JPS61163133A - Preparation of single polarization optical fiber - Google Patents

Preparation of single polarization optical fiber

Info

Publication number
JPS61163133A
JPS61163133A JP60000676A JP67685A JPS61163133A JP S61163133 A JPS61163133 A JP S61163133A JP 60000676 A JP60000676 A JP 60000676A JP 67685 A JP67685 A JP 67685A JP S61163133 A JPS61163133 A JP S61163133A
Authority
JP
Japan
Prior art keywords
sol
optical fiber
cladding
core
wet gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60000676A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Sadao Kanbe
貞男 神戸
Haruo Nagafune
長船 晴夫
Masanobu Motoki
元木 正信
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60000676A priority Critical patent/JPS61163133A/en
Publication of JPS61163133A publication Critical patent/JPS61163133A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Abstract

PURPOSE:To prepare stressed single polarization optical fiber having higher quality with better dimensional precision than conventional product inexpensively by prepg. a parent material for optical fiber by the sol-gel method and drawing the parent material. CONSTITUTION:A wet gel contg. a section for constituting a clad section 3, core constituting section 1, and stressed section 2 in the optical fiber to be formed from the parent material by the sol-gel method is prepd. The wet gel is dried and sintered to prepare the titled single polarization optical fiber. The clad sol for constituting the afore-mentioned clad section is poured into a cylindrical vessel provided with a freely attachable and detachable mold fixed to a necessary position. The sol for constituting the core and for pit are poured into plural cavities formed after detaching the mold, and poured sol are gelled. Thus, the above-described wet gel is prepd. preferably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレント光伝送方式や光フアイバセンサ
等に用いられる偏波面保存光ファイバの製造方法に関す
る。さらに詳しくはサイドビットを有する応力付与型偏
波面保存光ファイバの製造方法に関する。(第1図) 〔従来の技術〕 従来のサイドビットを有する応力付与型偏波面保存光7
アイバは、気相法による光フアイバ用母材の全合成が困
難であることから、コアークラッド母材の両側を、応力
付与母材ではさみ、ジャケット管に入れ、残りの空間を
充填母材で埋めた組立体を線引きすることによって製造
されていた。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a polarization-maintaining optical fiber used in coherent optical transmission systems, optical fiber sensors, and the like. More specifically, the present invention relates to a method of manufacturing a stress-applied polarization-maintaining optical fiber having side bits. (Fig. 1) [Conventional technology] Conventional stress-applying polarization-maintaining light with side bits 7
Since it is difficult to completely synthesize the base material for optical fiber using the vapor phase method, the core clad base material is sandwiched between stress-applying base materials on both sides, placed in a jacket tube, and the remaining space is filled with a filler base material. It was manufactured by drawing a buried assembly.

(ジャケット法、電々公社、特開昭58−104〔発明
が解決しようとする問題点〕 −しかし上記のジャケット法は、コアークラッド母材と
応力付与母材をVAD法やMCVD法等の気相法を用い
て別々に作製するために、多大な労力と時間が必要であ
り、結果的には製造コストが極めて高いという問題点が
あった。また、組立体の段階において、各母材を精度良
く、シかもすきまなく配置するのは極めて困難なので、
コアの形状等の寸法精度の良い高品質な偏波面保存光フ
ァイバを製造することが困難であるという問題点もあっ
た。
(Jacket method, Electric Corporation, JP-A-58-104 [Problems to be solved by the invention]) This method requires a great deal of labor and time, resulting in extremely high manufacturing costs.In addition, at the assembly stage, each base material must be manufactured with precision. However, it is extremely difficult to arrange them without any gaps, so
Another problem was that it was difficult to manufacture high-quality polarization-maintaining optical fibers with good dimensional accuracy such as the shape of the core.

本発明は以上の問題点を解決するもので、その目的は、
ゾル−ゲル法を用いて光フアイバ用母材(プリフォーム
)を作り、その光フアイバ用母材を線引きすることによ
って、従来のジャケット法で得られるよりも寸法精度の
良い高品質な、サイドビットを有する応力付与型偏波面
保存光ファイバを、従来のジャケット法よりも安価に製
造し得る方法を提供することにある。
The present invention solves the above problems, and its purpose is to:
By creating an optical fiber base material (preform) using the sol-gel method and drawing the optical fiber base material, we can produce high-quality side bits with better dimensional accuracy than that obtained with the conventional jacket method. It is an object of the present invention to provide a method for manufacturing a stress-applied polarization-maintaining optical fiber having the following characteristics at a lower cost than the conventional jacket method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の偏波面保存光ファイバの製造方法は、ゾル−ゲ
ル法を用いて、光ファイバとしたときにクラッド部を構
成する部分と、光ファイバとしたときにコア部を構成す
る部分と、光ファイバと1゜たときに応力付与部を構成
する部分を内部に含むウェットゲルを作り、該ウェット
ゲルを乾燥、焼結して偏波面保存光ファイバ用母材を作
る工程を含むことを%徴とする。
The method for manufacturing a polarization-maintaining optical fiber of the present invention uses a sol-gel method to separate a portion that will constitute a cladding portion when an optical fiber is made, a portion that will constitute a core portion when an optical fiber is made, and an optical fiber. The process includes the step of creating a wet gel that contains a part that forms a stress applying part when it is at an angle of 1° with the fiber, and drying and sintering the wet gel to create a base material for a polarization preserving optical fiber. shall be.

また本発明の製造方法において、クラッド部。Further, in the manufacturing method of the present invention, the cladding portion.

コア部、ビット部を高い位置精度で内部に含む高純度な
ウェットゲルを作製するために、光ファイバとしたとき
クラッド部を構成する、アルキルシリケート加水分解溶
液を主原料とするゾル溶液(以下クラッド用ゾル)を、
脱着可能の型を必要な位置に固定した円筒容器に流し込
んでゲル化させ、前記型を取りはずした後、生じた複数
個の中空部するいはくぼみに光ファイバとしたときコア
部を構成する、アルキルシリケート加水分解溶液を主原
料とするゾル溶液(以下コア用ゾル)と、光ファイバと
したとき応力付与部を構成する、アルキルシリケート加
水分解溶液を主原料とするゾル溶液(以下ビット用ゾル
)を流し込んでゲル化させ、前記ウェットゲルを作るこ
とが望ましい。
In order to produce a high-purity wet gel that contains the core and bit parts with high positional accuracy, we created a sol solution (hereinafter referred to as cladding) whose main raw material is an alkyl silicate hydrolyzed solution, which constitutes the cladding part when used as an optical fiber. sol),
A removable mold is poured into a cylindrical container fixed at a required position to gel, and after the mold is removed, optical fibers are formed in the plurality of hollows or depressions that are formed to form a core part. A sol solution whose main raw material is an alkyl silicate hydrolyzed solution (hereinafter referred to as the sol for core), and a sol solution whose main raw material is an alkyl silicate hydrolyzed solution that constitutes the stress applying part when it is made into an optical fiber (hereinafter referred to as the sol for bits). Preferably, the wet gel is produced by pouring and gelling.

あるいは本発明の製造方法において、クラッド部、コア
部、ビット部を高い位置精度で内部に含む高純度なウェ
ットゲルを作製するために下記の方法を用いてもよい。
Alternatively, in the production method of the present invention, the following method may be used to produce a high purity wet gel that contains the cladding part, core part, and bit part with high positional accuracy.

すなわちクラッド用ゾルを、脱着可能の型を必要な位置
に固定した円筒容器に流し込んでゲル化させ、前記型を
取りはずした後、生じた複数個の中空部あるいはくぼみ
のうち、ビット用孔に、ビット用ゾルを流し込んでゲル
化させ、その後ウェットゲルの中心のコアークラッド用
孔にクラッド用ゾルを流し込んで後に円筒容器にフタを
して、回転装置に取り付け望ましくは200rpm以上
の回転数で回転させながらゲル化させ、生じたコア用孔
にコア用ゾルを移し入れゲル化させ、前記ウェットゲル
を作る方法である。
That is, the sol for the cladding is poured into a cylindrical container with a removable mold fixed at the required position and allowed to gel, and after removing the mold, the sol is poured into the bit hole among the plurality of hollow parts or depressions that are formed. Pour the bit sol and let it gel, then pour the cladding sol into the core cladding hole at the center of the wet gel, then cover the cylindrical container, attach it to a rotating device, and rotate it preferably at a rotation speed of 200 rpm or more. In this method, the wet gel is produced by gelatinizing the sol while transferring the core sol into the resulting core pores and gelling the core sol.

また本発明の製造方法において、型として伸縮が可能な
構造をもった型を用いることが望ましい。というのは伸
縮が可能な構造をもった型を用いない場合、クラッド用
ゾルがゲル化して型を取りはずす時(というよりも引き
抜く時)、ゲルの内面と型が密着したまま引き抜くこと
になるため、ゲルの内面にクラッド等のあれが生じ易く
、きれいな内面をもった孔ができないため高品質の光フ
ァイバを得ることは困難になるからである。これに対し
て本発明の伸縮が可能な構造をもった型を用いると、ク
ラッド用ゾルがゲル化して型を取りはずす時、ゲルの内
面と型が触れることなく取りはずしか行なえるので極め
てきれいな内面をもった孔ができる。
Further, in the manufacturing method of the present invention, it is desirable to use a mold having a structure that allows expansion and contraction. This is because if a mold with a structure that allows expansion and contraction is not used, the sol for the cladding will gel and when the mold is removed (or rather, pulled out), the inner surface of the gel and the mold will remain in close contact with each other. This is because cracks such as cladding are likely to occur on the inner surface of the gel, making it difficult to obtain a high-quality optical fiber because holes with clean inner surfaces cannot be formed. On the other hand, when using the mold with the expandable structure of the present invention, when the cladding sol gels and the mold is removed, the inner surface of the gel can be removed without touching the mold, leaving an extremely clean inner surface. A hole is formed.

本発明の製造方法において、クラッド用ゾル、コア用ゾ
ル、およびビット用ゾルには、少なくともアルキルシリ
ケートを原料に含む加水分解溶液と主として超微粉末シ
リカからなる微粉末が含まれていることが望ましい。と
いうのは、特願昭58−237577号に記載のごとく
、原料ゾル中に金属アルコキシドを原料に含む加水分解
溶液と超微粉末をゾル中に適当な割合で混合することに
よって実用的な大きさをもつ石英ガラス体が歩留シよく
得られるからである。
In the manufacturing method of the present invention, it is desirable that the cladding sol, core sol, and bit sol contain at least a hydrolyzed solution containing an alkyl silicate as a raw material and a fine powder mainly consisting of ultrafine silica powder. . This is because, as described in Japanese Patent Application No. 58-237577, a practical size can be obtained by mixing a hydrolyzed solution containing a metal alkoxide as a raw material and ultrafine powder in an appropriate ratio in a raw sol. This is because a quartz glass body having a high yield can be obtained with high yield.

以下実施例により詳しく説明する。This will be explained in detail below using examples.

〔実施例1〕 表   1 表1に示した原料を用いて、クラッド用ゾルに用いる酸
性の加水分解溶液、コア用ゾルに用いる酸性の加水分解
溶液、およびビット用ゾルに用いる酸性の加水分解溶液
を作った。これと平′行して、表1に示した原料を用い
て超微粉末シリカの合成を行ない、減圧法網後、希塩酸
を用いて中和を行ない(L14μmの平均粒径をもつ超
微粉末シリカを含む溶液を作り、これらを表1に従って
混合し、その後希アンモニア水と水を用いてPIl[値
と有効ガラス成分濃度を調整してクラッド用ゾル250
0d、コア用ゾル200sj、ビット用ゾル200−を
作った。このうちり2ツド用ゾルを第2図に示した円筒
容器に移し入れ、50分でゲル化させた。クラッド用ゾ
ルがゲル化して10分後、型の内圧を5気圧から一気圧
以下にすることによって型をゲルの内面から離し、その
ままゲルに触れることなく取りはずした。つづいて、生
じた中央の穴にコア用ゾルを移し入れ、その両側の穴に
ビット用ゾルを移し入れたところ、コア用ゾルもビット
用ゾルも約15分でゲル化して、クラッド部、コア部、
ビット部を内部に含む円筒状のウェットゲルか得られた
。得られたウェットゲルは、直径60 m 、長さ80
0閣であり、そのうちコア部に相当する直径は五〇8m
mであり、ビット部に相当する直径は1ZOmmであり
、それらの間隔はIA7Mであった。(第3図)このウ
ェットゲルを円筒容器のなかで密閉状態のままで30°
Cで2日間熟成し、その後(L4%の開口率をもった乾
燥容器に移し入れた。次にこの乾燥容器を60℃の乾燥
機に入れ、ウェットゲルを乾燥したところ14日間で、
室温に放置しても割れない安定なドライゲル(直径39
.6 trtm 、長さ528m+n)が得られた。次
にこのドライゲルを石英製管状炉に入れ、1000℃ま
で昇温した。その後700℃まで降温し、つづいて塩素
ガスを流しながら900°Cまで昇温し脱OH基処理を
行なった。その後、酸素ガスを流しながら950°Cま
で昇温し脱塩素処理を行ない、つづいてヘリウムカスの
みを流しながら1250℃まで昇温し閉孔化処理を行な
った。その後、試料を縦型管状炉に入れ、1350℃ま
で昇温し1350℃で1時間保持すると無孔化し、透明
ガラス体が得られた。このガラス体、すなわち偏波面保
存光ファイバ用母材の大きさは、直径278mm、長さ
371フであった。
[Example 1] Table 1 Using the raw materials shown in Table 1, an acidic hydrolyzed solution used for the sol for cladding, an acidic hydrolyzed solution used for the sol for the core, and an acidic hydrolyzed solution used for the sol for bits. made. In parallel, ultrafine powder silica was synthesized using the raw materials shown in Table 1, and after a vacuum method, neutralization was performed using dilute hydrochloric acid (ultrafine powder with an average particle size of L14 μm) was synthesized using dilute hydrochloric acid. Prepare a solution containing silica, mix these according to Table 1, and then use dilute ammonia water and water to adjust the PIl value and effective glass component concentration to create a cladding sol 250.
0d, core sol 200sj, and bit sol 200- were made. This sol for two pours was transferred to a cylindrical container shown in FIG. 2, and gelatinized in 50 minutes. Ten minutes after the cladding sol gelatinized, the mold was separated from the inner surface of the gel by reducing the internal pressure of the mold from 5 atm to 1 atm or less, and was removed without touching the gel. Next, the core sol was transferred to the center hole, and the bit sol was transferred to the holes on both sides.Both the core sol and the bit sol gelled in about 15 minutes, and the cladding part and the core Department,
A cylindrical wet gel containing the bit part inside was obtained. The obtained wet gel has a diameter of 60 m and a length of 80 m.
The diameter corresponding to the core part is 508m.
m, the diameter corresponding to the bit part was 1 ZOmm, and the interval between them was IA7M. (Figure 3) Hold this wet gel in a sealed cylindrical container at 30°
After aging at C for 2 days, it was transferred to a drying container with an opening ratio of 4% (L). Next, this drying container was placed in a dryer at 60°C to dry the wet gel.
Stable dry gel that does not crack even when left at room temperature (diameter 39
.. 6 trtm, length 528 m+n) was obtained. Next, this dry gel was placed in a quartz tubular furnace and heated to 1000°C. Thereafter, the temperature was lowered to 700°C, and then the temperature was raised to 900°C while flowing chlorine gas to perform OH group removal treatment. Thereafter, the temperature was raised to 950° C. while flowing oxygen gas to perform a dechlorination treatment, and then the temperature was raised to 1250° C. while flowing only helium sludge to perform a pore-closing treatment. Thereafter, the sample was placed in a vertical tube furnace, heated to 1,350°C, and held at 1,350°C for 1 hour to become non-porous, yielding a transparent glass body. The size of this glass body, that is, the base material for a polarization maintaining optical fiber, was 278 mm in diameter and 371 mm in length.

本実施例で得られた偏波面保存光7アイパ用母材に含ま
れるOH基を赤外域で吸収スペクトルを測定することに
よって定置したところ、47μmでの吸収ピークが全く
認められず、lppm以下であることが確認された。ま
た該母材を線引きして外径125μmの光ファイバとし
たとき、コア部の直径が約&3μ、であり、1゜311
 rn (7) 、−f光に対して単一モード導波力;
起こることが確認された。また直径25μmのビット部
(応力付与部)が、コア部の中心軸に対して軸対称の位
置に正しく配置され、しかも該ビット部の中心軸とコア
部の中心軸との間隔がどちらも2a5μmであり、本実
施例の偏波面保存光ファイバが位置精度良く製造されて
いるのが確認できた。
When the OH groups contained in the polarization-maintaining light 7 Eyeper base material obtained in this example were fixed by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 47 μm, and the absorption peak at 1 ppm or less was observed. It was confirmed that there is. Furthermore, when the base material is drawn into an optical fiber with an outer diameter of 125 μm, the diameter of the core portion is approximately &3 μm, which is 1°311
rn (7), -f Single mode waveguiding power for light;
confirmed to occur. In addition, the bit part (stress applying part) with a diameter of 25 μm is correctly arranged in an axially symmetrical position with respect to the central axis of the core part, and the distance between the central axis of the bit part and the central axis of the core part is both 2a5 μm. It was confirmed that the polarization maintaining optical fiber of this example was manufactured with good positional accuracy.

〔実施例2〕 実施例1で示したのと同様な方法でクラッド用ゾル、コ
ア用ゾル、およびビット用ゾルを作った。このうちクラ
ッド用ゾルを第4図に示した円筒容器に移し入れ、30
分でゲル化させた。クラッド用ゾルがゲル化して10分
後、型を引き抜いたが、型の表面がゲルを引きずってし
まいきれいな内面をもった孔が得られなかった。
[Example 2] A clad sol, a core sol, and a bit sol were made in the same manner as in Example 1. Of these, the sol for cladding was transferred to the cylindrical container shown in Figure 4, and
Gelified in minutes. Ten minutes after the cladding sol gelled, the mold was pulled out, but the surface of the mold dragged the gel, making it impossible to obtain holes with clean inner surfaces.

〔実施例3〕 実施例1で示したのと同じ組成のクラッド用ゾル(純シ
リカ、ノンドープ)、コア用ゾル(Ge5mo1%ドー
プ)、ビット用ゾ/’(B15mo1%ドープ)を、超
微粉末シリカを用いることなく、酸性の加水分解溶液の
みを原料として作った。
[Example 3] The sol for cladding (pure silica, non-doped), the sol for core (doped with Ge5mo1%), and the sol for bit (doped with B15mo1%) having the same composition as shown in Example 1 were mixed into ultrafine powder. It was made using only an acidic hydrolysis solution as a raw material, without using silica.

(有効ガラス成分濃度は実施例1で示したゾルより少し
低い)このゾルを用い、実施例1で示したのと同様な方
法で、実施例1と同じ大きさのウェットゲルを作った。
Using this sol (the effective glass component concentration is slightly lower than the sol shown in Example 1), a wet gel of the same size as in Example 1 was made in the same manner as shown in Example 1.

ところがこのウェットゲルを10本作り、種々の条件で
熟成し、乾燥させて、室温に放置しても割れないドライ
ゲルを作ろうとしたが、10本とも乾燥の途中で割れた
り、クラックが入りたすした。
However, when we tried to make 10 bottles of this wet gel, age it under various conditions, and dry it to make a dry gel that would not break even when left at room temperature, all 10 bottles broke or cracked during the drying process. did.

〔実施例4〕 実施例1で示したのと同じ組成のクラッド用ゾル(純シ
リカ、ノンドープ)、コア用ゾル(Ge5!+101%
ドープ)、ビット用ゾル(B 15 mob%ドープ)
を、超微粉末シリカとして、SiO2゜を原料とした気
相法で得られる超微粉末シリカを用いて作製したほかは
実施例1と同様な方法で光ファイバを製造したところ実
施例1と同様に寸法精度の良い高品質な偏波面保存光フ
ァイバが得られた。
[Example 4] Sol for cladding (pure silica, non-doped) with the same composition as shown in Example 1, sol for core (Ge5!+101%)
dope), bit sol (B 15 mob% dope)
An optical fiber was manufactured in the same manner as in Example 1, except that ultrafine powder silica obtained by a vapor phase method using SiO2° as a raw material was used as the ultrafine powder silica. A high-quality polarization-maintaining optical fiber with good dimensional accuracy was obtained.

〔実施例5〕 実施例1で示したのと同様な方法で、クラッド用ゾル、
コア用ゾル、およびビット用ゾルを作り、実施例1と類
似の方法を用いて第5図に示したウェットゲルを作った
。(直径60M、長さ800關)このウェットゲルを実
施例1と同様な方法で乾燥、焼結したところ第5図と相
似の透明ガラス、すなわち偏波面保存光ファイバ用母材
が得られた。(直径2 z8 rta w長さ571 
叫) CDの母材。
[Example 5] In the same manner as shown in Example 1, a sol for cladding,
A core sol and a bit sol were prepared, and a wet gel shown in FIG. 5 was prepared using a method similar to that of Example 1. (Diameter: 60 m, length: 800 mm) This wet gel was dried and sintered in the same manner as in Example 1 to obtain a transparent glass similar to that shown in FIG. 5, that is, a base material for a polarization-maintaining optical fiber. (Diameter 2 z8 rta w length 571
(Scream) The base material of CD.

を外径44叫、内径29rtmの石英ジャケット管に入
れ線引きしたところ実施例1と同様に寸法精度の良い高
品質な偏波面保存光ファイバが得られた〔実施例6〕 実施例1で示したのと同様な方法で、クラッド用ゾル、
コア用ゾル、およびビット用ゾルを作り、実施例1と類
似の方法を用いて第6図に示したウェットゲルを作った
。(直径60 fMn、長さ800 rm )このウェ
ットゲルを実施例1と同様な方法で乾燥、焼結したとこ
ろ第6図と相似の透明ガラス、すなわち偏波面保存光フ
ァイバ用母材が得られた。(直径278mm、長さ37
1 m )この母材を外径44閣、内径29rrrmの
石英ジャケット管に入れ線引きしたところ実施例1と同
様に寸法精度の良い高品質な偏波面保存光ファイバが得
られた〔実施例7〕 実施例1で示したのと同様な方法で、クラッド用ゾル、
コア用ゾル、およびビット用ゾルを作り、実施例1と類
似な方法を用いて第7図(A)に示したウェットゲルを
作った。つづいてこのウェットゲルのビット用孔にビッ
ト用ゾルを移し入れゲル化させ、その後中心のコアーク
ラッド用孔に別に作っておいたクラッド用ゾルを流し込
んで後に円筒容器に7タをして、回転装置に取り付け1
200rpmで回転させながらゲル化させ第7図(B)
に示したウェットゲルを作った。最後にこのウェットゲ
ルのコア用孔にコア用ゾルを移し入れゲル化させ円筒状
のクラッド−コアービットが一体となったウェットゲル
を作った。(直径60隠、長さa o ttatt )
このウェットゲルを実施例1と同様な方法で乾燥、焼結
したところ第3図と相似の透明ガラス、すなわち偏波面
保存光ファイバ用母材が得られた。(直径27.8F1
1311.長さ371閣)この母材を線引きしたところ
実施例1と同様に寸法精度の良い高品質な偏波面保存光
ファイバが得られた。
When the fiber was placed in a quartz jacketed tube with an outer diameter of 44 mm and an inner diameter of 29 rpm and drawn, a high-quality polarization-maintaining optical fiber with good dimensional accuracy was obtained as in Example 1. [Example 6] As shown in Example 1. Sol for cladding,
A core sol and a bit sol were prepared, and a wet gel shown in FIG. 6 was prepared using a method similar to Example 1. (Diameter 60 fMn, length 800 rm) When this wet gel was dried and sintered in the same manner as in Example 1, a transparent glass similar to that shown in Fig. 6, that is, a base material for a polarization preserving optical fiber was obtained. . (Diameter 278mm, length 37mm
1 m) When this base material was placed in a quartz jacketed tube with an outer diameter of 44mm and an inner diameter of 29rrrm and drawn, a high quality polarization maintaining optical fiber with good dimensional accuracy was obtained as in Example 1 [Example 7] In the same manner as shown in Example 1, a sol for cladding,
A core sol and a bit sol were prepared, and a wet gel shown in FIG. 7(A) was prepared using a method similar to Example 1. Next, transfer the bit sol into the bit hole of this wet gel and let it gel, then pour the separately prepared clad sol into the center core clad hole, then put 7 taps into the cylindrical container and rotate it. Attach to the device 1
Gelify while rotating at 200 rpm. Figure 7 (B)
We made the wet gel shown in . Finally, the core sol was transferred into the core hole of this wet gel and gelled to produce a wet gel in which the cylindrical cladding and core bit were integrated. (Diameter 60 mm, length a o ttat)
When this wet gel was dried and sintered in the same manner as in Example 1, a transparent glass similar to that shown in FIG. 3, that is, a base material for a polarization-maintaining optical fiber, was obtained. (Diameter 27.8F1
1311. When this base material was drawn, a high-quality polarization-maintaining optical fiber with good dimensional accuracy was obtained as in Example 1.

〔実施例8〕 実施例1で示したのと同じ組成のクラッド用ゾル(純シ
リカ、ノンドープ)、コア用ゾル(G。
[Example 8] Cladding sol (pure silica, non-doped) and core sol (G.

5rn01%ドープ)、ビット用ゾル(B15m。5rn01% doped), bit sol (B15m.

1%ドープ)を、エチルシリケートの加水分解溶液と微
粉末シリカ、エチルシリケートの加水分解溶液と酸化ゲ
ルマニウム微粉末が添加された微粉末シリカ、およびエ
チルシリケートの加水分解溶液と酸化ホウ素微粉末が添
加された微粉末シリカを原料として作った他は実施例5
と同様な方法で光ファイバを製造したところ実施例5と
同様に寸法精度の良い高品質な偏波面保存光ファイバか
得られた。
1% dope), a hydrolyzed solution of ethyl silicate and finely powdered silica, a hydrolyzed solution of ethyl silicate and finely powdered silica to which germanium oxide fine powder was added, and a hydrolyzed solution of ethyl silicate and fine boron oxide powder added. Example 5 except that the finely powdered silica was used as the raw material.
When an optical fiber was manufactured in the same manner as in Example 5, a high-quality polarization-maintaining optical fiber with good dimensional accuracy was obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたよう、に本発明によれば、ゾル−ゲル法を用
いて光フアイバ用母材(プリフォーム)を作り、その光
フアイバ用母材を線引きすることによって、従来のジャ
ケット法で得られるよりも寸法精度の良い高品質なサイ
ドビットを有する応力付与型偏波面保存光ファイバを、
従来のジャケット法よりも安価に製造できる。したがっ
てコヒーレント光伝送方式や光フアイバセンサ等の応用
分野に偏波面保存光ファイバを安価に大量に供給するこ
とが可能になり、この分野における本発明の寄与は極め
て大きいと確信する。
As described above, according to the present invention, an optical fiber preform is produced using the sol-gel method, and by drawing the optical fiber preform, it can be obtained using the conventional jacket method. A stress-applied polarization-maintaining optical fiber with high-quality side bits with better dimensional accuracy than
It can be manufactured at a lower cost than the conventional jacket method. Therefore, it becomes possible to supply large quantities of polarization maintaining optical fibers at low cost to applied fields such as coherent optical transmission systems and optical fiber sensors, and we are confident that the present invention will make an extremely large contribution to this field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサイドビットを有する応力付与型偏波面保存光
ファイバの断面図を示したもので(A)と(B)はその
一種である。 1・・・・・・コア部 2・・・・・・ビット部 5・・・・・・クラッド部 第2図は本発明、実施例1で用いた円筒容器を説明する
図である。(A)はクラッド用ゾルをゲル化させている
途中の断面図であり、(B)は伸縮可能な構造をもった
型の断面図である。 4・・・・・・円筒容器 5・・・・・・フタ ロ・・・・・・コア孔のための型 7・・・・・・ビット孔のための型 8・・・・・・圧力11整器 9・・・・・・穴 10・・・クラッド用ゾル 11・・・シリコンコートした硬質ゴム製の型12・・
・伸縮自在のチューブ 15・・・気 体 第3図は本発明、実施例1で得られたウェットゲルの断
面図である。 14・・・ウェットゲルの断面図 15・・・コア部になる部分 16・・・ビット部になる部分 17・・・り2ラド部になる部分 第4図は本発明、実施例2で用いた円筒容器を説明する
図である。(A)はクラッド用ゾルをゲル化させている
途中の断面図であり、(B)はここで用いた型を説明す
る図である。 18・・・コア孔のための型 19・・・ビット孔のための型 20・・・テフロン製の型 第5図は本発明、実施例5で得られたウェットゲルの断
面図である。 21・・・ウェットゲルの断面図 22・・・コア部になる部分 23・・・ビット部になる部分 24・・・クラッド部になる部分 第6図は本発明、実施例6で得られたウェットゲルの断
面図である。 25・・・ウェットゲルの断面図 26・・・コア部になる部分 27・・・ビット部になる部分 2日・・・クラッド部になる部分 第7図は本発明、実施、例7での製造工程を説明する図
で、(A)は型をとりはずした直後のウェットゲルの断
面[(B)は(A)のビット用孔にビット用ゾルを移し
入れゲル化させ、その後中心の孔にクラッド用ゾルを流
し込んで後に円筒容器にフタをして、回転装置に取り付
け回転させながらゲル化させて得られたウェットゲルの
断面図である。 29・・・ウェットゲルの断面図 30・・・コアークラッド孔 Sl・・・ビット孔 32・・・クラッド部になる部分 53・・・ウェットゲルの断面図 34・・・コア孔 35・・・クラッド部になる部分 36・・・ビット部になる部分 以  上
FIG. 1 shows a cross-sectional view of a stress-applied polarization-maintaining optical fiber having side bits, of which (A) and (B) are one type. 1... Core part 2... Bit part 5... Clad part FIG. 2 is a diagram for explaining the cylindrical container used in Example 1 of the present invention. (A) is a cross-sectional view of the cladding sol during gelation, and (B) is a cross-sectional view of a mold having an expandable structure. 4... Cylindrical container 5... Phthalo... Mold 7 for core hole... Mold 8 for bit hole... Pressure 11 Adjuster 9 ... Hole 10 ... Sol for cladding 11 ... Silicon-coated hard rubber mold 12 ...
- Expandable tube 15...gas FIG. 3 is a cross-sectional view of the wet gel obtained in Example 1 of the present invention. 14... Cross-sectional view of the wet gel 15... Part that will become the core part 16... Part that will become the bit part 17... Part that will become the rim 2 Rad part Figure 4 is used in the present invention, Example 2 It is a figure explaining the cylindrical container which was used. (A) is a cross-sectional view during gelation of the cladding sol, and (B) is a diagram illustrating the mold used here. 18 Mold for core hole 19 Mold for bit hole 20 Mold made of Teflon FIG. 5 is a sectional view of the wet gel obtained in Example 5 of the present invention. 21... Cross-sectional view of wet gel 22... Part that will become the core part 23... Part that will become the bit part 24... Part that will become the cladding part Figure 6 was obtained in Example 6 of the present invention. FIG. 3 is a cross-sectional view of a wet gel. 25... Cross-sectional view of wet gel 26... Part that will become the core part 27... Part that will become the bit part 2... Part that will become the cladding part Figure 7 shows the present invention, implementation, and example 7. This figure explains the manufacturing process. (A) is a cross section of the wet gel immediately after removing the mold; (B) is a cross-section of the wet gel immediately after removing the mold; (B) is a cross-section of the wet gel after the bit sol is transferred into the bit hole in (A) and gelled; FIG. 2 is a cross-sectional view of a wet gel obtained by pouring a sol for cladding into a cylindrical container, then capping the cylindrical container, attaching the container to a rotating device, and gelling the container while rotating the container. 29...Cross-sectional view of wet gel 30...Core clad hole Sl...Bit hole 32...Clad part 53...Cross-sectional view of wet gel 34...Core hole 35... Part 36 that will become the cladding part... Above the part that will become the bit part

Claims (5)

【特許請求の範囲】[Claims] (1)ゾル−ゲル法を用いて、光ファイバとしたときに
クラッド部を構成する部分と、光ファイバとしたときに
コア部を構成する部分と、光ファイバとしたときに応力
付与部を構成する部分を内部に含むウェットゲルを作り
、該ウェットゲルを乾燥、焼結して偏波面保存光ファイ
バ用母材を作る工程を含むことを特徴とする偏波面保存
光ファイバの製造方法。
(1) Using the sol-gel method, a part that constitutes the cladding part when made into an optical fiber, a part which constitutes the core part when made into an optical fiber, and a stress applying part when made into an optical fiber are formed. 1. A method for manufacturing a polarization-maintaining optical fiber, comprising the steps of: preparing a wet gel containing a portion therein, and drying and sintering the wet gel to produce a base material for a polarization-maintaining optical fiber.
(2)特許請求の範囲第1項記載の製造方法において、
光ファイバとしたときクラッド部を構成する、アルキル
シリケート加水分解溶液を主原料とするゾル溶液(以下
クラッド用ゾル)を、脱着可能の型を必要な位置に固定
した円筒容器に流し込んでゲル化させ、前記型を取りは
ずした後、生じた複数個の中空部あるいはくぼみに光フ
ァイバとしたときコア部を構成する、アルキルシリケー
ト加水分解溶液を主原料とするゾル溶液(以下コア用ゾ
ル)と、光ファイバとしたとき応力付与部を構成する、
アルキルシリケート加水分解溶液を主原料とするゾル溶
液(以下ビット用ゾル)を流し込んでゲル化させ、前記
ウェットゲルを作ることを特徴とする特許請求の範囲1
項記載の偏波面保存光ファイバの製造方法。
(2) In the manufacturing method according to claim 1,
A sol solution (hereinafter referred to as cladding sol) whose main raw material is an alkyl silicate hydrolyzed solution, which will constitute the cladding part when it is made into an optical fiber, is poured into a cylindrical container with a removable mold fixed at the required position and gelled. After removing the mold, a sol solution (hereinafter referred to as core sol) containing an alkyl silicate hydrolyzed solution as the main raw material and an optical When made into a fiber, it constitutes a stress applying part,
Claim 1, characterized in that the wet gel is made by pouring a sol solution (hereinafter referred to as bit sol) containing an alkyl silicate hydrolyzed solution as a main raw material and gelling it.
A method for manufacturing a polarization-maintaining optical fiber as described in .
(3)特許請求の範囲第1項記載の製造方法において、
光ファイバとしたときクラッド部を構成する、アルキル
シリケート加水分解溶液を主原料とするゾル溶液(以下
クラッド用ゾル)を、脱着可能の型を必要な位置に固定
した円筒容器に流し込んでゲル化させ、前記型を取りは
ずした後、生じた複数個の中空部あるいはくぼみのうち
、ビット用孔に、光ファイバとしたときビット部を構成
する、アルキルシリケート加水分解溶液を主原料とする
ゾル溶液(以下ビット用ゾル)を流し込んでゲル化させ
、その後中心のコアークラッド用孔にクラッド用ゾルを
流し込んで後に円筒容器にフタをして、回転装置に取り
付け望ましくは200rpm以上の回転数で回転させな
がらゲル化させ、生じたコア用孔にコア用ゾルを移し入
れゲル化させ、前記ウェットゲルを作ることを特徴とす
る特許請求の範囲第1項記載の偏波面保存光ファイバの
製造方法。
(3) In the manufacturing method according to claim 1,
A sol solution (hereinafter referred to as cladding sol) whose main raw material is an alkyl silicate hydrolyzed solution, which will constitute the cladding part when it is made into an optical fiber, is poured into a cylindrical container with a removable mold fixed at the required position and gelled. , After removing the mold, a sol solution (hereinafter referred to as a sol solution containing an alkyl silicate hydrolyzed solution as the main raw material) which will constitute the bit part when an optical fiber is made into the bit hole among the plurality of hollow parts or depressions that are formed is inserted into the bit hole. After that, pour the sol for the cladding into the center hole for the core cladding, put a lid on the cylindrical container, attach it to a rotating device, and gel it while rotating at a rotation speed of preferably 200 rpm or more. 2. The method for manufacturing a polarization-maintaining optical fiber according to claim 1, characterized in that the wet gel is produced by transferring the core sol into the resulting core hole and gelling it.
(4)特許請求の範囲第2項および第3項記載の製造方
法において、前記型として少なくとも伸縮が可能な構造
をもった型を用いたことを特徴とする特許請求の範囲第
2項および第3項記載の偏波面保存光ファイバの製造方
法。
(4) In the manufacturing method according to claims 2 and 3, a mold having at least an expandable structure is used as the mold. 3. A method for manufacturing a polarization-maintaining optical fiber according to item 3.
(5)前記クラッド用ゾル、前記コア用ゾル、および前
記ビット用ゾルには、少なくともアルキルシリケートを
原料に含む加水分解溶液と主として超微粉末シリカから
なる超微粉末が含まれていることを特徴とする特許請求
の範囲第2項〜第4項記載の偏波面保存光ファイバの製
造方法。
(5) The cladding sol, the core sol, and the bit sol contain at least a hydrolyzed solution containing an alkyl silicate as a raw material and an ultrafine powder mainly consisting of ultrafine silica powder. A method for manufacturing a polarization-maintaining optical fiber according to claims 2 to 4.
JP60000676A 1985-01-07 1985-01-07 Preparation of single polarization optical fiber Pending JPS61163133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000676A JPS61163133A (en) 1985-01-07 1985-01-07 Preparation of single polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000676A JPS61163133A (en) 1985-01-07 1985-01-07 Preparation of single polarization optical fiber

Publications (1)

Publication Number Publication Date
JPS61163133A true JPS61163133A (en) 1986-07-23

Family

ID=11480347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000676A Pending JPS61163133A (en) 1985-01-07 1985-01-07 Preparation of single polarization optical fiber

Country Status (1)

Country Link
JP (1) JPS61163133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652184A1 (en) * 1993-11-08 1995-05-10 Alcatel Cable Interface Process of making a preform for multi-ferrules of silica glass and preform so obtained
US8202010B2 (en) 2002-03-15 2012-06-19 Kohoku Kogyo Co., Ltd. Connector component for optical fiber, manufacturing method thereof and optical member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652184A1 (en) * 1993-11-08 1995-05-10 Alcatel Cable Interface Process of making a preform for multi-ferrules of silica glass and preform so obtained
FR2712278A1 (en) * 1993-11-08 1995-05-19 Alcatel Cable Interface Process for producing a blank for a multiférule made of silica glass, and blank thus obtained.
US8202010B2 (en) 2002-03-15 2012-06-19 Kohoku Kogyo Co., Ltd. Connector component for optical fiber, manufacturing method thereof and optical member

Similar Documents

Publication Publication Date Title
RU2278079C2 (en) Sol-gel method for preparation of large-size dry gels and modified glasses
JPS61163133A (en) Preparation of single polarization optical fiber
EP1175377B1 (en) Sol-gel process for producing a dried gel adhering to an insert and products obtainable thereby
JPS6096533A (en) Preparation of quartz glass tube
JPS62288130A (en) Production of preform for quartz based optical fiber
JPS61232239A (en) Production of porous glass
KR100313276B1 (en) Heat-treatment apparatus for silica glass forming gel
JPS6296339A (en) Production of optical fiber preform
JPS62275036A (en) Production of base material for optical fiber
JPS62119132A (en) Production of base material for optical fiber
JPS62246835A (en) Production of base material for quartz glass optical fiber
KR20000060449A (en) silica glass composition and manufacturing method of silica glass using the same
JPS6191023A (en) Production of tubular quartz glass
JPS63190728A (en) Production of quartz glass pipe
JPS6369729A (en) Production of base material for optical fiber
JPS62100425A (en) Production of quartz glass
JPS63100032A (en) Glass tube and its production
JPS62230640A (en) Production of optical fiber preform
JPS6296340A (en) Production of optical fiber preform
JPS6036342A (en) Preparation of parent material for optical fiber
JPS62119130A (en) Production of sensing loop of optical gyro
JPS6191020A (en) Production of quartz glass tube
JPS6369724A (en) Production of glass
JPS62278138A (en) Production of glass tube
JPS6246927A (en) Production of cylindrical or columnar glass