JPS62100425A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS62100425A
JPS62100425A JP23885385A JP23885385A JPS62100425A JP S62100425 A JPS62100425 A JP S62100425A JP 23885385 A JP23885385 A JP 23885385A JP 23885385 A JP23885385 A JP 23885385A JP S62100425 A JPS62100425 A JP S62100425A
Authority
JP
Japan
Prior art keywords
sol
solution
gel
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23885385A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Sadao Kanbe
貞男 神戸
Masatake Matsuo
誠剛 松尾
Haruo Nagafune
長船 晴夫
Masanobu Motoki
元木 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23885385A priority Critical patent/JPS62100425A/en
Publication of JPS62100425A publication Critical patent/JPS62100425A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain the titled high-quality quartz glass in good yield by using a metallic alkoxide as the raw material, carrying out preparation of a sol and gelation at a specified temp., and synthesizing the glass at a low temp. by a sol-gel method. CONSTITUTION:In the low-temp. synthesis of quartz glass using a metallic alkoxide as the main raw material by the sol-gel method, the sol is prepared at <=15 deg.C and gelation is carried out at >=20 deg.C. Since the sintering temp. can be set in a high-temp. zone by using the org. gel obtained by the above- mentioned method and having a low bulk density, dehydroxylation and removal of org. matter can be sufficiently carried out before vitrification. Consequently, by virtue of the important facts cited above, the properties necessary for the base material of an optical fiber such as the property for preventing frothing when wiredrawing is carried out at a high temp. close to 2,000 deg.C and a high light transmissivity can be satisfied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾル−ゲル法による石英系ガラスの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass by a sol-gel method.

〔発明の概要〕[Summary of the invention]

本発明は、金属アルコキシドを出発原料としたゾル−ゲ
ル法による石英系ガラスの製造方法において、低温域で
ゾルを調整した後、高温域でゲル化を行わせることによ
り、高品質な石英系ガラス1に歩留り良く製造できるよ
うにしたものである。
The present invention is a method for producing quartz glass using a sol-gel method using a metal alkoxide as a starting material. 1, it can be manufactured with high yield.

〔従来技術〕[Prior art]

通常ゾル−ゲル法による石英系ガラスの製造においては
、金属アルコキシドの加水分解過程で生じるゾル状態と
、加水分解過程に続いて起こる縮重合過程で生ずるゲル
状態の2つの状態を経ることにより、液相の金属アルコ
キシドから同相の無定形シリカゲルが調製される。その
後、ゲル状態の無定形シリカは乾燥、焼結過程1経てシ
ルカガラスとなるが、得られるシリカガラスの品質およ
びその歩留りは、ゾル状態からゲル状態への転移過程に
おいて著しい影響を受ける。
Normally, in the production of silica-based glass using the sol-gel method, the liquid undergoes two states: a sol state that occurs during the hydrolysis process of metal alkoxides, and a gel state that occurs during the condensation polymerization process that follows the hydrolysis process. An in-phase amorphous silica gel is prepared from a phase metal alkoxide. Thereafter, the amorphous silica in the gel state undergoes a drying and sintering process to become silica glass, but the quality and yield of the obtained silica glass are significantly affected by the transition process from the sol state to the gel state.

従来のゾル−ゲル法による石英系ガラスの製造時には、
当社出願特許(特開昭58−237577)におるよう
に、主にゾル溶液の酸性塩又は、塩基性塩の含有量金、
つまり、ゾル溶液中の水水素イオン濃度(pH値)を変
えることによって、ゲル化を制御していた。
When manufacturing quartz glass using the conventional sol-gel method,
As stated in our patent application (Japanese Unexamined Patent Publication No. 58-237577), the main content of acid salts or basic salts in the sol solution is gold,
That is, gelation was controlled by changing the hydrogen ion concentration (pH value) in the sol solution.

〔発明が解決しようとする問題点及び目的〕乾燥したゲ
ル体は焼結プロセスを経て透明シリカガラスとなるが、
この焼結プロセス中には脱水過程、脱有機物過程、脱水
酸基過程等の工程が含まれる。これらの処理過程は高温
焼結時の発泡を防ぐために必要不可欠なものであり、ゲ
ル体のかさ密度がある値よりも小さい場合にのみ有効で
ある。
[Problems and objectives to be solved by the invention] The dried gel body becomes transparent silica glass through a sintering process.
This sintering process includes steps such as dehydration, organic matter removal, and hydroxyl dehydration. These treatment steps are essential to prevent foaming during high-temperature sintering, and are effective only when the bulk density of the gel body is less than a certain value.

したがって、ゲル体の焼結プロセスから考えると、高品
質な石英系ガラスを得るためにはその前駆体であるゲル
体のかさ密度を可能な限シ小さくする必要がある。ゲル
体のかさ密度はゲル化時の水素イオン濃度に依存する。
Therefore, considering the sintering process of the gel body, in order to obtain high-quality silica-based glass, it is necessary to reduce the bulk density of the gel body, which is a precursor thereof, as much as possible. The bulk density of the gel body depends on the hydrogen ion concentration at the time of gelation.

具体的には、水素イオン濃度が大きい状態でゲル化させ
たほど得られるゲル体のかさ密度は小さく、反対に水素
イオン濃度が小さい場合にはかさ密度は大きくなる。よ
って、高品質な石英系ガラス金得るためには、ゲル化時
の水素イオン濃度を可能な限り高くすることが必要条件
の1つと言える。さらに、かさ密度の低いゲルは乾燥時
に生じる体積変化(収縮過程)に対して高耐性を有する
Specifically, the larger the hydrogen ion concentration is, the lower the bulk density of the resulting gel is, and conversely, the lower the hydrogen ion concentration is, the higher the bulk density is. Therefore, in order to obtain high-quality silica-based glass gold, one of the necessary conditions is to increase the hydrogen ion concentration during gelation as high as possible. Furthermore, gels with low bulk density are highly resistant to volume changes (shrinkage process) that occur during drying.

ゲル体はゲル体内での縮重合反応の進行、およびゲル体
表面からの浮遊水の蒸発に伴う乾燥過程において著しい
体積変化を生ずる。この時、ゲル体内における反応速度
および乾燥速度の局所的な差によって内部応力が生じる
が、ゲル体のかさ密度が低いほど内部応力や残留応力を
緩和しやすい。つまり、かさ密度の低いゲル体はど乾燥
時の歩留りが高いと言え、したがりて、この点からもゲ
ル体のかさ密度を低く抑えることは有効である。しかし
、従来法では前述したとおり水素イオン濃度でグル化を
制御しているため、むやみに水素イオン濃度を高くでき
ないという問題点があった。なぜなら、水素イオン濃度
を大きくすればゲル体のかさ密度は下げられるが、一方
でゲル化時間が極端に短くなり、任意の形状に仕込むこ
とが非常に困難な本のとなるからである。
The gel body undergoes a significant volume change during the drying process accompanying the progress of the polycondensation reaction within the gel body and the evaporation of floating water from the surface of the gel body. At this time, internal stress is generated due to local differences in reaction rate and drying rate within the gel body, but the lower the bulk density of the gel body, the easier it is to relieve internal stress and residual stress. In other words, it can be said that a gel body with a low bulk density has a high yield during drying, and therefore, from this point of view as well, it is effective to keep the bulk density of the gel body low. However, in the conventional method, since gluing is controlled by the hydrogen ion concentration as described above, there was a problem in that the hydrogen ion concentration could not be increased unnecessarily. This is because increasing the hydrogen ion concentration lowers the bulk density of the gel, but on the other hand, the gelation time becomes extremely short, making it extremely difficult to form the gel into any desired shape.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところはゾル溶液調整時の温度とゲル化時
の温度を変え、温度変化によりゲル化速度を制御し、高
品質なガラス体を歩留υ良く得る次めの前提となるかさ
密度の低いゲル体を得ることにある。
The present invention aims to solve these problems, and its purpose is to change the temperature during sol solution preparation and the temperature during gelation, control the gelation rate through temperature changes, and produce high-quality glass. The next prerequisite for obtaining a gel body with a high yield υ is to obtain a gel body with a low bulk density.

〔問題を解決するための手段〕[Means to solve the problem]

そこで本発明の金属アルコキシドを主原料とするゾル−
ゲル法による石英系ガラスの低温合成法においては、1
5℃以下の比較的低い温度域でゾル溶液を調製し、その
後20℃以上の、ゾル溶液調整時に比べて高温である温
度域に系全体の温度を上げ、ゲル化を行わせること全特
徴とする。
Therefore, the sol based on the metal alkoxide of the present invention
In the low-temperature synthesis method of silica glass using the gel method, 1
A sol solution is prepared in a relatively low temperature range of 5°C or less, and then the temperature of the entire system is raised to a temperature range of 20°C or higher, which is higher than when preparing the sol solution, to cause gelation. do.

〈実施例1〉 (1)  シリカ微粒子の調整 精製した市販のエチルシリケート〔商品名;コルコート
28.:ffル:l−ト]1c、L) 11244 g
に無水エチルアルコール(99,5L関東化学に、に、
)189&7g、アンモニア水(29%、関東化学に、
に、 ) 65 mlと水389.0g’i混合し約3
〜4時間攪拌した後、その溶液を冷所に一昼夜以上静置
して生成した無定形シリカ微粒子を安定化した。
<Example 1> (1) Preparation of silica fine particles Purified commercially available ethyl silicate [trade name: Colcoat 28. :ffle:l-t]1c,L) 11244 g
Anhydrous ethyl alcohol (99.5L Kanto Kagaku,
) 189&7g, ammonia water (29%, Kanto Kagaku,
Mix 65 ml of ) and 389.0 g'i of water for approx.
After stirring for ~4 hours, the solution was allowed to stand in a cool place for over a day and night to stabilize the amorphous silica particles produced.

その後、溶液中の無定形シリカ微粒子の濃度金o4g/
rnl程度に減圧濃縮するとともに急激な乾燥の防止及
びゲル体の高強度化を目的として、濃縮液中のアルコー
ル成分を水と置換した。以上の操作により平均粒径が0
.18μmであり且つ分散性の良いシリカ微粒子溶液を
合成した。
After that, the concentration of amorphous silica fine particles in the solution was
The alcohol component in the concentrate was replaced with water for the purpose of vacuum concentration to approximately rnl and to prevent rapid drying and to increase the strength of the gel body. Through the above operations, the average particle size is reduced to 0.
.. A solution of silica fine particles having a diameter of 18 μm and good dispersibility was synthesized.

(2)加水分解溶液の調整 精製した市販のエチルシリケート(商品名;コルコート
28.コルコートに、x、) 749.6 gに0.0
2規定の塩酸水溶液51 &8 gi加え、氷浴中で約
2時間激しく攪拌することにより、無色透明且つ均質な
加水分解溶液を得た。
(2) Preparation of hydrolysis solution Purified commercially available ethyl silicate (trade name: Colcoat 28. Colcoat ni, x,) 0.0 per 749.6 g
A colorless, transparent and homogeneous hydrolysis solution was obtained by adding 51 & 8 gi of a 2N aqueous hydrochloric acid solution and vigorously stirring in an ice bath for about 2 hours.

(3)  ゾル溶液の調製とゲル化 液温か10℃以下であるように予め冷却しておいたシリ
カ微粒子溶液中の水素イオン濃度(以下pH値と呼ぶ)
t−12規定の塩酸水溶液で40になるように調整した
後、やはり予め液温を10℃以下に冷却しておいた加水
分解溶液と混合し、攪拌して均質なゾル溶液を調製した
(3) Preparation of sol solution and gelation Hydrogen ion concentration in the silica fine particle solution (hereinafter referred to as pH value) that has been cooled in advance so that the liquid temperature is 10°C or less
After adjusting the concentration to 40 with a t-12 normal aqueous hydrochloric acid solution, the solution was mixed with a hydrolysis solution whose temperature had also been previously cooled to 10° C. or below, and stirred to prepare a homogeneous sol solution.

このゾル溶液のpH値i 0.2規定のアンモニア水溶
液を用いて5.3に再調整した後、ポリプロピレン製の
容器(100m+11φx50m)に100 mlずつ
流し込み密閉状態とした。この時の溶液温度は、約7.
0℃でめった。その後、このポリプロピレン製容器を種
々の温度に保たれている恒温槽に入れゲル化させた。ゲ
ル化した各試料はゲル化後30℃の温度で約2日間保存
した後、容器のふたに開口率が04%になるように多数
個の穴を開け、55℃に保たれた恒温乾燥機に入れ、約
17日間で空気中に放置しても割れない乾燥ゲルを得た
The pH value of this sol solution was readjusted to 5.3 using a 0.2 normal ammonia aqueous solution, and then poured into a polypropylene container (100 m + 11φ x 50 m) in 100 ml portions and sealed. The solution temperature at this time was approximately 7.
It died at 0℃. Thereafter, this polypropylene container was placed in a constant temperature bath maintained at various temperatures to cause gelation. After each gelled sample was stored at a temperature of 30°C for about 2 days after gelling, a number of holes were made in the lid of the container so that the open area ratio was 0.4%, and the sample was placed in a constant temperature dryer kept at 55°C. After about 17 days, a dry gel was obtained that did not crack even when left in the air.

ゲル化時の雰囲気温度とゲル化時間および得られた乾燥
ゲル体のかさ密度を表1に示す。高温状態でゲル化させ
たほど乾燥ゲル体のかさ密度が低くなっている。かさ密
度の低い乾燥ゲル体t1ど焼結時に無孔化する温度が高
いため、ゲル体中の有機物、水酸基等の除去が十分に行
える。したがつて、低温状態で原料となるゾル溶液をw
iMし高温状態でゲル化させるという本発明を利用すれ
ば、高品質な焼結ガラス体金得るために非常に有効とな
る低かさ密度のゲル体を容易に得られることがわかる0 得られた4種類の乾燥ゲル体を石英製管状焼結炉中で焼
結し、焼結温廖と焼結体のかさ密度変化を調べたところ
、やはυ低かさ密度の乾燥ゲル体はど高温まで閉孔化し
ないことが確認された。
Table 1 shows the atmospheric temperature and gelation time during gelation, and the bulk density of the obtained dry gel body. The higher the gelling temperature, the lower the bulk density of the dried gel. Since the dry gel body t1 having a low bulk density has a high temperature at which it becomes non-porous during sintering, organic matter, hydroxyl groups, etc. in the gel body can be sufficiently removed. Therefore, the sol solution that is the raw material at low temperature is
It can be seen that by using the present invention of iM and gelation at high temperature, it is possible to easily obtain a gel body with a low bulk density, which is very effective for obtaining a high quality sintered glass body. Four types of dry gel bodies were sintered in a quartz tubular sintering furnace, and changes in the sintering temperature and bulk density of the sintered bodies were investigated. It was confirmed that the pores did not become closed.

1        54         34   
    0.7782        40     
    42       0.7873      
 25         55      0.804
4     12      97    0.825
〈実施例2〉 体積が比較的大きいバルク状のゲル体ではバルク表面と
内部間の乾燥速度の差異により生ずる応力緩和が難かし
く乾燥時に割れが発生しやすい。
1 54 34
0.7782 40
42 0.7873
25 55 0.804
4 12 97 0.825
<Example 2> In a bulk gel body with a relatively large volume, it is difficult to relieve stress caused by the difference in drying rate between the bulk surface and the inside, and cracks are likely to occur during drying.

したがりて、均一な乾燥が難しいバルク状のゲル体を乾
燥速度が速くなる開口率の大きい乾燥容器中で乾燥を行
い、得られた乾燥ゲル体の歩留りを比較することにより
て、ゲル体の強度および乾燥時の応力緩和能力を容易に
知ることができる。
Therefore, by drying bulk gel bodies that are difficult to dry uniformly in a drying container with a large opening ratio that increases the drying speed, and comparing the yield of the resulting dried gel bodies, Strength and stress relaxation ability during drying can be easily determined.

実施例1と同様の組成および方法によりシリカ微粒子溶
液と加水分解溶液を調製した。さらに、やはシ実施例1
と同様の操作により液温か7℃であシ、シリカ微粒子溶
液と加水分解溶液が均一に混合されたゾル溶液を調製し
次。このゾル溶液のpH値ヲ0,2規定のアンモニア水
溶液を用いて5,5に調整した後、テフロン製の円筒容
器s o o wxl×7011IIφにsO(+o+
Jx50mφの穴が開いたもの)に所定量1流し込み、
50℃に保たれた恒温槽に移し入れて約20分でゲル化
させた。一方、比較のために同様のゾル溶液を同じ円筒
容器を用いて、10℃に保たれた恒温槽内で約100分
でゲル化させた。
A silica fine particle solution and a hydrolysis solution were prepared using the same composition and method as in Example 1. Furthermore, Yahashi Example 1
A sol solution in which the silica fine particle solution and the hydrolyzed solution were uniformly mixed was prepared by the same procedure as above at a liquid temperature of 7°C. After adjusting the pH value of this sol solution to 5.5 using a 0.2 normal ammonia aqueous solution, it was placed in a Teflon cylindrical container s o o wxl x 7011 IIφ.
Pour the specified amount 1 into a hole (Jx50mφ hole),
The mixture was transferred to a constant temperature bath kept at 50°C and gelatinized in about 20 minutes. On the other hand, for comparison, a similar sol solution was gelled in about 100 minutes in a constant temperature bath maintained at 10° C. using the same cylindrical container.

以上の2種の試料全各々20本作製し、開口率がL5%
にガるように多数個の穴を開けたプロピレン製の乾燥容
器(60o闘X300關X2000)に入れ、60℃に
保たれた恒温乾燥機中において約10日間で乾燥を行っ
た。得られた棒状乾燥ゲル体の大きさは32G++mJ
x33mφであυ、割れの状況は表2の様でありた。表
2から高温でゲル化させたゲル体の方が、ゾル合成時と
同程度の低温でゲル化させたゲル体よりも、乾燥時の割
れに対して強いことが明らかである。これは、ゾル合成
時より比較的高い温度雰囲気中でゲル化を行わせること
により、ンラノール基の重合反応がよシ速やかに進み空
孔率の高いゲル体が得られ、その構造が疎であることに
より乾燥時の応力緩和能が優れているためと考えられる
20 of each of the above two types of samples were made, and the aperture ratio was L5%.
The sample was placed in a drying container made of propylene (60 o. The size of the obtained rod-shaped dry gel body is 32G++mJ
The diameter was 33 mφ, and the cracks were as shown in Table 2. From Table 2, it is clear that the gel body gelled at a high temperature is more resistant to cracking during drying than the gel body gelled at a low temperature comparable to that during sol synthesis. This is because by performing gelation in an atmosphere at a relatively higher temperature than during sol synthesis, the polymerization reaction of the ranol groups proceeds more quickly, resulting in a gel body with a high porosity and a sparse structure. This is thought to be due to the excellent stress relaxation ability during drying.

表2 〈実施例3〉 (1)7リ力微粒子溶液の調製 精製した市販のエチルシリケート(商品名;コルコート
28.コルコー)K、に、) 11244 gに無水エ
チルアルコール(99,s%、関東化学に、に、)18
95.7g、アンモニア水(29%、関東化学x、x、
)ssmlと水389゜Og’ir混合し約3時間攪拌
した後、その溶液を冷所に一昼夜以上静置して生成し几
無定形シリカ微粒子全安定化した。その後、溶液中の無
定形シリカ微粒子の濃度全0.4g / m l程度に
減圧濃縮するとともに急激な乾燥の防止及びゲル体の高
強度化を目的として、濃縮液中のアルコール成分を水と
置換した。以上の操作によシ平均粒径が018μmであ
り且つ分散性の良いシリカ微粒子溶液を合成した。
Table 2 <Example 3> (1) Preparation of 7-Liquid Microparticle Solution Purified commercially available ethyl silicate (trade name: Colcoat 28.Kolcoat) was added to 11244 g of anhydrous ethyl alcohol (99, s%, Kanto). chemistry, ni,) 18
95.7g, ammonia water (29%, Kanto Kagaku x, x,
) ssml and water were mixed at 389° Og'ir and stirred for about 3 hours, and the solution was allowed to stand in a cold place for more than a day and night to form amorphous silica particles, which were completely stabilized. Thereafter, the solution was concentrated under reduced pressure to a total concentration of amorphous silica particles of about 0.4 g/ml, and the alcohol component in the concentrated solution was replaced with water in order to prevent rapid drying and increase the strength of the gel body. did. Through the above operations, a fine silica particle solution having an average particle diameter of 0.18 μm and good dispersibility was synthesized.

(2)  クラッド用加水分解溶液の調製精製した市販
のエチルシリケート(商品名;コルコート28.コルコ
ートに、 K、 ) 599.7 gに0゜02規定の
塩酸水溶液415゜0gff1加え、氷冷しながら約2
時間激しく攪拌することにより無色透明且つ均質なりラ
ッド用加水分解溶液を得た。
(2) Preparation of hydrolyzed solution for cladding To 599.7 g of purified commercially available ethyl silicate (trade name: Colcoat 28.Kolcoat), add 415°0 gff1 of a 0.02N hydrochloric acid aqueous solution, and cool on ice. Approximately 2
A colorless, transparent and homogeneous hydrolysis solution for rad was obtained by stirring vigorously for a period of time.

(3)  コア用加水分解溶液の調製 精製した市販のエチルシリケート(商品名;コルコート
28.  コルコートx、x、)x38.1gを予め1
0℃以下に氷冷しておき、そこへ同様に氷冷しておいた
02規定の塩酸水溶液1&Ogを加え約2時間攪拌する
。前記反応が経了し九のを確認した後、テトラエトキシ
ゲルマニウム(99,999%。
(3) Preparation of hydrolyzed solution for core 38.1 g of purified commercially available ethyl silicate (trade name: Colcoat 28. Colcoat x,
The mixture is ice-cooled to below 0°C, and 1&Og of a 02N aqueous solution of hydrochloric acid, which has also been ice-cooled, is added thereto and stirred for about 2 hours. After the reaction was completed and 9% was confirmed, tetraethoxygermanium (99,999%) was added.

トリケミカル研究所)116gk予め9.5gの無水エ
チルアルコールと混合し且つ氷冷しておいた溶液を徐々
に添加し約40分攪拌する。その後、再度氷冷しておい
た02規定の塩酸水溶液317gr添加し約2時間攪拌
することにより無色透明且つ均質なコア用加水分解溶液
金得た。
A solution of 116 gk (Trichemical Research Institute) previously mixed with 9.5 g of anhydrous ethyl alcohol and cooled on ice was gradually added and stirred for about 40 minutes. Thereafter, 317 gr of an ice-cooled 02N hydrochloric acid aqueous solution was added thereto and stirred for about 2 hours to obtain a colorless, transparent and homogeneous hydrolyzed solution for the core.

(4)  ゾル溶液の調製とゲル化 予め10℃以下に氷冷しておいたシリカ微粒子溶液のp
H値?2規定の塩酸水溶液を用いて表3に調整した後、
重量比で4:1になるようにシリカ微粒子溶液(A)と
シリカ微粒子溶液(B)とに2分する。予め10℃以下
に氷冷しておいたクラッド用加水分解溶液に前記シリカ
微粒子溶液(A)を徐々に加え、均一に混合するまで十
分に攪拌した。その混合溶液の液晶が上昇しない様に氷
冷しながら、再度02規定のアンモニア水溶液を用いて
溶液のpH値を47に且つ体積を1872mlに調整し
た。調整後の液温は56℃であワた。この溶液を内面が
シリコンコートされた回転円筒容器(5〇nφxsoo
m/)に所定量を流し込み回転装置に装着した。その回
転装置まわりの温度1に:60℃に保持した後、100
0r11mの速度で回転円筒容器を回転させ約21分で
ゲル化させ、円筒状で且つ回転軸方向に中空部が存在す
るクラッドゲルを得た。
(4) Preparation of sol solution and gelation
H value? After adjusting to Table 3 using 2N hydrochloric acid aqueous solution,
The solution is divided into two into a silica fine particle solution (A) and a silica fine particle solution (B) at a weight ratio of 4:1. The silica fine particle solution (A) was gradually added to the hydrolyzed solution for cladding which had been ice-cooled to 10° C. or lower in advance, and sufficiently stirred until uniformly mixed. The mixed solution was cooled with ice to prevent the liquid crystal from rising, and the pH value of the solution was adjusted to 47 and the volume to 1872 ml using 02N ammonia aqueous solution again. The liquid temperature after adjustment was 56°C. This solution was poured into a rotating cylindrical container (50nφxsoo) whose inner surface was coated with silicone.
A predetermined amount was poured into a tube (m/), and the mixture was attached to a rotating device. The temperature around the rotating device is kept at 1: 60℃, then 100℃
The rotating cylindrical container was rotated at a speed of 0r11 m to gel in about 21 minutes, to obtain a cylindrical clad gel having a hollow portion in the direction of the rotation axis.

クラッド用ゾルのゲル化に先立ち、予め10℃以下に氷
冷しておいたコア用加水分解溶液に前記シリカ微粒子溶
液の)?徐々に加え、均一に混合するまで十分に攪拌し
た。その混合溶液を氷冷しながら0.2規定のアンモニ
ア水溶液を用いて溶液のpH値を42に且つ体積を46
8m1:調整し、ゲル化直後の前記クラッドゲル体の中
空部に流し込み、60℃に保たれた雰囲気中でゲル化さ
せた。
Prior to gelation of the cladding sol, the silica fine particle solution is added to the core hydrolysis solution which has been ice-cooled to below 10°C. Add gradually and stir well until uniformly mixed. While cooling the mixed solution on ice, adjust the pH value of the solution to 42 and the volume to 46 using 0.2N ammonia aqueous solution.
8 ml: Adjusted, poured into the hollow part of the clad gel body immediately after gelation, and gelled in an atmosphere maintained at 60°C.

尚、流し込み時のコア用ゾル溶液の液温は48℃であシ
、ゲル化時間は13分でありた。
The temperature of the core sol solution during pouring was 48° C., and the gelation time was 13 minutes.

(5)  乾燥 得られたクラッド・コア一体ゲルを密閉状態でゲル化後
約3日間、35℃に保たれた乾燥機内に置き、ゲル化後
の重合反応全促進した。その後、クラッド・コア一体ゲ
ルをポリプロピレン製の乾燥容器(3001111X2
5 omx 150MII+)に入れ、開口率が04%
になるように直径I II+の穴を多数側聞りた上ぶた
をし、55℃に保たれた恒温乾燥機に入れ約23日間で
乾燥ゲル1得た。
(5) Drying The obtained clad/core integral gel was placed in a dryer kept at 35° C. for about 3 days after gelation in a closed state to fully accelerate the polymerization reaction after gelation. After that, the clad-core integrated gel was dried in a polypropylene drying container (3001111X2
5 omx 150MII+), aperture ratio is 04%
A number of holes with a diameter of I II+ were made on each side so that the gel was covered with a lid and placed in a constant temperature dryer kept at 55°C to obtain a dried gel in about 23 days.

(6)焼結 次にこのドライゲルを石英製管状焼結炉に入れ昇温速度
30℃/ h rで30℃から200℃まで加熱し、こ
の温度で5時間保持し、つづいて昇温速度30℃/ h
 rで200℃から300℃まで加熱し、この温度で5
時間保持して脱吸着水を行なった。つづいて昇温速度3
0℃/ h rで300℃から1100℃まで加熱し、
この温度で30分間保持して脱炭素、脱塩化アンモニウ
ム処理、脱水縮合反応の促進処理全行なった。つづいて
700℃まで降温しHe 21 / m i n 、 
Cl !0.21 /winの混合ガス1流しながら3
0分間保持し、その後Heのみを流しながら昇温速度6
0℃/ h rで800℃まで加熱した。800℃でH
e21!/m i n %0. l 、 0.21 /
 m i nの混合ガxf流しながら1時間保持し、そ
の後Heのみを流しなから昇温速度60℃/ h rで
900℃まで加熱した。
(6) Sintering Next, this dry gel was placed in a quartz tubular sintering furnace and heated from 30°C to 200°C at a heating rate of 30°C/hr, held at this temperature for 5 hours, and then heated at a heating rate of 30°C. ℃/h
Heat from 200℃ to 300℃ with r, and at this temperature 5
Desorption of water was carried out by holding for a certain period of time. Next, heating rate 3
Heating from 300°C to 1100°C at 0°C/hr,
This temperature was maintained for 30 minutes to perform all decarbonization, dechlorination ammonium treatment, and dehydration condensation reaction acceleration treatment. Subsequently, the temperature was lowered to 700℃ and He 21 / min,
Cl! 3 while flowing 1 mixed gas of 0.21 /win
Hold for 0 minutes, then increase the temperature to 6 while flowing only He.
Heated to 800 °C at 0 °C/hr. H at 800℃
e21! /min%0. l, 0.21/
The mixture was maintained for 1 hour while flowing a mixed gas of min.

900℃でHs2J/!nin、、Olt 0.2A’
/winの混合ガスを流しながら1時間保持し、脱OH
藁処理を行なった。つづいて、He 273 / m 
i nに対してo、a41/rn1nの混合ガスを流し
ながら昇温速度60℃/ h rで1050℃まで加熱
しこの温度で20時間保持して脱塩素処理1行なった。
Hs2J/! at 900℃! nin,,Olt 0.2A'
Hold for 1 hour while flowing a mixed gas of /win to remove OH.
Straw treatment was carried out. Next, He 273/m
While flowing a mixed gas of o and a41/rn1n to i.sub.n, it was heated to 1050.degree. C. at a temperature increase rate of 60.degree. C./hr and held at this temperature for 20 hours to perform one dechlorination treatment.

つづいてHeのみを流しなから昇温速度30℃/hrで
1250℃まで加熱し、この温度で30分保持して閉孔
化処理を行なった。つづいて試料を昇温速度60℃/ 
h rで1400℃まで加熱し、この温度で1時間保持
すると無孔化し、透明な光フアイバ用母材を得た。
Subsequently, without flowing only He, the tube was heated to 1250.degree. C. at a temperature increase rate of 30.degree. C./hr and held at this temperature for 30 minutes to perform a pore-closing treatment. Next, the sample was heated at a rate of 60℃/
When heated to 1400° C. for 1 hour and held at this temperature for 1 hour, it became non-porous and a transparent base material for optical fiber was obtained.

本発明により得られた低かさ密度の乾燥ゲル体では、従
来の乾燥ゲル体と比較して焼結温度を↓り高温域に設定
できるため、透明ガラス化に至るまでに十分な脱水酸基
、脱有機物処理が可能である。このことは、2000℃
近い高温で線引きした時に発泡しない、高い光透過率が
得られる等の光フアイバ用母材に要求される諸性質を満
たすために重要である。実際、得られた透明焼結ガラス
体の品質は極めて良好であり、その歩留りも約85%以
上と優れたものでありた。27μmでの赤外吸収スペク
トル全測定することにより得られた光フアイバ用母材の
OH基の定量を行ったところ、吸収ピークが全く認めら
れず1−以下であυ、水酸基の除来が十分に行われてい
ることが確認された。この光フアイバ用母材の外側に石
英製シャケ、ト管をかぶせて融着し約2000℃の高温
で線引きしたところ、全く発泡のないンングルモード光
ファイバが得られた。さらに、この光ファイバの光損失
?測定したところ、1.55μm帯で1dIl/−とい
う優れた低光損失度であった。
In the dry gel body with a low bulk density obtained by the present invention, the sintering temperature can be set in a lower range than that of conventional dry gel bodies, so that sufficient dehydroxyl groups and deoxidation can be achieved to achieve transparent vitrification. Organic matter treatment is possible. This means that 2000℃
This is important in order to meet the various properties required for optical fiber base materials, such as not foaming when drawn at near high temperatures and the ability to obtain high light transmittance. In fact, the quality of the transparent sintered glass body obtained was extremely good, and the yield was also excellent at about 85% or more. When the OH groups of the optical fiber base material obtained by measuring the entire infrared absorption spectrum at 27 μm were quantified, no absorption peak was observed and it was less than 1 υ, indicating that hydroxyl groups were sufficiently removed. It was confirmed that this was done. When the outside of this optical fiber base material was covered with a quartz tube and fused together, and drawn at a high temperature of about 2000° C., a ngle mode optical fiber with no foaming was obtained. Furthermore, the optical loss of this optical fiber? When measured, it was found to have an excellent low optical loss of 1 dIl/- in the 1.55 μm band.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば低温状態でゾル溶液
全調製することにより、ゾル溶液の粘性を低く抑えられ
るため、均質なゾル溶液を得やすく局所的な不均一反応
を防止できるとともに、その後高温状態に系金移すこと
によりてケル化全促進せしめるため、塩基性塩を多く使
用でき、したがって、焼結過程において高品質なガラス
体を得るための第1条件であるかさ密度の低い乾燥ゲル
体を得ることができる。また、通常ゲル化させた後ゲル
体の強化および安定化全目的として、約30℃、3〜4
日間の熟成期間7経るが、低かさ密度の達成によりゲル
体の種の応力に対する緩和機能が向上するためその期間
を短縮できるとともに、乾燥時における歩留りが向上す
る。さらに、光フアイバ用母材製造時には、クラッド用
ゾルとコア用ゾルでpH値ゲ一致させることもでき、こ
の様な条件下において製造されたゲル体は、クラッド部
とコア部においてそれほど体積収縮速度に差を生じなく
、乾燥終了時までに割れたり、クラックが入ることが少
ない。
As described above, according to the present invention, by preparing the entire sol solution at low temperature, the viscosity of the sol solution can be kept low, making it easier to obtain a homogeneous sol solution and preventing local heterogeneous reactions. After that, by transferring the metal to a high temperature state, the kelization is completely promoted, so a large amount of basic salt can be used. Therefore, drying with a low bulk density is the first condition for obtaining a high quality glass body in the sintering process. A gel body can be obtained. In addition, for the purpose of strengthening and stabilizing the gel body after gelation, it is usually used at about 30°C for 3 to 4
Although the aging period is 7 days, the achievement of a low bulk density improves the ability of the gel body to relax the stress of the seeds, so this period can be shortened and the yield during drying can be improved. Furthermore, when manufacturing optical fiber base materials, it is possible to match the pH values of the cladding sol and the core sol, and the gel body manufactured under such conditions has a lower volumetric shrinkage rate in the cladding and core parts. There is no difference in the drying process, and there is little chance of splitting or cracking by the time the drying is finished.

ゾル−ゲル法を応用して得られる様々な機能性ガラスは
、そのすぐれた特性から各種光学機能材料(例えば光フ
ァイバ用母材、ジャケット管、薄膜導波路など)や多孔
質ガラスを代表例とする生体関連材料など、その応用分
野は極めて広範であると言える。したがりて、ゾル−ゲ
ル法による左うス体製造時に本発明を応用することによ
り、高品質な機能性ガラスを得るための第1条件と彦る
、高品質な乾燥ゲル体を容易に歩留シ良く得ることがで
きる。
Various functional glasses can be obtained by applying the sol-gel method, and typical examples include various optical functional materials (e.g., base materials for optical fibers, jacket tubes, thin film waveguides, etc.) and porous glasses due to their excellent properties. It can be said that the fields of application are extremely wide, including bio-related materials. Therefore, by applying the present invention to the production of left-sided glass bodies using the sol-gel method, it is possible to easily produce high-quality dry gel bodies, which is the first condition for obtaining high-quality functional glasses. You can get good results.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)金属アルコキシドを主原料とするゾル−ゲル法に
よる石英系ガラスの低温合成法において、15℃以下の
温度域でゾル溶液を調製し、かつ、20℃以上の温度域
でゲル化を行わせることを特徴とする石英系ガラスの製
造方法。
(1) In a low-temperature synthesis method of quartz glass using a sol-gel method using metal alkoxide as the main raw material, a sol solution is prepared at a temperature of 15°C or lower, and gelation is performed at a temperature of 20°C or higher. A method for producing quartz glass, characterized by:
(2)特許請求の範囲第一項記載の石英系ガラスの製造
方法において、金属アルコキシドに対してモル比で0.
2〜5倍量の超微粒子シリカを用いることを特徴とする
石英系ガラスの製造方法。
(2) In the method for producing quartz glass according to claim 1, the molar ratio to the metal alkoxide is 0.
A method for producing quartz glass, characterized by using 2 to 5 times the amount of ultrafine silica particles.
(3)前記超微粒子シリカとして塩基性触媒の存在下で
金属アルコキシドから合成した無定形シリカを用いるこ
とを特徴とする特許請求の範囲第2項記載の石英系ガラ
スの製造方法。
(3) The method for producing silica-based glass according to claim 2, characterized in that amorphous silica synthesized from metal alkoxide in the presence of a basic catalyst is used as the ultrafine silica particles.
JP23885385A 1985-10-25 1985-10-25 Production of quartz glass Pending JPS62100425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23885385A JPS62100425A (en) 1985-10-25 1985-10-25 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23885385A JPS62100425A (en) 1985-10-25 1985-10-25 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPS62100425A true JPS62100425A (en) 1987-05-09

Family

ID=17036233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23885385A Pending JPS62100425A (en) 1985-10-25 1985-10-25 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS62100425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916255A (en) * 1997-05-12 1999-06-29 Matsushita Electric Industrial Co., Ltd. Outdoor unit of a separate type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916255A (en) * 1997-05-12 1999-06-29 Matsushita Electric Industrial Co., Ltd. Outdoor unit of a separate type air conditioner

Similar Documents

Publication Publication Date Title
US4680045A (en) Method of preparing tubular silica glass
US4681615A (en) Silica glass formation process
US5236483A (en) Method of preparing silica glass
US4680046A (en) Method of preparing preforms for optical fibers
JPS6191024A (en) Production of cylindrical silica glass
EP1258456A1 (en) Silica glass formation process
US8763430B2 (en) Method for manufacturing grin lens
JPS62100425A (en) Production of quartz glass
JPH09202652A (en) Production of refractive distribution type optical element
JPS62288130A (en) Production of preform for quartz based optical fiber
JPS6296339A (en) Production of optical fiber preform
JPS5992924A (en) Preparation of quartz glass
JPH0114177B2 (en)
AU619301B2 (en) A method of preparing doped silica glass
JPH0118019B2 (en)
JPS60131833A (en) Manufacture of quartz glass
JPS62167233A (en) Production of quartz glass
JPH0244031A (en) Production of nonlinear optical glass
JPS6054929A (en) Production of quartz glass
JPS62119132A (en) Production of base material for optical fiber
JPS5899130A (en) Production of glass tube
JPS61106428A (en) Preparation of glass
JPS6191023A (en) Production of tubular quartz glass
JPS61163133A (en) Preparation of single polarization optical fiber
JPH101319A (en) Production of glass