JPH02302332A - Production of platy silica glass - Google Patents

Production of platy silica glass

Info

Publication number
JPH02302332A
JPH02302332A JP12026789A JP12026789A JPH02302332A JP H02302332 A JPH02302332 A JP H02302332A JP 12026789 A JP12026789 A JP 12026789A JP 12026789 A JP12026789 A JP 12026789A JP H02302332 A JPH02302332 A JP H02302332A
Authority
JP
Japan
Prior art keywords
silica
cake
silica particles
silica glass
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12026789A
Other languages
Japanese (ja)
Inventor
Kujiko Andou
安藤 久爾子
Koichi Shiraishi
耕一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12026789A priority Critical patent/JPH02302332A/en
Publication of JPH02302332A publication Critical patent/JPH02302332A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain high-density platy silica glass capable of avoiding cracking, warping and bending in drying by hydrolyzing a silicic acid ester in the presence of a basic catalyst, separating the resultant silica particles from a liquid, providing a silica cake, then drying and heat-treating the formed cake. CONSTITUTION:A silicic acid ester, such as tetramethoxysilane, is mixed with water and a water-soluble organic solvent, such as methanol, in the presence of a basic catalyst and hydrolyzed. NH3 and an organic substance, such as amines, are preferred as the abovementioned basic catalyst. Spherical silica particles, formed by the hydrolysis and having 0.03 to 5mum particle diameter are then naturally settled, filtered or centrifuged and separated from a liquid to afford a silica cake, which is then sufficiently dried, then heat-treated up to 1150 to 1500 deg.C in an He atmosphere or under reduced pressure and transparentized. Thereby, the objective platy silica glass is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、平板状シリカガラスの製造方法に関する。[Detailed description of the invention] "Industrial application field" The present invention relates to a method for manufacturing flat silica glass.

[従来の技術] 従来、平板状シリカガラスの製造方法として、次の方法
が知られている。
[Prior Art] Conventionally, the following method is known as a method for producing flat silica glass.

(1)インゴット切断法;この方法は、酸水素溶融法や
気相法などで製造されたインゴットを切断して得る方法
である。
(1) Ingot cutting method: This method is a method of cutting an ingot produced by an oxyhydrogen melting method, a gas phase method, or the like.

(2)ゾル・ゲル法;この方法は、シリコンアルコキシ
ドを加水分解するかシリカ微粉末を液体中に懸濁させて
ゾルを得、これをゲル化させる工程と、乾燥工程と、不
純物を除去する工程と、加熱してガラスにする無孔化工
程とからなる。
(2) Sol-gel method: This method involves hydrolyzing silicon alkoxide or suspending fine silica powder in a liquid to obtain a sol, gelling it, drying it, and removing impurities. process, and a nonporous process of heating to make glass.

[発明が解決しようとする課題] しかしながら、従来技術によれば、次の問題点を有す葛
[Problems to be Solved by the Invention] However, according to the prior art, kudzu has the following problems.

インゴット法では、極薄板を製造することが難しいと共
に、切りしるが大きいため歩留りが悪い。
In the ingot method, it is difficult to manufacture extremely thin plates, and the yield is low because the cutting edges are large.

ゾル・ゲル法では、乾燥工程でゲルに割れが生じやすく
、薄板の場合は反りが生じやすい。ま−た、無孔化工程
でも割れ1反り、泡の発生が起こりやすい。更に、製造
に非常に長い時間を必要とする。
In the sol-gel method, the gel tends to crack during the drying process, and thin plates tend to warp. Furthermore, even in the non-porous process, cracks, warping, and bubbles are likely to occur. Moreover, it requires a very long manufacturing time.

このようなことから、効率の良い平板状シリカガラスの
製造方法の開発が必要とされていた。
For this reason, there has been a need to develop an efficient method for producing flat silica glass.

本発明は上記事情に鑑みてなされたもので、結合強度及
び可塑性を増して乾燥時の割れ9反り。
The present invention was made in view of the above circumstances, and it increases bonding strength and plasticity, and reduces cracking and warping during drying.

曲がりを回避し得る高密度の平板状シリカガラスの製造
方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing high-density flat silica glass that can avoid bending.

[課題を解決するための手段] 本発明は、ケイ酸エステルを塩基性触媒の存在下で水及
び溶媒と混合、加水分解してシリカ粒子を生成した後、
得られたシリカ粒子を液体と分離してシリカケーキを得
、更に得られたシリカケーキを乾燥、熱処理することを
特徴とする平板状シリカガラスの製造方法である。
[Means for Solving the Problems] The present invention involves mixing and hydrolyzing a silicate ester with water and a solvent in the presence of a basic catalyst to produce silica particles;
The method for producing flat silica glass is characterized by separating the obtained silica particles from a liquid to obtain a silica cake, and further drying and heat-treating the obtained silica cake.

本発明では、ケイ酸エステルの加水分解時にバインダー
を添加するか、もしくは加水分解後前記シリカ粒子を含
む液にバインダーを添加してもよい。ここで、用いるバ
インダーは水または用いる有機溶媒に溶解し粒子の結合
強度を高め、可逆性を増す物質ならば特に限定されない
が、ポリビニルアルコール(以下、PvAと呼ぶ)ある
いはポリビニルブチラード(以下、PVBと呼ぶ)等の
有機化合物が好ましい。また、バインダーの添加量はバ
インダーの種類によって異なるが、加水分解液に対し重
量比で0.01%以上、好ましくは0.1%以上であり
、その上限は加水分解液に溶解する瓜である。
In the present invention, a binder may be added during hydrolysis of the silicate ester, or a binder may be added to the liquid containing the silica particles after hydrolysis. Here, the binder used is not particularly limited as long as it is a substance that dissolves in water or the organic solvent used to increase the bonding strength of particles and increase reversibility, but polyvinyl alcohol (hereinafter referred to as PvA) or polyvinyl butylade (hereinafter referred to as PVB) is used. Organic compounds such as (called ) are preferred. The amount of binder added varies depending on the type of binder, but it is 0.01% or more, preferably 0.1% or more by weight of the hydrolyzed liquid, and the upper limit is the amount of melon that dissolves in the hydrolyzed liquid. .

本発明に係るケイ酸エステルは特に限定されないが、例
えばテトラメトキシシラン、テトラエトキシシラン、テ
トラプロホトキシシラン、テトライソプロポキシシラン
等の炭素数4以下の低級アルコールなどのエステルを用
いることが好ましい。
The silicic acid ester according to the present invention is not particularly limited, but it is preferable to use an ester such as a lower alcohol having 4 or less carbon atoms, such as tetramethoxysilane, tetraethoxysilane, tetraprophotoxysilane, and tetraisopropoxysilane.

本発明に係る塩基性触媒は特に限定されないが、高純度
シリカを得るためにはアンモニア、アミン類等の有機物
を用いることが好ましい。
The basic catalyst according to the present invention is not particularly limited, but in order to obtain high purity silica, it is preferable to use organic substances such as ammonia and amines.

本発明に係る有機溶媒は、水と可溶なものであれば特に
限定されないが、メタノール、エタノール、n−プロパ
ツール、1−プロパツールなどの炭素数4以下の低級ア
ルコール類のうち一種類以上を用いるのが好ましい。
The organic solvent according to the present invention is not particularly limited as long as it is soluble in water, but one or more types of lower alcohols having 4 or less carbon atoms such as methanol, ethanol, n-propanol, and 1-propanol It is preferable to use

[作用] 本発明の作用について説明する。[Effect] The operation of the present invention will be explained.

■まず、ケイ酸エステルを塩基性触媒の存在下で水及び
有機溶媒と混合、加水分解させ、球状シリカ粒子を生成
させる。この上記反応では、真球状でかつ粒径の非常に
良くそろった球状シリカ(S+02)粒子が得られる。
(1) First, silicate ester is mixed with water and an organic solvent in the presence of a basic catalyst and hydrolyzed to produce spherical silica particles. In this reaction, spherical silica (S+02) particles are obtained which are perfectly spherical and have a very uniform particle size.

粒径は、0.03〜5μm1好ましくは0.05〜1.
5μmの球状粒子が良い。粒径が0.03μmよりも小
さいと得られたシリカガラスに泡が多く含まれ、粒径が
5μmよりも大きいと製造中に割れが生じ易いとともに
透明体を得ることも難しい。粒子は、単独であるいは2
種類以上の異なる粒径の粒子を混合して用いる。
The particle size is 0.03-5 μm, preferably 0.05-1.
Spherical particles of 5 μm are preferable. If the particle size is smaller than 0.03 μm, the obtained silica glass will contain many bubbles, and if the particle size is larger than 5 μm, cracks will easily occur during production and it will be difficult to obtain a transparent body. Particles can be used alone or in pairs.
A mixture of more than one type of particles with different particle sizes is used.

なお、シリカ粒子を含む加水分解液は、必要に応じて濃
縮しても良い。
Note that the hydrolyzed solution containing silica particles may be concentrated if necessary.

■次に、この液を静置しシリカ粒子を自然沈降させるか
、あるいは濾過し、もしくは遠心分離してシリカ粒子と
液体を分離する。ここで、自然沈降の場合、静置時間は
シリカ粒子の粒径、液の濃縮度合い等によって異なるが
、液体部分が透明となり、固体と液体の境界が明瞭とな
った時点で沈降終了する。しかるに、静置時間が短か過
ぎると、高密度のシリカケーキを得難い。また、濾過の
場合、得られた粒子の粒径によってフィルターの開口径
を選択すると良い。
(2) Next, the liquid is allowed to stand still to allow the silica particles to settle naturally, or is filtered or centrifuged to separate the silica particles from the liquid. In the case of natural sedimentation, the standing time varies depending on the particle size of the silica particles, the degree of concentration of the liquid, etc., but sedimentation ends when the liquid part becomes transparent and the boundary between solid and liquid becomes clear. However, if the standing time is too short, it is difficult to obtain a high-density silica cake. Further, in the case of filtration, it is preferable to select the opening diameter of the filter depending on the particle size of the obtained particles.

■次に、得られたシリカケーキを乾燥し、充分乾燥した
後、1150〜1500℃まで熱処理し透明にする。こ
こで、熱処理温度は用いたシリカ粒子の粒径により異な
るが、1150℃未満の場合、透明体を得難い。熱処理
雰囲気は特に限定されないが、高純度のシリカガラスを
得るためにはHe雰囲気下あるいは減圧下で熱処理を行
うか、または600〜1000℃で6g2含有雰囲気下
で前処理を行った後。
(2) Next, the obtained silica cake is dried, and after being thoroughly dried, it is heat-treated to 1150 to 1500°C to make it transparent. Here, the heat treatment temperature varies depending on the particle size of the silica particles used, but if it is less than 1150°C, it is difficult to obtain a transparent body. The heat treatment atmosphere is not particularly limited, but in order to obtain high-purity silica glass, heat treatment is performed in a He atmosphere or under reduced pressure, or after pretreatment is performed at 600 to 1000°C in an atmosphere containing 6g2.

He雰囲気あるいは減圧下で熱処理を行うことが好まし
い。
It is preferable to perform the heat treatment in a He atmosphere or under reduced pressure.

以上の工程を得ることにより、乾燥時の割れ。By obtaining the above process, cracking during drying can be avoided.

反り1曲がりを回避し得る高密度の平板状シリカガラス
を得ることができる。
It is possible to obtain a high-density flat silica glass that can avoid warping.

また、上記工程において、シリカ粒子を含む加水分解液
にバインダーを添加するか、あるいはケイ酸エステルを
加水分解する際にその反応溶液に予めバインダーを添加
し、ケイ酸エステルの加水分解を行うことにより、上記
効果を一層向上することができる。
In addition, in the above step, by adding a binder to the hydrolysis solution containing silica particles, or by adding a binder in advance to the reaction solution when hydrolyzing the silicate ester, and hydrolyzing the silicate ester. , the above effects can be further improved.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

[実施例1] まず、撹拌機付きのガラス反応容器にエタノール150
mg、アンモニア水(20重量 96 ) 40m l
を加えて混合し、反応溶液とした。また、エタノール1
00mΩとテトラエトキシシラン(St(OC2H5)
4、東芝シリコーン社(製))25mgを混合し、原料
溶液を調整した。次に、20℃に調整した前記反応溶液
に前記原料溶液を添加すると、粒径0,48μmの単分
散シリカ粒子が得られた。つづいて、この溶液をポリプ
ロピレン製容器(φ30■)に移し、密閉して静置する
と、シリカ粒子が沈降し、シリカケーキが得られた。次
いで、この液体を分離して得られたシリカケーキを30
℃。
[Example 1] First, 150 ml of ethanol was added to a glass reaction container equipped with a stirrer.
mg, ammonia water (20 weight 96) 40ml
was added and mixed to obtain a reaction solution. Also, ethanol 1
00mΩ and tetraethoxysilane (St(OC2H5)
4. 25 mg of Toshiba Silicone Co., Ltd. (manufactured by Toshiba Silicone Co., Ltd.) were mixed to prepare a raw material solution. Next, when the raw material solution was added to the reaction solution adjusted to 20° C., monodisperse silica particles with a particle size of 0.48 μm were obtained. Subsequently, this solution was transferred to a polypropylene container (φ30), sealed and allowed to stand, whereby the silica particles precipitated and a silica cake was obtained. Next, the silica cake obtained by separating this liquid was
℃.

60℃、200℃で夫々1時間ずつ乾燥した。この後、
これを減圧下で1300℃まで熱処理すると、直径25
mm、厚さ5■の平板状シリカガラスが得られた。
It was dried at 60°C and 200°C for 1 hour each. After this,
When this was heat-treated to 1300℃ under reduced pressure, the diameter was 25.
A plate-like silica glass having a thickness of 5 mm and a thickness of 5 cm was obtained.

上記実施例1によれば、エタノール(溶媒)及びアンモ
ニア水(触媒)からなる反応溶液にエタノール及びテト
ラエトキシシラン(ケイ酸エステル)からなる原料溶液
を添加して所定の粒径の単分散シリカ粒子を形成した後
、前記混合溶液を静置してシリカ粒子を沈降してシリカ
ケーキを形成し、乾燥、熱処理工程を行うため、ゾル及
びゲルの状態を通過することなく、結合強度を増して乾
燥時の割れ2反り1曲がりを回避し得る平板状シリカガ
ラスを得ることができる。
According to Example 1 above, a raw material solution consisting of ethanol and tetraethoxysilane (silicate ester) is added to a reaction solution consisting of ethanol (solvent) and aqueous ammonia (catalyst) to obtain monodispersed silica particles of a predetermined particle size. After forming the mixed solution, the silica particles are allowed to settle to form a silica cake, which is then subjected to a drying and heat treatment process, thereby increasing the bonding strength and drying without passing through the sol and gel states. It is possible to obtain flat silica glass that can avoid cracking, 2 warping, and 1 bending.

[実施例2] 実施例1と同様にして得られた加水分解液を0.3μm
のメンブランフィルタ−で減圧濾過し、直径30ffl
111のシリカケーキを得た。得られたシリカケーキを
実施例1と同様に熱処理すると、直径25)、厚さ50
1I11の平板状シリカガラスが得られた。
[Example 2] A hydrolyzed solution obtained in the same manner as in Example 1 was heated to 0.3 μm.
Filtered under reduced pressure with a membrane filter of 30ffl in diameter.
A silica cake of No. 111 was obtained. When the obtained silica cake was heat treated in the same manner as in Example 1, it had a diameter of 25) and a thickness of 50
A 1I11 plate-like silica glass was obtained.

[実施例3] 実施例1と同様にして得られた溶液を5等分し、500
0rp1mで30分間遠心分離した。得られたシリカケ
ーキを実施例1と同様に熱処理すると、直径25 m 
m SIfさIIの平板状シリカガラスが得られた。
[Example 3] The solution obtained in the same manner as in Example 1 was divided into 5 equal parts, and 500
Centrifugation was performed at 0 rpm for 30 minutes. When the obtained silica cake was heat treated in the same manner as in Example 1, it had a diameter of 25 m.
A tabular silica glass of mSIfsII was obtained.

[実施例4] まず、撹拌機付きのガラス反応容器にエタノール150
 mg、アンモニア水(20重量%)40mgを加えて
混合し、反応溶液とした。また、エタノール100mΩ
とテトラエトキシシラン25mgを混合し、原料溶液を
調整した。更に、これらと同様の組成でもう一組反応溶
液及び原料溶液を用意した。
[Example 4] First, 150 ml of ethanol was added to a glass reaction container equipped with a stirrer.
mg and 40 mg of aqueous ammonia (20% by weight) were added and mixed to prepare a reaction solution. Also, ethanol 100mΩ
and 25 mg of tetraethoxysilane were mixed to prepare a raw material solution. Furthermore, another set of reaction solutions and raw material solutions with the same composition as these were prepared.

次に、一方の反応溶液を10℃に調節し原料溶液を添加
すると、粒径0.5μmの単分散シリカ粒子が得られた
(溶液A)。また、もう一方の反応溶液を30℃に調節
し、原料溶液を添加すると、粒径0.3μmの単分散シ
リカ粒子が得られた(溶液B)。次いで、前記A、B両
溶液溶液合し、0.2μmのメンブランフィルタ−を用
いて減圧濾過した。得られたシリカケーキを実施例1と
同様に熱処理すると、直径2511厚さ1OIIIII
Iの平板状シリカガラスが得られた。
Next, one of the reaction solutions was adjusted to 10° C. and the raw material solution was added to obtain monodispersed silica particles with a particle size of 0.5 μm (solution A). Further, when the other reaction solution was adjusted to 30° C. and the raw material solution was added, monodispersed silica particles with a particle size of 0.3 μm were obtained (solution B). Next, both solutions A and B were combined and filtered under reduced pressure using a 0.2 μm membrane filter. When the obtained silica cake was heat-treated in the same manner as in Example 1, it had a diameter of 2511 and a thickness of 1OIII.
A flat silica glass of I was obtained.

[実施例5コ まず、撹拌機付きのガラス製反応容器にエタノール15
0iΩ、アンモニア水(20重量%)40mJ)を加え
て混合し、反応溶液とした。またエタノール100mΩ
とテトラエトキシシラン25mgを混合し、原料溶液を
調整した。次に、20℃に調節した反応溶液に原料溶液
を撹拌しながら滴下し、単分散シリカ粒子を合成した。
[Example 5] First, 15% of ethanol was added to a glass reaction vessel equipped with a stirrer.
0 iΩ, aqueous ammonia (20% by weight) 40 mJ) was added and mixed to prepare a reaction solution. Also ethanol 100mΩ
and 25 mg of tetraethoxysilane were mixed to prepare a raw material solution. Next, the raw material solution was added dropwise to the reaction solution adjusted to 20° C. with stirring to synthesize monodisperse silica particles.

次いて、この加水分解液にPVBl、Ogを混合、撹拌
しPVBを溶解した。
Next, PVBl and Og were mixed with this hydrolyzed solution and stirred to dissolve PVB.

この後、これをポリプロピレン製容器(Φ30mm)に
移し、密閉して5日間室温で静置した。静置後、固体(
シリカケーキ)と液体を分離し、得られたシリカケーキ
を30℃、200℃で夫々1日間ずつ乾燥した。これを
1300℃まで加熱すると、厚さ31Il11の平板状
シリカガラスが得られた。
Thereafter, this was transferred to a polypropylene container (Φ30 mm), tightly sealed, and allowed to stand at room temperature for 5 days. After standing still, solid (
The silica cake) and the liquid were separated, and the obtained silica cake was dried at 30°C and 200°C for one day each. When this was heated to 1300° C., a flat silica glass having a thickness of 31Il11 was obtained.

上記実施例5によれば、単分散シリカ粒子を含む加水分
解液にバインダーとしてのPVBを添加するため、実施
例1と比べ、一層結合強度及び可塑性を増し、乾燥時の
割れ1反り1曲がりを回避し得る平成状シリカガラスを
得ることができる。
According to the above Example 5, since PVB as a binder is added to the hydrolyzed solution containing monodispersed silica particles, the bonding strength and plasticity are further increased compared to Example 1, and cracks, warping, and bending during drying are reduced. It is possible to obtain a flat silica glass that can be avoided.

[実施例6] まず、撹拌機付きのガラス反応容器にエタノール150
 ml 、アンモニア水(20重量%)40m17を加
えて混合し、反応溶液とした。また、エタノール100
 mgとテトラエトキシシラン25m flを混合し、
原料溶液を調整した。更に、これらと同様の組成でもう
一組反応溶液及び原料溶液を用意した。
[Example 6] First, 150 ml of ethanol was added to a glass reaction container equipped with a stirrer.
ml and 40 ml of aqueous ammonia (20% by weight) were added and mixed to prepare a reaction solution. Also, ethanol 100
mg and 25 m fl of tetraethoxysilane,
A raw material solution was prepared. Furthermore, another set of reaction solutions and raw material solutions with the same composition as these were prepared.

次に、一方の反応溶液を10℃に調節し、原料溶液を滴
下して粒径0,5μmの単分散シリカ粒子を合成した(
加水分解液A)。また、もう一方の反応溶液を30℃に
調節し、原料溶液を滴下して粒径0.3μmの単分散シ
リカ粒子を合成した(加水分解液B)。次いで、前記A
、B両液を混合した後、PVB2.0gを加えて撹拌し
溶解した。この後、これをポリプロピレン製容器(Φ3
0+m)に移し、密閉して6日間静置した後固体を液体
と分離し、実施例5と同様に熱処理して、厚さ3■の平
板状シリカガラスが得られた。
Next, one of the reaction solutions was adjusted to 10°C, and the raw material solution was added dropwise to synthesize monodispersed silica particles with a particle size of 0.5 μm (
Hydrolyzate A). Further, the other reaction solution was adjusted to 30° C., and the raw material solution was added dropwise to synthesize monodispersed silica particles with a particle size of 0.3 μm (hydrolysis solution B). Next, the above A
After mixing both liquids B and B, 2.0 g of PVB was added and stirred to dissolve. After this, this is placed in a polypropylene container (Φ3
After the solid was separated from the liquid and heat treated in the same manner as in Example 5, a flat silica glass having a thickness of 3 cm was obtained.

実施例6によれば、加水分解後、単分散シリカ粒子を含
む加水分解液A、BにバインダーとじてPVBを添加す
るため、実施例5と同様の効果が得られる。
According to Example 6, PVB is added as a binder to the hydrolysis solutions A and B containing monodispersed silica particles after hydrolysis, so that the same effects as in Example 5 can be obtained.

[実施例7] まず、撹拌機付きのガラス反応容器にエタノール15註 びPVBl.Ogを加えて混合し、反応溶液とした。[Example 7] First, add 15 liters of ethanol to a glass reaction vessel equipped with a stirrer. and PVBl. Og was added and mixed to obtain a reaction solution.

また、エタノール100mgとテトラエトキシシラン2
5mgを混合し、原料溶液を調整した。次に、20℃に
調節した反応溶液に原料溶液を撹拌しながら滴下し、単
分散シリカ粒子を合成した。次いて、この結合剤入りの
加水分解液をポリプロピレン製容器(φ30■)に移し
、密閉して5日間室温で静置した。静置後、固体(シリ
カケーキ)と液体を分離し、実施例5と同様に熱処理す
ると、厚さ3mmの平板状シリカガラスが得られた。
Also, 100 mg of ethanol and 2 ml of tetraethoxysilane
5 mg were mixed to prepare a raw material solution. Next, the raw material solution was added dropwise to the reaction solution adjusted to 20° C. with stirring to synthesize monodisperse silica particles. Next, the hydrolyzed solution containing the binder was transferred to a polypropylene container (φ30 mm), sealed and allowed to stand at room temperature for 5 days. After standing still, the solid (silica cake) and liquid were separated and heat treated in the same manner as in Example 5 to obtain a flat silica glass with a thickness of 3 mm.

なお、上記実施例では、ケイ酸エステルとしてテトラエ
トキシシランを用いた場合について述べたが、これに限
らず、既述した[手段]の欄で述べたテトラメトキシな
どの炭素数4以下の低級アルコールなどのエステルを用
いてもよい。
In the above example, a case was described in which tetraethoxysilane was used as the silicate ester, but the invention is not limited to this, and lower alcohols having 4 or less carbon atoms such as tetramethoxy described in the column of [Means] mentioned above can also be used. Esters such as may also be used.

上記実施例では、塩基性触媒としてアンモニアを用いた
場合について述べたが、これに限らず、既述した[手段
]の欄で述べたアミン等の有機物を用いてもよい。
In the above embodiment, a case was described in which ammonia was used as the basic catalyst, but the present invention is not limited to this, and organic substances such as amines described in the section [Means] described above may also be used.

上記実施例では、有機溶媒としてエタノールを用いた場
合について述べたが、これに限らず、既述した[手段]
の欄で述べたメタノール、n−プロパツールなどを用い
てもよい。
In the above example, the case where ethanol was used as the organic solvent was described, but the method is not limited to this.
Methanol, n-propertool, etc. mentioned in the section above may also be used.

[発明の効果] 以上詳述した如く本発明によれば、ゾル及びゲルの状態
を通過することなく、結合強度及び可塑性を増して乾燥
時の割れ9反り1曲がりを回避し得る平板状シリカガラ
スの製造方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, flat silica glass is produced which can increase bonding strength and plasticity and avoid cracking, warping, and bending during drying without passing through the sol and gel states. can provide a manufacturing method.

Claims (2)

【特許請求の範囲】[Claims] (1)ケイ酸エステルを塩基性触媒の存在下で水及び溶
媒と混合、加水分解してシリカ粒子を生成した後、得ら
れたシリカ粒子を液体と分離してシリカケーキを得、更
に得られたシリカケーキを乾燥、熱処理することを特徴
とする平板状シリカガラスの製造方法。
(1) After mixing silicate ester with water and a solvent in the presence of a basic catalyst and hydrolyzing it to produce silica particles, the obtained silica particles are separated from the liquid to obtain a silica cake, and further A method for producing flat silica glass, which comprises drying and heat-treating a silica cake.
(2)ケイ酸エステルの加水分解時にバインダーを添加
するか、もしくは加水分解後前記シリカ粒子を含む液に
バインダーを添加することを特徴とする請求項1記載の
平板状シリカガラスの製造方法。
(2) The method for producing flat silica glass according to claim 1, characterized in that a binder is added during hydrolysis of the silicate ester, or a binder is added to the liquid containing the silica particles after hydrolysis.
JP12026789A 1989-05-16 1989-05-16 Production of platy silica glass Pending JPH02302332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12026789A JPH02302332A (en) 1989-05-16 1989-05-16 Production of platy silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12026789A JPH02302332A (en) 1989-05-16 1989-05-16 Production of platy silica glass

Publications (1)

Publication Number Publication Date
JPH02302332A true JPH02302332A (en) 1990-12-14

Family

ID=14781989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12026789A Pending JPH02302332A (en) 1989-05-16 1989-05-16 Production of platy silica glass

Country Status (1)

Country Link
JP (1) JPH02302332A (en)

Similar Documents

Publication Publication Date Title
WO1984002519A1 (en) Process for producing quartz glass
JPH072513A (en) Production of synthetic quartz glass powder
JPS61158810A (en) Production of high-purity silica sol
JP3203694B2 (en) Manufacturing method of quartz glass
JPH038729A (en) Production of porous glass
JPH02302332A (en) Production of platy silica glass
JPS62138310A (en) Monodisperse metallic-oxide preparation
JPH01278413A (en) Production of silica sol
JPS62207723A (en) Production of glass
JP2621153B2 (en) Manufacturing method of spherical porous body
JP3465299B2 (en) Method for producing sol or gel containing fine particles
JPH01257120A (en) Production of porous drying gel
JPS6065735A (en) Production of quartz glass
JPH03187933A (en) Production of silica glass
JPS62246827A (en) Production of glass
JPS643812B2 (en)
JPS62226821A (en) Production of glass
JPS6140825A (en) Preparation of quartz glass
JPS6126525A (en) Production of quartz glass
JP4993811B2 (en) Modified sol-gel silica particles and method for producing the same
JPS62288122A (en) Production of glass body by sol-gel method
JPS62230636A (en) Production of porous glass article
JPS632820A (en) Production of glass
JPH0348140B2 (en)
JPH0520364B2 (en)