閉した
。PH調整して40分後にゲル化が起とり、円柱状のウ
ェットゲルが得られた。
The sol solution was poured into 8 cylindrical vessels (inner diameter: 40 mm, height: 550 mm).
■) After transferring it to a depth of 500■, 50t
After degassing with orr for 2 minutes, the container was sealed with a lid. Gelation started 40 minutes after the pH adjustment, and a cylindrical wet gel was obtained.

次に該ゲルを第1図に示したものと同じ乾燥容器に移し
入れ、乾燥容器上−の開口率をQ、2%とし、第1表に
示す回転数で回転させながら、60Cで乾燥させたとこ
ろ、17日間で外径27.0 m、長さ3五7mのドラ
イゲルが得られた。なお、第−戒の各条件について60
本ずつ同条件で作成した。
Next, the gel was transferred to the same drying container as shown in Figure 1, and the open area on the drying container was set to Q, 2%, and dried at 60C while rotating at the rotation speed shown in Table 1. As a result, a dry gel with an outer diameter of 27.0 m and a length of 357 m was obtained in 17 days. Furthermore, regarding each condition of the first commandment, 60
Each book was created under the same conditions.

第1表 反り、真円匣は、得られ念ドライゲルの平均値第一六よ
り、回転させながら乾燥を行なった試料は、回転させず
に乾燥を行なった試料に比べ、歩留り、反り、真円間と
も、明らかに向上していることがわかる。回転数はα0
1rpmという比較的遅い回転数でも、1100rpと
いう比較的速い回転数でも十分に効果があることがわか
る。
From Table 1, average values of the dry gel obtained for warpage and roundness, the samples dried with rotation showed a higher yield, warpage and roundness than the samples dried without rotation. It can be seen that there is a clear improvement in both cases. The rotation speed is α0
It can be seen that both a relatively slow rotation speed of 1 rpm and a relatively high rotation speed of 1100 rpm are sufficiently effective.

得られた乾燥4&を下記に示した焼結条件にvll:つ
て焼結したところ、外径1 a 41P11、長さ25
01の透明な縄石英ロンドが得られたが、該純石英ロン
ドを房引きし、フッ素ポリマーをクラッドとして用いる
ことによって、コア径200μm1 クラツド径500
μmの光ファイバが得られた。
When the obtained dried 4& was sintered under the sintering conditions shown below, the outer diameter was 1 a 41P11 and the length was 25
A transparent quartz rondo of No. 01 was obtained, but by tufting the pure quartz rondo and using a fluoropolymer as the cladding, the core diameter was 200 μm1 and the cladding diameter was 500 μm.
A μm optical fiber was obtained.

得られた光ファイバの伝導損失は(L85μmで428
/Km以下であり、I、AN用の光ファイバとして十分
使用できることが確認できた。
The conduction loss of the obtained optical fiber was (428 at L85 μm)
/Km or less, and it was confirmed that it could be used sufficiently as an optical fiber for I and AN.

〔焼結条件〕[Sintering conditions]

ドライゲルを石英製管状炉に入れ昇温速度30C/hr
で30Cから200Cまで加熱し、この温度で5時間保
持し、つづいて昇温速度30C/hrで200Cから3
00Cまで加熱し、この温度で5時間保持して脱吸着水
を行なった。つづいて昇温速130c/hrで300c
から920Cまで加熱し、この温度で50分間保持して
脱炭系、脱塩化アンモニウム処理、脱水総合反応の促進
処理を行なった。つづいてHe 2t/m i n、 
Ce (lL2t/m Inの混合ガスを流しながらそ
の温度で1時間保持し、そのまま920Cから1000
Cまで昇温し、1000℃で2時間保持し脱OH基処理
を行なった。つづいて0.をIt/min流しながら昇
温速度60C/hrで1100(1:まで昇温し、その
温1丈で20時間保持して脱塩系処理を行なった。つづ
いてH・のみを流しながら昇温速度30C/hrで12
50℃まで加熱し、この温度で1時間保持して閉孔化処
理を行なった。
Place the dry gel in a quartz tubular furnace and heat up at a rate of 30C/hr.
heated from 30C to 200C at a heating rate of 30C/hr, held at this temperature for 5 hours, and then heated from 200C to 3C at a heating rate of 30C/hr.
It was heated to 00C and held at this temperature for 5 hours to perform desorption of water. Continue to 300c at a heating rate of 130c/hr.
to 920C and held at this temperature for 50 minutes to perform decarburization, dechlorination ammonium treatment, and dehydration comprehensive reaction acceleration treatment. Next, He 2t/min,
Ce (lL2t/m In) was maintained at that temperature for 1 hour while flowing a mixed gas of 920C to 1000C.
The temperature was raised to 1000° C. and held at 1000° C. for 2 hours to remove OH groups. Followed by 0. The temperature was raised to 1100 (1:1) at a heating rate of 60 C/hr while flowing It/min, and the temperature was held at that temperature for 20 hours to perform desalination treatment.Then, the temperature was raised while flowing only H. 12 at speed 30C/hr
It was heated to 50° C. and held at this temperature for 1 hour to perform a pore-closing treatment.

つづいて試料を昇温度速度60C/hrで1400Cま
で加熱し、この温度で30分保持すると無孔化し透明ガ
ラスとなった。
Subsequently, the sample was heated to 1400C at a temperature increase rate of 60C/hr, and when held at this temperature for 30 minutes, it became non-porous and became transparent glass.

〔実施例5〕 エチルシリケート185Q、6f1無水エタノール25
16f、29% アンモニア水7Q、5f、水6352
を混合し、2時間激しく攪拌した後、冷暗所にて熟成し
、シリカ微粒子を成長させた。この溶液を減圧濃縮した
後、乾燥工程の山留りを上げるためにa4液のアルコー
ル分を水と部分的にif換した。その後、加水分解溶液
を混合した際に急激なゲル化を起こさないようにPH値
を2規定の塩酸を用いて4.0に調整し、さらに1.0
μmのメンブランフィルタ−を用いて濾過し平均粒径Q
、28μmのシリカ微粒子の分散溶液を作り、第一の溶
液とじ走。
[Example 5] Ethyl silicate 185Q, 6f1 absolute ethanol 25
16f, 29% ammonia water 7Q, 5f, water 6352
After stirring vigorously for 2 hours, the mixture was aged in a cool and dark place to grow fine silica particles. After concentrating this solution under reduced pressure, the alcohol content of the A4 liquid was partially replaced with water in order to increase the amount of residue in the drying process. After that, the pH value was adjusted to 4.0 using 2N hydrochloric acid to prevent rapid gelation when the hydrolysis solution was mixed, and then further adjusted to 1.0.
Filtered using a μm membrane filter and average particle size Q
, prepare a dispersion solution of 28 μm silica fine particles, and run the first solution.

エチルシリケート122[13Fに[L02規定の塩酸
844?を加え、激しく攪拌して加水分解し、第二の溶
液とした。
Ethyl silicate 122 [13F [L02 standard hydrochloric acid 844? was added and hydrolyzed with vigorous stirring to obtain a second solution.

次に第一の溶液とをこのm夜を混合し、その後(L2規
定のアンモニア水と水を用いてPH値を4.85に調整
し、かつ体噴と4000mtに調整し、ゾル溶液を作成
した。
Next, the first solution was mixed with the first solution for this m night, and then (the pH value was adjusted to 4.85 using L2 standard ammonia water and water, and the body injection was adjusted to 4000 mt to create a sol solution. did.

該ゾル溶液を円筒状回転容器(円径40+lll11長
さ520.)に移し入れ、該円筒状回転容器を回転装置
にとりつけ、1500rpmの速さで回転しながらゲル
化されたところ管状のウェットゲルが得られた。次に該
ゲルを第1図に示したものと同じ乾燥容器に移し入れ、
第2表に示す条件で600で乾燥を行なったところ、外
径27.01151.内径135fi、長さ5五7mの
ドライゲルが得られた。
The sol solution was transferred to a cylindrical rotating container (circle diameter: 40 + lll: 11, length: 520. Obtained. The gel was then transferred to the same drying container as shown in FIG.
When drying was carried out at 600°C under the conditions shown in Table 2, the outer diameter was 27.01151. A dry gel with an inner diameter of 135 fi and a length of 557 m was obtained.

なお、第2表の各条件、について60本ずつ同奎件で作
製した。
In addition, 60 tubes were produced under the same conditions under each condition shown in Table 2.

第2表 第2表より、回転させながら乾燥を行なった試料は回転
させずに乾燥を行なった試料に比べ、歩留りが明らかに
改善されていることがわかる。しかも、乾燥速度が大き
いほど、著じるしく改善されることがわかる。したがっ
て回転させながら乾燥を行なえば、乾燥に要する期間を
大幅に短縮できることがわかる。得られたドライゲルを
以下に示す焼結柔性で焼結したところ、外径1a4m内
径221、長さ230■の透明な純石英チューブが得ら
れたが、該純石英チューブを線引きして、フッ素ポリマ
ーをクランドとして用いることによって、コア径200
 p rn、クラツド径30pmの光ファイバが得られ
た。
Table 2 From Table 2, it can be seen that the yield of the sample dried while rotating was clearly improved compared to the sample dried without rotating. Moreover, it can be seen that the faster the drying rate, the more remarkable the improvement. Therefore, it can be seen that the period required for drying can be significantly shortened by drying while rotating. When the obtained dry gel was sintered with the sintering flexibility shown below, a transparent pure quartz tube with an outer diameter of 1 a4 m, an inner diameter of 221 cm, and a length of 230 cm was obtained. By using as a clamp, the core diameter is 200
An optical fiber with a cladding diameter of 30 pm was obtained.

得られた光ファイバの伝達速失は0.85μmで4.1
B/KI11以下であり、LAN用の光ファイバとして
十分使用できることが確認できた。
The transmission velocity loss of the obtained optical fiber was 4.1 at 0.85 μm.
It was confirmed that the B/KI was 11 or less, and that it could be sufficiently used as an optical fiber for LAN.

〔焼結条件〕[Sintering conditions]

ドライゲルを石英製管状炉に入れ昇温速度50C/ h
 rでSaCから2000まで加熱し、この温度で5時
間保持し、つづいて昇温速度30C/hrで2QOCか
ら3000まで加熱し、この温度で5時間保持して脱吸
着水を行なった。つづいて昇温速度30C/hrで30
0Cから920Cまでカロ熱し、この温度で50分間保
持して脱炭系、脱塩化アンモニウム処理、脱水総合反応
の促進処理を行なった。りづいてH@ 2 L/ m 
i n、Ci[L2.Llrn 1 mの混合ガスを流
しながらその温度で1時間保持し、そのまま920℃か
ら1000Cまで昇温し、1000Cで2時間保持し脱
OH基処理を行なった。つづいて0.をIt/mim流
しながら昇温速度60 C/h rで1100Cまで昇
温し、その温度で20時間保持して脱塩系処理を行なっ
た。つづいて■・のみを流しながら昇温速130c/h
rで1250Cまで加熱し、この@度で1時間保持して
閉孔化処理を行なった。
Place the dry gel in a quartz tubular furnace and heat up at a rate of 50C/h.
The sample was heated from SaC to 2000℃ at r, held at this temperature for 5 hours, then heated from 2QOC to 3000℃ at a heating rate of 30C/hr, and held at this temperature for 5 hours to perform desorption water. Next, at a heating rate of 30C/hr,
The material was heated from 0C to 920C and maintained at this temperature for 50 minutes to perform decarburization, dechlorination ammonium treatment, and dehydration comprehensive reaction treatment. Rizite H @ 2 L/m
i n, Ci[L2. The temperature was maintained at that temperature for 1 hour while flowing a mixed gas of Llrn 1 m, then the temperature was raised from 920°C to 1000C, and the temperature was maintained at 1000C for 2 hours to perform OH group removal treatment. Followed by 0. The temperature was raised to 1100C at a temperature increase rate of 60C/hr while flowing It/min, and the temperature was maintained for 20 hours to perform a desalination treatment. Next, the heating rate was 130c/h while flowing only ■.
It was heated to 1250C at r and held at this temperature for 1 hour to perform pore-closing treatment.

つづいて試料を昇温速度6DC/hrで1400cまで
加熱し、このUKで50分保持すると無孔化し、透明ガ
ラスとなった。
Subsequently, the sample was heated to 1400C at a heating rate of 6 DC/hr, and when held at this temperature for 50 minutes, it became non-porous and became transparent glass.

本発明の光ファイバ用母材の製造方法を以上の3つの実
施例で説明したが、本実施例の純石英のロンド、チュー
ブ、シングルモード光ファイバ用母材に限定されるもの
ではなく、ゲルの断面の外を製造する際にも応用できる
ことは明らかであろう。
Although the method for manufacturing the optical fiber preform of the present invention has been explained using the three examples above, it is not limited to the pure quartz rond, tube, and single mode optical fiber preform of the present example; It is clear that the method can also be applied to manufacturing other than the cross-section of .

〔効果〕〔effect〕

以上述べたように本発明によれば、管状あるいは円柱状
のゲルを軸のまわりに回転させながら乾燥を行なうので
、乾燥が均一になり、歩留りが改善され、反りが小さく
なる。また重力が半径方向に均等に加わるため、真円度
が改善される。さらに、乾燥速度を大きくすることがで
きるため、乾燥期間を大幅に短縮でき、量産性を改善す
ることができる。したがって本発明は高品質な光ファイ
バ母材を安く提供するために欠かせない技術であると考
える。
As described above, according to the present invention, since the tubular or cylindrical gel is dried while being rotated around its axis, drying becomes uniform, yield is improved, and warping is reduced. Also, since gravity is applied evenly in the radial direction, roundness is improved. Furthermore, since the drying speed can be increased, the drying period can be significantly shortened and mass productivity can be improved. Therefore, we believe that the present invention is an indispensable technology for providing high-quality optical fiber preforms at low cost.

【図面の簡単な説明】 第1I5!Jは本発明の一実施例を示す乾燥容器の断面
図である。 1・・・・・・ゲル 21・・・・・コア部 3・・・・・・クラット部 4・・・・・・連動して回転するローラー5・・・・・
・乾燥容器。 以上
[Brief explanation of drawings] 1st I5! J is a sectional view of a drying container showing one embodiment of the present invention. 1... Gel 21... Core part 3... Crut part 4... Roller 5 which rotates in conjunction with...
・Drying container. that's all

Claims (1)

【特許請求の範囲】[Claims] ゾル−ゲル法による光ファイバ用母材の製造方法におい
て、ウェットゲルを回転させながら乾燥を行なうことを
特徴とする光ファイバ用母材の製造方法。
1. A method for producing an optical fiber preform by a sol-gel method, which comprises drying the wet gel while rotating it.
JP23554985A 1985-10-22 1985-10-22 Production of optical fiber preform Pending JPS6296337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23554985A JPS6296337A (en) 1985-10-22 1985-10-22 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23554985A JPS6296337A (en) 1985-10-22 1985-10-22 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS6296337A true JPS6296337A (en) 1987-05-02

Family

ID=16987625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23554985A Pending JPS6296337A (en) 1985-10-22 1985-10-22 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS6296337A (en)

Similar Documents

Publication Publication Date Title
JPS6296337A (en) Production of optical fiber preform
JPS6296339A (en) Production of optical fiber preform
JPS62119131A (en) Production of base material for optical fiber
JPS62283833A (en) Production of glass tube
JPH0118019B2 (en)
JPS62119132A (en) Production of base material for optical fiber
JPS6191033A (en) Production of optical fiber preform
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JPS62288122A (en) Production of glass body by sol-gel method
AU619301B2 (en) A method of preparing doped silica glass
JPS62167230A (en) Production of glass tube
JPS6191023A (en) Production of tubular quartz glass
JPS62288117A (en) Production of doped silica glass
JPS6054929A (en) Production of quartz glass
JPS62100426A (en) Production of glass
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPS62275036A (en) Production of base material for optical fiber
JPH0825751B2 (en) Quartz glass manufacturing method
JPS6291433A (en) Production of glass pipe
JPH0522655B2 (en)
JPS6296340A (en) Production of optical fiber preform
JPS63144137A (en) Production of optical fiber preform
JPS61163133A (en) Preparation of single polarization optical fiber
JPS6317234A (en) Production of preform for optical fiber