JPS62207723A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS62207723A
JPS62207723A JP5165286A JP5165286A JPS62207723A JP S62207723 A JPS62207723 A JP S62207723A JP 5165286 A JP5165286 A JP 5165286A JP 5165286 A JP5165286 A JP 5165286A JP S62207723 A JPS62207723 A JP S62207723A
Authority
JP
Japan
Prior art keywords
dispersion
sol
silica particles
fine silica
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5165286A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Takeuchi
哲彦 竹内
Sadao Kanbe
貞男 神戸
Motoyuki Toki
元幸 土岐
Satoru Miyashita
悟 宮下
Hirohito Kitamori
北森 宏仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5165286A priority Critical patent/JPS62207723A/en
Publication of JPS62207723A publication Critical patent/JPS62207723A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To facilitate mass production of glass basing on sol-gel method by hydrolyzing alkyl silicate with a basic catalyst, then concentrating obtd. dispersion of fine silica particles by using ultrafiltration and vacuum distillation in combination. CONSTITUTION:Alkyl silicate such as Si(OEt)4, etc., is hydrolyzed with a basic catalyst such as ammonia, etc. Solvents alone in the obtd. dispersion of fine silica particles other than the effective components such as water, alcohol, etc., are separated effectively using ultrafiltration membrane permitting bulk production. Then, the above described liquid dispersion is subjected to vacuum distillation, and reaction catalyst having adsorbed to fine silica particles are isolated and removed easily and completely. Solution of the hydrolyzate is added to the obtd. stable concentrated liquid of fine silica particles, and final sol is formed by stirring and mixing the mixture. After gelling and drying the above-described sol, the gelled product is sintered by heating to obtain quartz glass having high quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾル−ゲル法によるガラスの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing glass by a sol-gel method.

〔発明の概要〕[Summary of the invention]

本発明は、ゾル−ケル法によるカラスの製造方法におい
て、アルキルシリケートを塩基性触媒により加水分解し
て得られるシリカ微粒子分散液を限外濾過膜と減圧蒸留
とを併用して濃縮することで、該分散液の訣縮工程を能
率的にしかも円滑化し、大量生産を容易にするものであ
る。
The present invention is a method for producing glass by the sol-kel method, in which a silica fine particle dispersion obtained by hydrolyzing an alkyl silicate with a basic catalyst is concentrated using a combination of an ultrafiltration membrane and vacuum distillation. This makes the process of condensing the dispersion liquid efficient and smooth, and facilitates mass production.

〔従来の技術) 従来のアルキルシリケートを主原料として用いるゾル−
グル法によるガラス製造においては、アルキルシリケー
トを塩基性触媒により加水分解して得られるシリカ微粒
子分散准の濃縮は、減圧蒸留あるいは限外濾過により行
なっていた。
[Prior art] Conventional sol using alkyl silicate as the main raw material
In glass production by the Glue method, the silica fine particle dispersion obtained by hydrolyzing an alkyl silicate with a basic catalyst is concentrated by vacuum distillation or ultrafiltration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では、減圧蒸留の場合濃縮速度
が遅く所望の濃縮率に達するまでに長時間を要し、シリ
カ微粒子分散液を加熱するために濃縮の進行に伴ない、
分散液としての安定性が失なわれ、粘度の上昇、粒子の
凝集などが生じ、次工程への移行が困難となる場合があ
る。またt溶媒を完全に回収することが難しく(真空ラ
イン中に引かれてしまう量があるため)濃縮精度に欠け
るという問題点を有する。また、限外濾過の場合、シリ
カ微粒子に吸着した反応触媒の遊離が少なく、次工程に
おいて粒子の凝集を生じる場合があるという問題点を有
する。
However, in the above-mentioned conventional technology, in the case of vacuum distillation, the concentration rate is slow and it takes a long time to reach the desired concentration rate.
Stability as a dispersion may be lost, viscosity may increase, particles may aggregate, and it may be difficult to proceed to the next step. Another problem is that it is difficult to completely recover the t-solvent (because some amount is drawn into the vacuum line), and concentration accuracy is lacking. Further, in the case of ultrafiltration, there is a problem that the reaction catalyst adsorbed on the silica fine particles is hardly released, and the particles may aggregate in the next step.

そこで本発明は、このような問題点を解決するもので、
その目的とするところは、大量生産に有。
Therefore, the present invention aims to solve these problems.
Its purpose is mass production.

利な限外濾過と、限外濾過の問題点であるシリカ微粒子
に吸着した反応触媒の遊離に対し効果のある減圧蒸留と
を併用し濃縮を行なうことにより工程が円滑に進行する
ゾル−ゲル法によるガラスの製造方法を提供するところ
にある。
The sol-gel method allows the process to proceed smoothly by performing concentration using a combination of ultrafiltration, which is advantageous, and vacuum distillation, which is effective against the release of reaction catalysts adsorbed on silica particles, which is a problem with ultrafiltration. The purpose of the present invention is to provide a method for manufacturing glass.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、アルキルシリケートを主原料として用
いるゾル−ゲル法によるガラスの製造において、アルキ
ルシリケートを塩基性触媒により加水分解して得られる
シリカ微粒子分散液を限外濾過と減圧蒸留とを併用して
濃縮することを特徴とするガラスの製造方法。
The method of the present invention involves a combination of ultrafiltration and vacuum distillation of a silica fine particle dispersion obtained by hydrolyzing alkyl silicate with a basic catalyst in the production of glass by the sol-gel method using alkyl silicate as the main raw material. A method for producing glass characterized by concentrating it.

〔作用〕 本発明によれば、限外濾過による#縮の利点である限外
濾過膜を用い分子レベルの分離が可能なことにより鳴動
成分のシリカ微粒子以外の水、アルコールなどの溶媒の
みを濾液として効率的に分離でき、また、流量調節によ
り濃縮速度の増大が可能であるため量産化が容易である
こと、および減圧蒸留の利点である加熱、減圧にするこ
とによりシリカ微粒子に吸着した反応触媒の遊離が容易
となり、次工程での分散液の安定性が維持できることの
二面性を有する濃縮方法であり、プロセスの円滑化が容
易になるものである。
[Function] According to the present invention, it is possible to separate at the molecular level using an ultrafiltration membrane, which is an advantage of ultrafiltration. In addition, it is possible to increase the concentration rate by adjusting the flow rate, making it easy to mass-produce.The advantage of vacuum distillation is that heating and reducing the pressure can reduce the amount of reaction catalyst adsorbed on silica particles. This is a concentration method that has two features: it facilitates the release of the dispersion and maintains the stability of the dispersion in the next step, making it easier to make the process smoother.

〔実施例〕〔Example〕

1)精製した市販のエチルシリケート(Si(OEt)
4)44、11 、エチルアルコール67.2 l 、
水15.6ノおよびアンモニア水(29% ) t 2
1を反応器に投入し、800rpmに25時間攪拌した
。攪拌開始後、10分程でシリカ微粒子が生成し、白濁
した、5時間後には完全に不透明な白色となった。
1) Purified commercially available ethyl silicate (Si(OEt)
4) 44,11, ethyl alcohol 67.2 l,
Water 15.6 and ammonia water (29%) t 2
1 was charged into a reactor and stirred at 800 rpm for 25 hours. Fine silica particles were generated in about 10 minutes after stirring started, and the mixture became cloudy, and after 5 hours, it became completely opaque and white.

この後、温度20〜50Cにて5日間静置し、シリカ微
粒子を成長させた。これと同様のシリカ微粒子の分散液
を他に2バツチ磨製した。この際のシリカ微粒子の平均
粒子径を遠心沈降方式の粒度分布測定装置にて測定した
ところα25μmでめつた。
Thereafter, the mixture was allowed to stand for 5 days at a temperature of 20 to 50C to grow fine silica particles. Two other batches of dispersions of silica fine particles similar to this were prepared. The average particle diameter of the silica fine particles at this time was measured using a centrifugal sedimentation type particle size distribution analyzer and was found to be α25 μm.

上記のようにして調整したシリカ微粒子の各分散液に攪
拌しながら水21.61を添加し添加後(L5時間攪拌
した〇 この後の濃縮は■〜■の3種類の方法で行なった。なお
、ここで示す例は、■および■に関しては、問題点を生
じた場合のものである。
21.6 liters of water was added to each dispersion of silica fine particles prepared as above while stirring, and after the addition (stirred for L5 hours), subsequent concentration was carried out by three methods (■ to ■). , The example shown here is a case where a problem occurs with regard to (1) and (2).

■ シリカ微粒子分散I’lk約751ずつ2等分し、
2台の10Ol蒸留プラントにて減圧蒸留を行なった濃
縮後のシリカ微粒子濃度を55wt%以上にするため、
6〜7倍、分離液量にして60〜651まで濃縮するの
に15〜20時間を要した。
■ Silica fine particle dispersion I'lk is divided into two equal parts of approximately 751 pieces,
In order to increase the concentration of silica fine particles after concentration by vacuum distillation in two 10Ol distillation plants to 55 wt% or more,
It took 15 to 20 hours to concentrate 6 to 7 times, or 60 to 651 in separated liquid volume.

この際、分散液と容器との界面に多量の乾燥片が付着し
、有効シリカ微粒子の損失があった。
At this time, a large amount of dry pieces adhered to the interface between the dispersion liquid and the container, resulting in loss of effective silica fine particles.

■ 限外濾過システム(膜面積:10@)を用い、分散
液流入圧5 kl? / cmで循環濃縮を行ない、■
と等しい濃縮率に達するのに1.5〜2.0時間を要し
た。この際、密閉状態で行なったため乾燥片などによる
シリカの損失はほとんどなかった。
■ Using an ultrafiltration system (membrane area: 10@), dispersion liquid inflow pressure is 5 kl? Perform circulation concentration at / cm, ■
It took 1.5 to 2.0 hours to reach a concentration equal to . At this time, since the test was carried out in a closed state, there was almost no loss of silica due to dry pieces.

■ 限外濾過システム(膜面積:1.07FL)を用い
分散液流入圧5に9/at?で循環濃縮を行ない、濾液
量が1101に達した時点で、1001蒸留プラントに
移しかえ、減圧蒸留を行ない■、■と同等の濃縮率にし
た。この際の所要時間は限外濾過で1.0時間、減圧蒸
留にて3時間であった。この際多少、分散液と容器との
界面に、シリカの乾燥片が付着していた。
■ Using an ultrafiltration system (membrane area: 1.07 FL), the dispersion liquid inflow pressure was set to 5 to 9/at? When the filtrate amount reached 1101, it was transferred to the 1001 distillation plant, and vacuum distillation was performed to obtain the same concentration ratio as ① and ②. The time required at this time was 1.0 hour for ultrafiltration and 3 hours for vacuum distillation. At this time, some dried pieces of silica were attached to the interface between the dispersion liquid and the container.

以上■〜■のようにして調製したシリカ微粒子分散液に
攪拌しなから2HHcl  を滴下しPR値を4.7程
度に調整した。これは、後工程でエチルシリケートの加
水分解溶液と混合する際のシラノールの脱水重縮合の進
行によるケル化を防ぎ、該混合液の安定性を維持させる
ために行なうものである。この工程において、■と■は
特に問題なく処理できたが、■については、PH値が7
.0付近まで低下した時点で、粒子の急激な凝集を生じ
、固化してしまい、以後の処理が、不可能な状態になっ
てしまった。
While stirring, 2HHCl was added dropwise to the silica fine particle dispersion prepared as described above in steps 1 to 2 to adjust the PR value to about 4.7. This is done in order to prevent kelization due to progress of dehydration polycondensation of silanol when mixed with a hydrolyzed solution of ethyl silicate in the subsequent step, and to maintain the stability of the mixed solution. In this process, ■ and ■ could be treated without any particular problems, but for ■, the pH value was 7.
.. When the temperature decreased to around 0, the particles rapidly agglomerated and solidified, making further processing impossible.

次にエチルシリケートの加水分解溶液の調製を行なった
。これは、シリカ微粒子分散液を混合した際、粒子間の
バインダーとして働くものである精製したエチルシリケ
ート1a91と0.02 NHc16.151とを混合
し激しく攪拌した。反応時の発熱量が大きいため、冷却
しながら攪拌すると、反応が進行し1時間はどで透明均
一化した。
Next, a hydrolyzed solution of ethyl silicate was prepared. When mixing the silica fine particle dispersion, purified ethyl silicate 1a91 and 0.02 NHc16.151, which act as a binder between particles, were mixed and vigorously stirred. Since the amount of heat generated during the reaction was large, the mixture was stirred while being cooled, and the reaction progressed until it became transparent and homogeneous within 1 hour.

これは、前記、■と■の混合用として2バツチ調製した
Two batches of this were prepared for mixing (1) and (2) above.

以上のようにして調製したシリカ微粒子分散液と加水分
解溶液とを攪拌しながら混合し最終ゾルとした。この時
の該ゾルのpH値は4.5前後であった。各該ゾルに対
し、必要に応じ、遠心分離、濾過などの処理を加えた後
、qoamtずつ、50×30×10c!!Lのポリプ
ロピレン製の容器50個に投入し、密閉状態でゲル化さ
せた後、該ウェットゲルが、ある程度収縮した時点で、
乾燥速度の調節可能なフタをし、乾燥機に入れ、室温か
ら5℃/hrで、60〜80℃に昇温し、以後この温度
で保持し1.2〜3週間で乾燥が終了した。ここで得ら
れた乾燥ゲルの大きさは、■の方法により濃縮した分散
液を用いた場合198X198X6.5nで、■の方法
により濃縮した分散液を用いた場合209x209x7
zgであり、■の濃縮方法を用いた場合、シリカ微粒子
の損失がかなり大きいと推定された。また歩留りは、前
者が6aO%。
The silica fine particle dispersion prepared as described above and the hydrolysis solution were mixed with stirring to form a final sol. At this time, the pH value of the sol was around 4.5. After each sol is subjected to treatments such as centrifugation and filtration as necessary, qoamt of 50 x 30 x 10 c! ! After pouring into 50 L polypropylene containers and gelling in a sealed state, when the wet gel has shrunk to a certain extent,
A lid with an adjustable drying rate was placed on the product, the product was placed in a dryer, and the temperature was raised from room temperature to 60 to 80°C at a rate of 5°C/hr, and the temperature was maintained at this temperature until drying was completed in 1.2 to 3 weeks. The size of the dried gel obtained here is 198 x 198 x 6.5n when using the dispersion concentrated by the method (■), and 209 x 209 x 7 when using the dispersion concentrated by the method (■).
zg, and it was estimated that when the concentration method (2) was used, the loss of silica fine particles would be quite large. The yield of the former is 6aO%.

後者が80.0%で、収縮率が小さい分だけ、後者の方
が良いという結果であった。
The latter was 80.0%, and the result was that the latter was better because of its smaller shrinkage rate.

このようにして得られた乾燥ケルを焼結炉に投入し、所
定の昇温プログラムにて加熱焼結し、1260℃にて透
明なガラス体を得た。このガラス体の大きさおよび重量
は前者が1!+7X157×4,5顛、200tであシ
、後者が144x144X4.8B、220?であった
。このようにして作製したガラスに関する諸物性分析の
結果は、ビッカース硬度、比重、熱膨張係数赤外吸収ス
ペクトル、近赤外吸収スペクトル、屈折率など溶融石英
ガラスと一致した。また、純夏分析においても、不純物
の検出はなかった。更にここで作製したガラスに160
0℃以上の高温処理を加えることにより、内部欠陥の全
くない非常に高品句な石英ガラスを得た。
The dried shell thus obtained was placed in a sintering furnace and heated and sintered using a predetermined temperature increase program to obtain a transparent glass body at 1260°C. The size and weight of this glass body are 1! +7x157x4.5 pieces, 200t, the latter is 144x144x4.8B, 220? Met. The results of physical property analysis of the glass thus produced were consistent with those of fused silica glass, including Vickers hardness, specific gravity, thermal expansion coefficient, infrared absorption spectrum, near-infrared absorption spectrum, and refractive index. Also, no impurities were detected in the pure summer analysis. In addition, 160% of the glass produced here
By applying high temperature treatment at 0° C. or higher, a very high quality quartz glass with no internal defects was obtained.

〔発明の効果〕〔Effect of the invention〕

このようにして、本発明により製造されるガラスは、従
来技術においては、長時間を要し非能率的であり有効成
分の損失があった減圧蒸留による濃縮および濃縮後の分
散液中に残存する反応触媒のため後工程での安定性の維
持が困難であった限外濾過、これら両者の併用により欠
点を補い、シリカ微粒子分散液の濃縮工程を、能率的に
しかも効率的に行なうものであり、量産化への対応が容
易となる。
In this way, the glass produced according to the invention can be concentrated by vacuum distillation and remaining in the dispersion after concentration, which in the prior art was time consuming, inefficient and resulted in loss of active ingredients. Ultrafiltration, where it was difficult to maintain stability in the post-process due to the reaction catalyst, is compensated for by using both of these in combination, and the process of concentrating the silica fine particle dispersion can be carried out efficiently and efficiently. , it becomes easier to respond to mass production.

また、本発明により製造される石英ガラスは、他の石英
ガラス製造方法(溶融法など)に比べ低コストであり、
原料が全て液体のため精製可能であり、高品質な石英ガ
ラスの量産が容易である。
In addition, the quartz glass produced by the present invention is lower in cost than other quartz glass production methods (such as the melting method),
Since the raw materials are all liquid, they can be purified, making it easy to mass-produce high-quality quartz glass.

したがって、これまで石英ガラスを使用していた分野で
はもちろんのことIC用フォトマスク基板、光フアイバ
ー用母材など種々の分野に応用されるものと考える。さ
らに、A I 、 T i 、 G e HN a+C
a、Mg、Li、Teなどの諸元素をゾル調製時に添加
することにより種々の特性をもつ多成分系で高品質なガ
ラスの作製も容易である。
Therefore, it is thought that it will be applied not only to fields where quartz glass has been used up until now, but also to various fields such as photomask substrates for ICs and base materials for optical fibers. Furthermore, A I , T i , G e HN a+C
By adding various elements such as a, Mg, Li, and Te at the time of sol preparation, it is easy to produce high-quality multicomponent glasses with various properties.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] (1)アルキルシリケートおよび超微粒子シリカを主原
料として用いるゾル−ゲル法によるガラスの製造におい
て、アルキルシリケートを塩基性触媒により加水分解し
て得られるシリカ微粒子分散液を限外濾過膜と減圧蒸留
とを併用して濃縮することを特徴とするガラスの製造方
法。
(1) In the production of glass by the sol-gel method using alkyl silicate and ultrafine silica as main raw materials, the silica fine particle dispersion obtained by hydrolyzing the alkyl silicate with a basic catalyst is passed through an ultrafiltration membrane and vacuum distillation. A method for producing glass characterized by concentrating it in combination with.
JP5165286A 1986-03-10 1986-03-10 Production of glass Pending JPS62207723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5165286A JPS62207723A (en) 1986-03-10 1986-03-10 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5165286A JPS62207723A (en) 1986-03-10 1986-03-10 Production of glass

Publications (1)

Publication Number Publication Date
JPS62207723A true JPS62207723A (en) 1987-09-12

Family

ID=12892797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5165286A Pending JPS62207723A (en) 1986-03-10 1986-03-10 Production of glass

Country Status (1)

Country Link
JP (1) JPS62207723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310486A2 (en) * 1987-09-30 1989-04-05 Shin-Etsu Chemical Co., Ltd. A method for the preparation of silica glass
JPH02199187A (en) * 1989-01-27 1990-08-07 Nichia Chem Ind Ltd Production of phosphor surface-treated with spherical silicate compound
US6322600B1 (en) * 1997-04-23 2001-11-27 Advanced Technology Materials, Inc. Planarization compositions and methods for removing interlayer dielectric films
US9199852B2 (en) 2011-09-26 2015-12-01 Fuji Xerox Co., Ltd. Method of manufacturing silica particle dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310486A2 (en) * 1987-09-30 1989-04-05 Shin-Etsu Chemical Co., Ltd. A method for the preparation of silica glass
JPH02199187A (en) * 1989-01-27 1990-08-07 Nichia Chem Ind Ltd Production of phosphor surface-treated with spherical silicate compound
US6322600B1 (en) * 1997-04-23 2001-11-27 Advanced Technology Materials, Inc. Planarization compositions and methods for removing interlayer dielectric films
US9199852B2 (en) 2011-09-26 2015-12-01 Fuji Xerox Co., Ltd. Method of manufacturing silica particle dispersion

Similar Documents

Publication Publication Date Title
JPS62207723A (en) Production of glass
JPS60239329A (en) Manufacture of quartz glass
JPS6291429A (en) Production of glass
JPS61168541A (en) Production of quartz glass
JPS6158818A (en) Manufacture of quartz glass
JPS60226418A (en) Preparation of quartz glass mass
JPS62292627A (en) Production of glass
JPH03137028A (en) Production of large-sized massive glass
JPS6140825A (en) Preparation of quartz glass
JPH0264033A (en) Production of lumpy glass
JPS60108325A (en) Production of glass
JPS62100424A (en) Production of glass
JPH0751445B2 (en) Glass manufacturing method
JPS63291822A (en) Production of large-sized glass block
JPS63297226A (en) Production of short-wavelength laser beam transmitting quartz glass
JPS632820A (en) Production of glass
JPS6126525A (en) Production of quartz glass
JPS61158833A (en) Production of quartz glass
JPH02302332A (en) Production of platy silica glass
JPH0264030A (en) Production of lumpy glass
JPS63144127A (en) Production of quartz glass
JPS62246827A (en) Production of glass
JPS61232232A (en) Production of quartz glass
JPH03137027A (en) Production of distributed index lens
JPS63291824A (en) Production of quartz glass transmitting short wavelength laser light