JPS62100426A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS62100426A
JPS62100426A JP23885485A JP23885485A JPS62100426A JP S62100426 A JPS62100426 A JP S62100426A JP 23885485 A JP23885485 A JP 23885485A JP 23885485 A JP23885485 A JP 23885485A JP S62100426 A JPS62100426 A JP S62100426A
Authority
JP
Japan
Prior art keywords
gel
glass
ageing
sol
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23885485A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Sadao Kanbe
貞男 神戸
Haruo Nagafune
長船 晴夫
Yoshitaka Ito
嘉高 伊藤
Masanobu Motoki
元木 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23885485A priority Critical patent/JPS62100426A/en
Publication of JPS62100426A publication Critical patent/JPS62100426A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To reduce the drying stage and to produce glass at a low cost by carrying out aging when glass is produced by a sol-gel method at a specified temp. CONSTITUTION:In the production of glass by a sol-gel method, ageing is carried out at >=40 deg.C. The ageing stage and the drying stage can be reduced by the above-mentioned method without decreasing the yield when a dry gel is prepared from a wet sol. Namely, the wet gel is contracted to a smaller volume than before in the ageing stage not significantly affecting the yield, and is not significantly contracted in the drying stage affecting the yield greatly to prepare the dry gel. The ageing in this case means that the wet gel is allowed to stand at a certain temp. in a closed state. The wet gel during ageing is contracted as the dehydration and condensation reactions proceed, and a solvent such as water is removed from the gel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゾルゲル法によるガラスの製造方法において、
40℃以上の温度で熟成を行なうことにより、乾燥工程
を短縮し、ひいてはガラスを安いコストで製造するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing glass by a sol-gel method,
By performing the aging at a temperature of 40° C. or higher, the drying process can be shortened and glass can be produced at low cost.

〔従来の技術〕[Conventional technology]

従来のゾルゲル法によるガラスの製造方法については、
いろいろな報告があるが、工業上利用できる大きなバA
・クガラスを製造する方法としては■特許に詳しく記載
されている。(特願昭58−237577、■特許1ウ
85 ガラスの製造方法パ) 〔発明が解決しようとする問題点及び目的〕しかし、前
述の従来の技術では、ウェットゲルを乾燥する際、乾燥
スピードが速いと割れやすいため、約2週間かけてゆっ
くりと注意深く乾燥していた。そのため量産時に、大型
の乾燥機が大量に必要になり、結局コストを大幅に下げ
るための障害になっていた。
Regarding the method of manufacturing glass using the conventional sol-gel method,
Although there are various reports, there is a major barrier that can be used industrially.
・The method for producing Kugarasu is described in detail in the patent. (Patent Application No. 58-237577, ■Patent 1 U85 Glass Manufacturing Method Part) [Problems and Objectives to be Solved by the Invention] However, in the above-mentioned conventional technology, when drying the wet gel, the drying speed is slow. If dried too quickly, it would easily break, so it took about two weeks to dry slowly and carefully. As a result, a large number of large dryers were required during mass production, which ultimately became an obstacle to significantly reducing costs.

て□問題点を解決するための手段〕 本発明のガラスの製造方法は、ゾルゲル法によるガラス
の製造方法において、40℃以上の温度で熟成を行なう
ことを特徴とする。
□Means for Solving the Problems] The method for producing glass of the present invention is characterized by aging at a temperature of 40° C. or higher in the method for producing glass by a sol-gel method.

〔作用〕[Effect]

本発明の上記の構成によれば、ウェットゲルからドライ
ゲルを作製する際の歩留りを下げることなく、熟成・乾
燥工程を短縮することができる。
According to the above configuration of the present invention, the aging and drying steps can be shortened without lowering the yield when producing a dry gel from a wet gel.

すなわち歩留りにあまり影響のない熟成工程で、ウェッ
トゲルを従来より小さい体積まで収縮させておき、歩留
りに影春の大きい乾燥]二稈であまり収縮させなくとも
ドライゲルを作製できるようにしたものである。
In other words, wet gel is shrunk to a smaller volume than before in the aging process, which has little effect on yield, and dry gel can be produced without much shrinkage during drying, which has a large impact on yield.

ここで熟成とは、ウェットゲルを密閉状態で、ある温度
のもとで放置することであり、熟成中ウェットゲルは脱
水縮合反応が進むに従りて、収縮し、水等の溶媒がゲル
から放出される。それに対して乾燥とは、ウェットゲル
をある開口部をもった容器中で、ある温度のもとで放置
することであり、乾燥中ウェットゲルは、水等の溶媒が
ゲルの表面から放出されるに従って脱水縮合反応が進み
、そのためゲルは収縮していく。そのために乾燥工程の
方が熟成工程に比べて脱水縮合反応と水等の溶媒の放出
のバランスがくずれやすくなると考えられ歩留りが悪い
のであろうと思われる。
Here, aging refers to leaving the wet gel in a sealed state at a certain temperature. During aging, the wet gel shrinks as the dehydration condensation reaction progresses, and solvents such as water are removed from the gel. released. Drying, on the other hand, involves leaving a wet gel at a certain temperature in a container with a certain opening, and during drying, solvents such as water are released from the surface of the gel. As the dehydration condensation reaction progresses, the gel shrinks. For this reason, it is thought that the balance between the dehydration condensation reaction and the release of solvents such as water is more likely to be lost in the drying step than in the ripening step, and this is probably why the yield is poor.

以下実施例により詳しく説明する。This will be explained in detail below using examples.

〔実施例1〕 エチルシリケート1830.6 t、 無水エタノール
23169.29%アンモニア水70.5f、水633
tを混合し、2時間激しく攪拌した後、冷暗所にて熟成
し、シリカ微粒子を成長させた。この溶液を減圧濃縮し
た後、乾燥工程の歩留りを上げるために濃縮液のアルコ
ール分を水と部分的に置換した。その後、加水分解溶液
と混合した際に急激なゲル化を起こさないようにpH値
を2規定の塩酸を用いて4.0にI#整し、さらに14
0μmのメンブランフィルタ−を用いて濾過し平均粒径
0.28μmのシリカ微粒子の分散溶液を作り、第一の
溶液とした。
[Example 1] Ethyl silicate 1830.6 t, absolute ethanol 23169.29% ammonia water 70.5 f, water 633
After stirring vigorously for 2 hours, the mixture was aged in a cool dark place to grow fine silica particles. After concentrating this solution under reduced pressure, the alcohol content of the concentrated solution was partially replaced with water in order to increase the yield of the drying process. After that, the pH value was adjusted to 4.0 using 2N hydrochloric acid to prevent rapid gelation when mixed with the hydrolysis solution, and further
The mixture was filtered using a 0 μm membrane filter to prepare a dispersion solution of silica fine particles having an average particle size of 0.28 μm, which was used as a first solution.

エチルシリケー) 1220.3 tに002規定の塩
酸844tを加え、激しく攪拌して加水分解し、第二の
溶液とした。
844 t of 002N hydrochloric acid was added to 1220.3 t of ethyl silicate, and the mixture was hydrolyzed with vigorous stirring to obtain a second solution.

次に第一の溶液と第二の溶液を混合し、その後02規定
のアンモニア水と水を用いてpH値を485に調整し、
かつ体積を40001nlに調整し、ゾル溶液を作製し
た。該ゾル溶液を6本の円筒状容器(内径401111
.高さ550 m )に深さ500 +nになるように
移し入れた後、’ Otarrテ2 分間気を行なった
後、フタをして密閉した。pH調整してから約40分後
にゲル化が起こり、ウェットゲルが得られた。
Next, the first solution and the second solution were mixed, and then the pH value was adjusted to 485 using 02N ammonia water and water.
The volume was adjusted to 40001 nl to prepare a sol solution. The sol solution was poured into six cylindrical containers (inner diameter 401111
.. After transferring the container to a height of 550 m to a depth of 500 m, the container was air-conditioned for 2 minutes, and then sealed with a lid. Approximately 40 minutes after pH adjustment, gelation occurred and a wet gel was obtained.

同様な方法で作製したウェットゲル270本を密閉状態
のままで種々の条件で5日間熟成し、その後、種々の開
口率をもった乾燥容器にウェットゲルのみ移し入れ、す
なわち放出された溶液は捨てる)、乾燥したところドラ
イゲルが得られた。
270 wet gels prepared in a similar manner were aged in a sealed state under various conditions for 5 days, and then only the wet gels were transferred to dry containers with various opening ratios, i.e., the released solution was discarded. ), a dry gel was obtained when dried.

第−表にその歩留りを記す。The yield is shown in Table 1.

第−表 *1)形がくずれて測定できない 第一前に示されたように、熟成湯度が高いほど歩留りが
良いことがわかる。ただし熟r&温度が高すぎると溶媒
の蒸気圧が高くなり、歩留りガ低下する。さらに詳しく
調べたところ70℃を越えたあたりから歩留りの低下が
みとめられた。これはその温度になるとゾル中に含まれ
るエタノールと水の蒸気圧が高くなり、沸とうを起こす
ためであると推察される。
Table 1) Cannot be measured due to loss of shape As shown in the first section, it can be seen that the higher the ripening temperature, the better the yield. However, if the ripening temperature is too high, the vapor pressure of the solvent will increase and the yield will decrease. Upon further investigation, it was found that the yield decreased when the temperature exceeded 70°C. This is presumed to be because at that temperature, the vapor pressure of ethanol and water contained in the sol increases, causing boiling.

より乾燥工程を短かくするためには(例えば1日以内)
、例えばテトラブトキシゲルマニウム等の原料を用いる
ことによってゲル中のアルコールの沸点を上げる工夫に
より、あるいは熟成容器を加圧してより高い温度まで沸
とうしないようにする工夫により脱水縮合反応と水等の
溶媒の放出のバランスをくずさないで、より小さい体積
にまで収縮させることにより達成できよう。
To shorten the drying process (for example, within one day)
For example, by increasing the boiling point of the alcohol in the gel by using raw materials such as tetrabutoxygermanium, or by pressurizing the aging container to prevent it from boiling to a higher temperature, dehydration condensation reactions and solvents such as water can be achieved. This could be achieved by shrinking it to a smaller volume without disturbing the balance of its release.

熟成後のウェットゲルの大きさを熟成前のウェットゲル
の大きさで割った値 −(%)をも第−表に示したが、
高温で熟成したものζ、1ど熟成後のウェットゲルがド
ライゲルになるまでの収縮量が少なく、乾燥工程で乾燥
スピードをあげても無理なく収縮することが推察される
1゜ 本実施例で得られたドライゲルを下記条件で焼結するこ
とにより、透明な純石英ロッドが得られた(外径23寓
富、長さ460鰭)が、該純石英ロッドを 引きし、フ
ッ素ポリマーをクラッドとして用いることによつて、コ
ア径200μm、クラツド径300μmの光ファイバが
得られた。得られた光ファイバの伝送損失は0.25μ
mで1ルを以下であり、LAN用の光ファイバとして十
分使用できることが確認できた。
The value −(%) obtained by dividing the size of the wet gel after ripening by the size of the wet gel before ripening is also shown in the table.
The gel aged at high temperature ζ, the amount of shrinkage of the wet gel after the first aging until it becomes a dry gel is small, and it is presumed that it will shrink easily even if the drying speed is increased in the drying process. A transparent pure quartz rod was obtained by sintering the dried gel under the following conditions (outer diameter: 23mm, length: 460mm). As a result, an optical fiber having a core diameter of 200 μm and a cladding diameter of 300 μm was obtained. The transmission loss of the obtained optical fiber was 0.25μ
It was confirmed that the optical fiber was less than 1 l in m and could be sufficiently used as an optical fiber for LAN.

(焼結条件) ドライゲルを石英製管状炉に入れ昇温速度30℃/hr
で30℃から200℃まで加熱し、この温度で5時間保
持し、つづいて昇温速度30’Q/hrで200℃から
300℃まで加熱し、この温度で5時間保持して脱吸着
水を行なりた。つづいて昇温速度30℃/ h rで3
00℃から920℃まで加熱し、この温度で30分間保
持して脱炭素、脱塩化アンモニウム処理、脱水縮合反応
の促進処理を行なった。つづいてHe 2 l / m
 i n 、  O102/m 1nの混合ガスを流し
ながらその温度で1時間保持し、そのまま920’Cか
ら1000℃まで昇温し、1000℃で2時間保持し脱
OH基処理を行なった。つづいて0.を171 / m
 i n流しなから昇温速度60℃/ h rで110
0℃まで昇温し、その温度で20時間保持して脱塩素処
理を行なった。つづいてH・のみを流しなから昇温速度
30℃/ h rで1250℃まで加熱し、この温度で
1時間保持して閉孔化処理を行なつた。つづいて試料を
昇温速度60℃/ h rで1400℃まで加熱し、こ
の温度で30分保持すると無孔化し透明ガラスとなりた
(Sintering conditions) Dry gel was placed in a quartz tubular furnace and the temperature was increased at a rate of 30°C/hr.
The temperature was heated from 30°C to 200°C, held at this temperature for 5 hours, and then heated from 200°C to 300°C at a heating rate of 30'Q/hr, and held at this temperature for 5 hours to remove the desorbed water. I did it. Next, increase the temperature at a rate of 30℃/hr to 3.
It was heated from 00° C. to 920° C. and held at this temperature for 30 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Then He 2 l/m
The temperature was maintained for 1 hour while flowing a mixed gas of i n , O 102/m 1n, the temperature was raised from 920'C to 1000°C, and the temperature was maintained at 1000°C for 2 hours to perform OH group removal treatment. Followed by 0. 171/m
110 at a heating rate of 60°C/hr from flowing water
The temperature was raised to 0° C. and held at that temperature for 20 hours to perform dechlorination treatment. Subsequently, without flowing only H., it was heated to 1250° C. at a temperature increase rate of 30° C./hr, and held at this temperature for 1 hour to perform a pore-closing treatment. Subsequently, the sample was heated to 1400° C. at a heating rate of 60° C./hr and held at this temperature for 30 minutes, becoming non-porous and transparent glass.

本実施例では、LAN用光フアイバ用コア母材に用いら
れる純石英ロッドの例を示したが、本発明はそのだけに
限定されるものではなく、ゾルゲル法を用いて製造され
るすべてのガラスに対して有効である。例えば、光ファ
イバ用母材1石英管。
In this example, an example of a pure quartz rod used as a core base material for an optical fiber for LAN is shown, but the present invention is not limited thereto, and can be applied to all types of glass manufactured using the sol-gel method. It is valid for For example, optical fiber base material 1 quartz tube.

石英製フォトマスク基板、Tie、 −8in、低膨張
ガラス等幅広い適用範囲がある。
It has a wide range of applications, including quartz photomask substrates, Tie, -8in, and low expansion glass.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ゾルゲル法によるガ
ラスの製造方法において、40tl:以上の温度で熟成
を行なうことにより、乾燥工程を短縮することが可能と
なったのでガラスを安いコストで製造することができる
ようになった。
As described above, according to the present invention, in the glass manufacturing method using the sol-gel method, by performing aging at a temperature of 40 tl or more, it is possible to shorten the drying process, so glass can be manufactured at a low cost. Now you can.

したがって本発明は現在適用範囲を広げつつあるゾル−
ゲル法によるガラスの製造方法にとつて大な技術になっ
ていくであろう。
Therefore, the present invention is applicable to sols, which are currently expanding their scope of application.
This will become a major technology for glass manufacturing methods using the gel method.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] ゾルゲル法によるガラスの製造方法において、40℃以
上の温度で熟成を行なうことを特徴とするガラスの製造
方法
A method for producing glass using a sol-gel method, characterized by aging at a temperature of 40°C or higher.
JP23885485A 1985-10-25 1985-10-25 Production of glass Pending JPS62100426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23885485A JPS62100426A (en) 1985-10-25 1985-10-25 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23885485A JPS62100426A (en) 1985-10-25 1985-10-25 Production of glass

Publications (1)

Publication Number Publication Date
JPS62100426A true JPS62100426A (en) 1987-05-09

Family

ID=17036248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23885485A Pending JPS62100426A (en) 1985-10-25 1985-10-25 Production of glass

Country Status (1)

Country Link
JP (1) JPS62100426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214840A (en) * 1988-07-01 1990-01-18 Shin Etsu Chem Co Ltd Synthetic quartz glass base
EP0506843A1 (en) * 1989-12-19 1992-10-07 Orion Lab Inc Sol-gel process for glass and ceramic articles.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214840A (en) * 1988-07-01 1990-01-18 Shin Etsu Chem Co Ltd Synthetic quartz glass base
EP0506843A1 (en) * 1989-12-19 1992-10-07 Orion Lab Inc Sol-gel process for glass and ceramic articles.

Similar Documents

Publication Publication Date Title
JPS61136925A (en) Manufacture of monolithic glass member
US5919280A (en) Method for fabricating silica glass
KR100322132B1 (en) Silica glass composition for sol-gel process
RU2141928C1 (en) Method of preparing monolithic quartz glass using sol-gel process
JPS62100426A (en) Production of glass
US6508082B2 (en) Method for fabricating high-purity silica glass using sol-gel processing
KR19990023144A (en) Method of manufacturing silica glass
KR100337703B1 (en) Composition for making silica glass with sol-gel process
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
KR100326123B1 (en) Fabrication method of silica glass by sol-gel process
JPH01119526A (en) Production of silica glass
JPS60131833A (en) Manufacture of quartz glass
JPS62207723A (en) Production of glass
JPH01294516A (en) Production of cellular silica based gel
JPS63134525A (en) Production of glass
AU619301B2 (en) A method of preparing doped silica glass
JPS62119132A (en) Production of base material for optical fiber
JP2001192225A (en) Method for manufacturing quartz glass
SU1723054A2 (en) Method of producing quartz glass
JP3713304B2 (en) Glass manufacturing method
JPS6369729A (en) Production of base material for optical fiber
JPH07165433A (en) Production of stress-applying member of preform of constant polarization optical fiber
JPS6217026A (en) Preparation of quartz base glass
JPS6144727A (en) Production of glass for optical fiber
JPS62288117A (en) Production of doped silica glass