JPS62246835A - Production of base material for quartz glass optical fiber - Google Patents

Production of base material for quartz glass optical fiber

Info

Publication number
JPS62246835A
JPS62246835A JP8948486A JP8948486A JPS62246835A JP S62246835 A JPS62246835 A JP S62246835A JP 8948486 A JP8948486 A JP 8948486A JP 8948486 A JP8948486 A JP 8948486A JP S62246835 A JPS62246835 A JP S62246835A
Authority
JP
Japan
Prior art keywords
sol
silica
optical fiber
solution
glass optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8948486A
Other languages
Japanese (ja)
Inventor
Masanobu Motoki
元木 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8948486A priority Critical patent/JPS62246835A/en
Publication of JPS62246835A publication Critical patent/JPS62246835A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Abstract

PURPOSE:To pour the 2nd sol closely into the gelatinized matter of the 1st sol in a manner as to avoid generation of foam by pouring the 2nd sol under a reduced pressure into the 1st sol which gels to a tubular shape in a cylindrical vessel to gel the same. CONSTITUTION:The gelation is executed while the system for pouring the 2nd sol is maintained under a reduced pressure in a method for manufacturing a fiber made into two-layered structure having a refractive index distribution by gelatinizing the 2nd sol in the 1st sol which gels to the tubular shape in the cylindrical vessel. The wet gel of the form in which a hole is not bored in the central part is manufactured in the above-mentioned method particularly in the case of gelatinizing the 1st sol while rotating the same, then pouring the 2nd sol. The yield up to the final stage and the quality are remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゾル−ゲル法による石英ガラス系光ファイバの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a silica glass optical fiber by a sol-gel method.

〔従来の技術〕[Conventional technology]

透明石英系ガラスは紫外から赤外にわたる広い波長領域
で光の透明性に優n1化学的にも安定であることより、
特に光通信の分野で注目されてきた。現在、光ファイバ
といえば石英ガラス系の光ファイバのことを一般に示す
ようになって15石英ガラス系の光ファイバの製造方法
としてMCVD法、MAD法などが、よく知られている
が、最近安価に高品質の光ファイバを製造する手段とし
てゾル−ゲル法が注目されている。
Transparent silica glass has excellent optical transparency in a wide wavelength range from ultraviolet to infrared, and is chemically stable.
It has attracted particular attention in the field of optical communications. Nowadays, when we talk about optical fiber, we generally refer to silica glass-based optical fibers. 15 MCVD and MAD methods are well-known methods for manufacturing silica glass-based optical fibers, but recently they have become cheaper. The sol-gel method is attracting attention as a means of manufacturing high-quality optical fibers.

ゾル−ゲル法の石英ガラス系光ファイバの製造方法の中
に、クラツド材用に調整され*sg1のゾル?チューブ
状に回転させながらゲル化させ、その後コア用に調整さ
れた第2のゾルを、その内部でゲル化?せるという特許
がある。(本社整理随〔発明が解決しようとする問題点
〕 しかしながら従来の手法だと、歩留りをあげるためにw
f、1のゾルをゲル化する時刻と第2のゾルをゲル化さ
せる時刻との間隔を短かくすると、中実のドライゲルが
得にくい。そこで回転中に第2のゾルを流し込み中空の
ファイバを作製し中空の部分を傷つけないように乾燥を
行なう必要があるという欠点があった。また、第2のゾ
ル流し込みの時点で、微細な気泡が入り込むと、ガラス
化しても気泡が残ることがあり、減圧にして脱気全行な
う操作も事前に行なう必要があつ几〇本発明は、この様
な問題点?解決する定めのもので、その目的は、第1の
ゾル?ゲル化させたものの内部に第2のゾルを隙間なく
、気泡等が発生しないように流し込むことにある〇 〔問題点を解決するための手段〕 本発明の石英ガラス系光ファイバ用母材の製造方法に、
少なくとも円筒容器中で、管状の形にゲル化するwil
のゾルの内部で第2のゾル會ゲル化嘔ぜることにより屈
折率分布を持つ2層構造のファイバを作製する方法にお
いて、第2のゾルを流し込む系が減圧さnていること全
特徴とする。
In the sol-gel method of manufacturing silica glass optical fiber, *sg1 sol is adjusted for clad material. Gel it while rotating it in a tube shape, and then gel the second sol adjusted for the core inside it? There is a patent that allows (Head office organization review [Problems that the invention aims to solve]) However, with the conventional method, in order to increase the yield,
f, If the interval between the time when the sol of 1 is gelled and the time when the second sol is gelled is shortened, it is difficult to obtain a solid dry gel. Therefore, there was a drawback that it was necessary to pour a second sol during rotation to prepare a hollow fiber and dry it so as not to damage the hollow part. In addition, if fine air bubbles enter at the time of pouring the second sol, the air bubbles may remain even after vitrification, and it is necessary to perform a complete deaeration operation by reducing the pressure in advance. Problems like this? Is it something that is destined to be solved, and its purpose is the first sol? The second sol is poured into the gelled material without any gaps and without the generation of bubbles, etc. [Means for solving the problem] Production of the quartz glass-based optical fiber base material of the present invention to the method,
Will gel in a tubular shape, at least in a cylindrical container
In the method for producing a two-layer fiber with a refractive index distribution by gelling the second sol inside the sol, the system into which the second sol is poured is under reduced pressure. do.

〔実施例〕〔Example〕

以下に実施例に基づき、本発明について詳細に説明する
The present invention will be described in detail below based on Examples.

〔実施例1〕 ■ 加水分解溶液の調整 精製した市販のエチルシリケート576.6tに0.0
2規定の塩酸199.5ff加え、激しく攪拌して加水
分解し、加水分解溶液Aとした・精製した市販のエチル
シリケー)134.11Pに0.2規定の塩酸17.4
fp加え、反応溶液を5℃以下に保った状態で激しく攪
拌すると約30分後反応溶液が均一な透明溶液となつ几
。この透明溶液を5℃以下に保つ几ままテトラエトキシ
ゲルマニウム1t65F?少しづつ加えよく攪拌はせな
がら反応させる。20分反応させた後、この反応溶液を
やけり5℃以下に保つtまま、水32.5 tを加えよ
く攪拌させながら反応させ加水分解溶液Bとした。
[Example 1] ■ Preparation of hydrolysis solution Add 0.0 to 576.6 tons of purified commercially available ethyl silicate
Add 199.5ff of 2N hydrochloric acid, stir vigorously and hydrolyze to obtain hydrolysis solution A.Purified commercially available ethyl silica) 134.11P and 17.4ff of 0.2N hydrochloric acid.
After adding fp and stirring vigorously while keeping the reaction solution below 5°C, the reaction solution turned into a homogeneous and transparent solution after about 30 minutes. Tetraethoxygermanium 1t65F while keeping this clear solution below 5℃? Add little by little and stir well to react. After reacting for 20 minutes, 32.5 t of water was added to the reaction solution while keeping the temperature below 5°C, and the reaction was carried out with thorough stirring to obtain a hydrolyzed solution B.

■ 超微粉末シリカを含む溶液の調整 精製した重版のエチルシリケー) 881. Q f、
無水エタノール470817.アンモニア水(29% 
) 282.4m、水504.8tを混合し、2時間激
しく攪拌した後、冷暗所にて一晩静置し超微粉末シリカ
を合成した0この溶液約6000R1f減圧濃縮して7
00dとした後、2規定の塩酸を用いてPH([’!−
約&22から4.0Qに調整し、さらに遠心分離により
異物等を取り除き、超微粉末シリカを含む溶液的79S
rxlを得友。この溶液には0.14μmの平均粒径t
もつ超微粉末シリカが254、1 ?含まれている。(
シリカ濃度約0.520t/rat、収率100チとし
て計算し友。)■) ゾル溶液の調整とゲル化 加水分解′溶液Aと超微粉末シリカを含む溶液の5分の
4?混合し、ゾル溶液Aとし7to同様に加水分解溶液
Bと超微粉末シリカを含む溶液の5分の1を混合し、ゾ
ル溶液Bとし7toこの時ゾル溶液Aの体積に約145
0WL1%PH値に約5.62であり、ゾル溶液Bの体
積に約360u/、PH値は約2.78であつ九◇ 次にゾル溶液Aに0.2規定のアンモニア水と水を用い
てPH値f 4.71に調整し、かつ体積を1600m
J?に調整し、クラッド用の第1のゾル全作製し友。有
効ガラス成分0.2510 f/wtl、計算値このゾ
ルの1206−4111fs内面にシリコーンコートし
た塩化ビニル製の円筒状回転容器(内径4011Is長
さ10201Kg、内容積1256.61tj)に移し
入れた0この円筒状回転容器に、容器内を真空にする几
めの装置及び回転中に溶液管流し込む九めの装置のつい
几フタ?つけたO PH値?4.71に調整してから、50分間九つたとこ
ろで、750rpmで回転を始めfto回転を始めてか
ら10分後にゲル化が起こつtが、そのまま10分間回
転させ、外径401El、内径8.0謂、長さ1000
mmの寸法管持つ管状ウェットゲル管得友。(管状ウェ
ットゲルは円筒状回転容器の中にある。)これと平行し
てゾル溶液Bに0.2規足のアンモニア水と水を用いて
PH[?4.12に調整し、かつ体積Th400WLl
に調整し第2のゾル全作製し、有効ガラス取分濃度0.
2355f/d。
■ Preparation of a solution containing ultrafine powdered silica (purified reprinted ethyl silica) 881. Q f,
Absolute ethanol 470817. Ammonia water (29%
) 282.4m and 504.8t of water were mixed, stirred vigorously for 2 hours, and allowed to stand overnight in a cool, dark place to synthesize ultrafine powdered silica.This solution was concentrated to about 6000R1f under reduced pressure.
After setting it to 00d, the pH was adjusted using 2N hydrochloric acid (['!-
After adjusting the temperature from approximately
I got RXL. This solution has an average particle size t of 0.14 μm.
Ultrafine powdered silica with 254.1? include. (
Calculated assuming a silica concentration of approximately 0.520t/rat and a yield of 100cm. )■) Preparation of sol solution and gelation hydrolysis 'Solution A and 4/5 of the solution containing ultrafine powdered silica? Mix and make sol solution A 7toSimilarly, mix 1/5 of the solution containing hydrolyzed solution B and ultrafine powder silica and make sol solution B 7to At this time, the volume of sol solution A is about 145%.
0WL1% PH value is about 5.62, the volume of sol solution B is about 360u/, the PH value is about 2.78, and 9◇ Next, use 0.2N ammonia water and water for sol solution A. to adjust the pH value to f4.71, and the volume to 1600 m
J? The first sol for cladding was prepared completely. Effective glass component: 0.2510 f/wtl, calculated value 1206-4111fs This sol was transferred to a cylindrical rotating container made of vinyl chloride (inner diameter: 4011Is, length: 10201Kg, internal volume: 1256.61tj), whose inner surface was coated with silicone. A cylindrical rotating container with a tight lid equipped with a device that evacuates the inside of the container and a ninth device that pours the solution into the tube during rotation? What is the O PH value you put on? After adjusting to 4.71, after 50 minutes, it started rotating at 750 rpm, and gelation occurred 10 minutes after starting rotation. So-called length 1000
Tubular wet gel tube with dimensions of mm tube. (The tubular wet gel is in a cylindrical rotating container.) In parallel, 0.2 cubic feet of ammonia water and water are added to the sol solution B to adjust the pH [? 4.12, and the volume Th400WLl
A second sol was prepared by adjusting the concentration to an effective glass fraction concentration of 0.
2355f/d.

計算値を、ゲル化して12分後の回転容器全回転させな
がら10 mmHgの真空度にしてから流し込み、管状
ゲル内に完全に第2のゾルを満tした状態とした。PH
(ii?t12に調整してから100toたところでこ
の溶液もゲル化して、同軸構造?もったウェットゲルが
得られ7to (外径401m+、長さ1000m10
0O ■ 乾燥 同様な方法で作製したウェットゲル100本?円筒状回
転容器のなかで密閉状態のままで50℃で2日間熟成し
、その後0.4%の開口率?もつtポリプロピレン製乾
燥容器に移し入1to次にこの乾燥容器を60℃の乾燥
機に入れ、ウェットゲルを乾燥したところ14日間で、
室温に放置しても割れない安定なドライゲル(外径27
.0 ’Im、長さ675龍−平均値)が歩留り100
%で100本得らnた0 ■ 焼結 次にこのドライゲル會石英製管状焼結炉に入れ昇温速度
30℃/ h rで50℃から200℃まで加熱し、こ
の温度で5時間保持し、つづいて昇温速度50℃/ h
 rで2.00℃から500℃まで加熱し、この温習で
5時間保持して脱吸着水を行なった。つづいて昇温速度
30℃/brで300℃から1100℃まで加熱し、こ
の温度で50分間保持して脱炭素、脱塩化アンモニウム
処理、脱水縮合反応の促進処理を行なった。つづいて7
00℃まで降温しHe 2 l/sin、  CI、0
.21 /siaの混合ガスを流しながら30分間保持
し、その後Heのみ?流しなから昇温速度60℃/ h
 rで800’ct”t’加熱1.to a a o℃
でHe 21 /win、CI。
The calculated value was poured into a rotary container 12 minutes after gelation, after the sol was completely rotated to create a vacuum of 10 mmHg, so that the tubular gel was completely filled with the second sol. P.H.
(ii? At 100 to after adjusting to t12, this solution also gelled, and a wet gel with a coaxial structure was obtained.
0O ■ 100 wet gels made using the same method as drying? It was aged in a cylindrical rotating container in a closed state at 50℃ for 2 days, and then the open area ratio was 0.4%. The wet gel was transferred to a polypropylene drying container and then placed in a dryer at 60°C to dry the wet gel.
Stable dry gel that does not crack even when left at room temperature (outer diameter 27
.. 0 'Im, length 675 dragon - average value) yield 100
100 pieces were obtained in % n0 ■ Sintering Next, this dry gel was placed in a quartz tubular sintering furnace and heated from 50°C to 200°C at a heating rate of 30°C/hr, and held at this temperature for 5 hours. , followed by a heating rate of 50℃/h
The sample was heated from 2.00° C. to 500° C. at this temperature and kept for 5 hours to perform desorption. Subsequently, it was heated from 300°C to 1100°C at a temperature increase rate of 30°C/br, and held at this temperature for 50 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Continued 7
When the temperature is lowered to 00℃, He 2 l/sin, CI, 0
.. Hold for 30 minutes while flowing a mixed gas of 21/sia, then only He? Temperature increase rate 60℃/h from sink
800'ct"t' heating at r1. to a a o ℃
He 21/win, CI.

0、2. l / sinの混合ガスを流しながら1時
間保持し、その後Heのみを流しなから昇温速度60℃
/hrで900℃まで加熱しfo900℃でHe21 
/ sin、clt a、2 J /■iaの混合ガス
を流しながら1時間保持し、脱OH基処理を行なつto
つづいてHe 21 /miaに対してOx rJ−4
1/ sinの混合ガスを流しなから昇温速度60℃/
 h rで1050℃まで加熱し、この温度で1時間保
持して脱塩素処理を行なった。つづいてHeのみを流し
なから昇温速度30℃/ h rで1250℃まで加熱
し、この温度で30分保持して閉孔化処理を行なった。
0, 2. Hold the mixture for 1 hour while flowing a mixed gas of l/sin, and then increase the temperature to 60℃ without flowing only He.
/hr to 900℃ and fo900℃ to He21
/sin, clta, 2 J/■ia was kept flowing for 1 hour to remove OH groups.
Next, Ox rJ-4 for He 21 /mia
The temperature rise rate is 60℃/ without flowing the mixed gas of 1/sin.
The mixture was heated to 1050° C. for 1 hour and held at this temperature for 1 hour to perform dechlorination treatment. Subsequently, without flowing only He, it was heated to 1250° C. at a temperature increase rate of 30° C./hr, and held at this temperature for 30 minutes to perform a pore-closing treatment.

つづいて試料を箱型炉に移し1200℃から昇温速度6
0℃/ h rで1350℃まで加熱し、この温度で1
時間保持すると無孔化し、透明な光ファイバ用母材が得
られた。また焼結工程での割れもなく歩留りH1oo%
であった0この光ファイバ用母材の大きさは直径18.
8諺、長さ470fiであり、そのうちコアに相当する
部分の直径は′5.7籠であった。(ロスは1−未満) 本実施例で得られた光ファイバ用母材に含まれるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ2.7μmでの吸収ピークが全く認めらnず
%1m)pm以下であることが確認きれt。まt石英製
ジャケット管をかぶせて融着し、そのガラス体を線引き
しtときも発泡せず高品質のシングルモード光ファイバ
が得られた。
Next, the sample was transferred to a box furnace and heated at a rate of 6 from 1200℃.
Heat to 1350°C at 0°C/hr, and at this temperature 1
After holding for a period of time, the material became non-porous and a transparent preform for optical fiber was obtained. Also, there is no cracking during the sintering process, and the yield is H1oo%.
The size of this optical fiber base material was 18.
The diameter of the part corresponding to the core was 5.7cm. (Loss is less than 1-) When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak at 2.7 μm was observed. It has been confirmed that it is below 1m)pm. A high-quality single-mode optical fiber was obtained without foaming even when the glass body was drawn by covering it with a quartz jacket tube and fusing it.

〔実施例2〕 実施例1に従って操作を行なって第1のゾルを作製し、
回転ゲル化7行なった後、ゲル化してから12分のとこ
ろで回転装置を止め、第2のゾル?垂直に立てた管状ウ
ェットゲル中に流し込み、ゲル化させ友。得られたウェ
ットゲルを実施例1と同様な操作7行って乾燥、焼結を
したところ歩留り90チで光ファイバ母材が製造できた
0まt石英ジャケット管をかぶせて融着し、そのガラス
体を線引きした時その2%が発泡しft−。
[Example 2] A first sol was prepared by performing the operations according to Example 1, and
After 7 rotations of gelation, the rotation device was stopped 12 minutes after gelation, and the second sol? Pour into a vertical wet gel tube and let it gel. The obtained wet gel was dried and sintered by the same operation 7 as in Example 1, and an optical fiber base material was produced with a yield of 90 cm.It was covered with a 0-mt quartz jacket tube and fused, and the glass When the body is drawn, 2% of it foams and ft-.

〔実施例3〕 実施例1に従って操作全行なって第1のゾル全作製し、
回転ゲル化金行なつ食後、ゲル化してから12分のとこ
ろで、回転させながら、第20ゾル?20M流し込み、
その11回転させて管状のウェットゲルを得念。そf′
Lf実施例1に従って乾燥・焼結をしたところ歩留り1
00%で光ファイバ用母材が製造でれ比。また石英ジャ
ケット管?かぶせて融着し、中実化全行ない、そのガラ
ス体?線引きし九ときも発泡しなかったが、乾燥時にそ
の20チが内面に傷がつき、損失を増大させ友。
[Example 3] Perform all operations according to Example 1 to prepare the first sol,
12 minutes after the gelatinization, after the meal, while rotating, add the 20th sol. 20M pour,
Rotate it 11 times to create a tubular wet gel. So f'
When drying and sintering according to Lf Example 1, the yield was 1.
00% is the production rate of optical fiber base material. Another quartz jacketed tube? The glass body that is covered, fused, and solidified? It did not foam even after drawing the line, but when drying, the inner surface of the 20 pieces was scratched, increasing losses.

〔実施例4〕 ■ 加水分解溶液の調整 精製しt市販のエチルシリケート549.1 Fに無水
エタノール218alf加えよく攪拌しtoつづいて0
.02規定の塩酸190.Of?加え、激しく攪拌して
加水分解し、加水分解溶液Aとし比。
[Example 4] ■ Preparation of hydrolysis solution Purified commercially available ethyl silicate 549.1 F was added with 218 alf of absolute ethanol, stirred thoroughly, and then
.. 02 normal hydrochloric acid 190. Of? Add, stir vigorously to hydrolyze, and prepare hydrolyzed solution A.

精製した市販のエチルシリケー)127.7Fに無水エ
タノール55d?加えよく攪拌し之0つづいて0.02
規冗の塩酸11.Of?加え、激しく60分間攪拌しt
oこの反応溶液にテトラエトキシゲルマニウム11.1
01F?少しづつ加えよく攪拌した。20分反応嘔せた
後、この反応溶液に(LO2規足0塩酸56.5f’f
f加えよく攪拌しながら反応させ加水分解溶液Bとした
Purified commercially available ethyl silica) 127.7F and absolute ethanol 55d? Add and stir well.
Regular hydrochloric acid 11. Of? Add and stir vigorously for 60 minutes.
o Add 11.1% tetraethoxygermanium to this reaction solution.
01F? Add it little by little and stir well. After vomiting for 20 minutes, add 56.5f'f of hydrochloric acid to this reaction solution.
A hydrolyzed solution B was obtained by adding f and reacting with thorough stirring.

■ 超微粉末シリカを含む溶液の調整 精製し次市販のエチルシリケー)839.OIF。■ Preparation of solution containing ultrafine powdered silica Purified and commercially available ethyl silica) 839. OIF.

無水エタノール44841111.アンモニア水(29
チ)269.Od、水290.3 Fを混合し、2時間
激しく攪拌した後、冷暗所にて一晩装置し超微粉末シリ
カを合成した。この溶液約5700−を減圧濃縮して6
40dとした後、2規定の塩酸を用いてPHMを約8.
22から4.60に調整し、ざらに遠心分離により異物
等を取り除p超微粉末シリカケ含む溶液約710d?得
た。この溶液にげ0.14μmの平均粒径をもつ超微粉
末シリカが242、Of含まれている。(シリカ濃度約
0.541flIll、収率100%として計算した値
)■ ゾル溶液の調整とゲル化 加水分解溶液Aと超微粉末シリカを含む溶液の5分の4
?混合し、ゾル溶液Aとした。同様に加水分解溶液Bと
超微粉末シリカを含む溶液の5分の1?混合し、ゾル溶
液Bとした。この時ゾル溶液Aの体積は約1550m1
%PHMn約4.54であり、ゾル溶液Bの体積は約5
90m1.PH値は約4.57であつ之〇 次にゾル溶液Aに0.2規足のアンモニア水と水を加え
てPH値を5,32に調整し、かつ体積を1600m/
に調整し第1のゾル1作製し比。(有効ガラス成分濃度
0.220 t/rttl、計算値)このゾルの120
6.4mj?%内面にシリコーンコートし元塩化ビニル
製の円筒状回転容器(内径4011J長さ102102
(1内容積1,256.6m)に移し入れた。この円筒
状回転容器にフタをして回転装置に取り付け、PH値?
 5.52に調整してから30分たったところで120
 Orpmで回転を始めた。
Absolute ethanol 44841111. Ammonia water (29
h) 269. After mixing Od and water at 290.3 F and stirring vigorously for 2 hours, the mixture was kept in a cool and dark place overnight to synthesize ultrafine powdered silica. Approximately 5,700 of this solution was concentrated under reduced pressure to give 6
After adjusting the PHM to 40 d, the PHM was adjusted to about 8 d using 2N hydrochloric acid.
22 to 4.60, remove foreign substances etc. by rough centrifugation, and remove approximately 710 d of solution containing ultrafine powder silica. Obtained. This solution contained 242% of ultrafine powdered silica having an average particle size of 0.14 μm. (Value calculated assuming silica concentration of approximately 0.541flIll and yield of 100%) ■ Preparation of sol solution and gelation 4/5 of the solution containing hydrolyzed solution A and ultrafine powdered silica
? The mixture was mixed to obtain sol solution A. Similarly, 1/5 of the solution containing hydrolyzed solution B and ultrafine powdered silica? The mixture was mixed to obtain sol solution B. At this time, the volume of sol solution A is approximately 1550ml
%PHMn is about 4.54, and the volume of sol solution B is about 5
90m1. The pH value was approximately 4.57.Next, 0.2 cubic feet of ammonia water and water were added to the sol solution A to adjust the pH value to 5.32, and the volume was 1600m/
Prepare the first sol 1 by adjusting the ratio. (Effective glass component concentration 0.220 t/rttl, calculated value) 120 of this sol
6.4mj? % Cylindrical rotating container made of vinyl chloride with silicone coating on the inner surface (inner diameter 4011J length 102102
(inner volume: 1,256.6 m). Put a lid on this cylindrical rotating container, attach it to the rotating device, and check the pH value?
120 30 minutes after adjusting to 5.52
Started rotating with Orpm.

回転を始めてから15分後にゲル化が起こったが、その
まま10分間回転させ、外径401111.内径8、O
N宵、長さ100C110にの寸法を持つ管状ウェット
ゲルヲ得之。(管状ウェットゲルは円筒状回転容器の中
にある)これと平行してゾル溶液Bを0.2規定のアン
モニア水と水を用いてPH値?5.12に調整し、かつ
体積を400m1に調整し次溶液を作製しく有効ガラス
成分濃度0.22459/ ml 、計算値)、回転装
置から汐りけずし、立てて静置した状態にある円筒状回
転容器のフタを取り、ゲル化して12分後の管状ウェッ
トゲルにこの溶液を流し込んだ後、系内’r 50 m
rnHgに減圧した。PI(値?5.12に調整してか
ら10分たったところでこの溶液もゲル化して、同軸構
造をもったウェットゲルが得られffo (外径40f
l、長さ1QOOWW1) ■ 乾燥 同様な方法で作製したウェットゲル20本ヲ円筒状回転
容器のなかで密閉状態のオまで30℃で2日間熟成し、
そのうち100本を0.1チの開口率をもったポリプロ
ピレン製乾燥容器に移し入れ、残りの10本は円筒状回
転容器の両端に開口率0.1%のフタをした0次にこれ
らを60℃の乾燥機に入n、ウェットゲルを乾燥したと
ころ17日間で、室温に放置しても割れない安定なドラ
イゲル(外径26.5館、長さ663fl−平均値)が
得らtl、7’j o乾燥方法として前者の方法を選ん
だ場合は歩留すel 90 %、後者の方法を選X7だ
場合は歩留りに80%であつ定。
Gelation occurred 15 minutes after the start of rotation, but after 10 minutes of rotation, the outer diameter was 401111. Inner diameter 8, O
We obtained a tubular wet gel with dimensions of length 100C110. (The tubular wet gel is in a cylindrical rotating container) In parallel, sol solution B was prepared using 0.2N ammonia water and water to determine the pH value? 5.12 and the volume to 400 ml to prepare the next solution.Effective glass component concentration 0.22459/ml (calculated value), remove the water from the rotating device, and leave the cylinder standing still. After removing the lid of the rotary container and pouring this solution into the tubular wet gel after 12 minutes of gelation,
Vacuum was applied to rnHg. Ten minutes after adjusting the PI value to 5.12, this solution also gelled, and a wet gel with a coaxial structure was obtained.
1, length 1QOOWW1) ■Drying 20 wet gels prepared in the same way were aged in a cylindrical rotating container at 30°C for 2 days in a sealed state.
Of these, 100 were transferred to a polypropylene drying container with an opening ratio of 0.1 inch, and the remaining 10 were placed in a cylindrical rotating container with lids with an opening ratio of 0.1% on both ends. When the wet gel was dried in a dryer at 17°C, a stable dry gel (outer diameter 26.5 mm, length 663 fl - average value) that did not crack even when left at room temperature was obtained in 17 days. 'jo If the former method is selected as the drying method, the yield will be 90%, and if the latter method is selected, the yield will be 80%.

■ 焼結 実施例1と同様な方法を用いてドライゲル17本全焼結
したところ歩留り90%で光ファイバ用母材が得らnた
。この光ファイバ用母材の大きさは直径18.5m1t
、長さ465顛であり、そのうちコアに相当する部分の
直径765.7 mであつt0本本実側で得られ几光フ
ァイバ用母材に含まれるOH基を赤外域で吸収スペクト
ルを測足することによって定量したところ、2.7μm
での吸収ピークが全く認められず%  lppm以下で
あることが確認された。まt#j!引きしたときも発泡
せず高品質の光ファイバが得られた。
(2) Sintering When all 17 dry gels were sintered using the same method as in Example 1, an optical fiber base material was obtained with a yield of 90%. The size of this optical fiber base material is 18.5m1t in diameter.
, the length is 465 mm, of which the diameter of the portion corresponding to the core is 765.7 m, and the absorption spectrum of the OH groups contained in the optical fiber base material obtained on the real side is measured in the infrared region. When quantified by
No absorption peak was observed at all, and it was confirmed that the absorption peak was less than %lppm. Mat#j! A high-quality optical fiber was obtained without foaming even when it was pulled.

本実施例で示したように、加水分解溶液を調整する際に
アルコールを用いるとアルコールを用いないときに比べ
て冷却する手間が省けより実用的である。1几、加水分
解溶液、あるいは超微粉末シリカを含む溶液と混合しt
ゾル溶液の粘度も低くなり作業性もよかつ比。
As shown in this example, using alcohol when preparing a hydrolysis solution saves the effort of cooling and is more practical than when alcohol is not used. 1 liter, mixed with a hydrolysis solution or a solution containing ultrafine powdered silica.
The viscosity of the sol solution is also lower, making it easier to work with.

〔実施例5〕 実施例4と同様な方法で第1のゾルをゲル化させ友後、
第2のゾルを作製し流し込んだ後、そのままフタをして
ゲル化させ、実施例3に従って乾燥・焼結を行なった所
、歩留り85%で、光ファイバ母材が製造できた。OH
基ケ赤外吸収から定量するとlppm以下であることが
確認された、また、線引きしたときに1.5チの割で発
泡した。
[Example 5] After gelling the first sol in the same manner as in Example 4,
After preparing and pouring the second sol, it was covered with a lid and allowed to gel, and then dried and sintered according to Example 3. An optical fiber preform was manufactured with a yield of 85%. OH
It was confirmed that the amount was 1 ppm or less when determined from the infrared absorption of the base, and foaming occurred at a rate of 1.5 cm when drawn.

以上実施例に示した様に、第1のゾルをゲル化した後、
第2のゾルを流し込む際に系内?減圧にすることにより
、最終工程までの歩留り及び、ファイバ?線引’%fる
際の発泡を防止することができる。こnは、第1のゾル
全ゲル化させ、その内部で第2のゾルをゲル化させる方
式でファイバを作製する製造方法のすべてにおいて有効
である。
As shown in the examples above, after gelling the first sol,
Inside the system when pouring the second sol? By reducing the pressure, the yield up to the final process and the fiber quality can be improved. Foaming during line drawing can be prevented. This method is effective in all manufacturing methods in which the fiber is manufactured by completely gelling the first sol and gelling the second sol inside the first sol.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によれば、少なくとも円筒容器
中で、管状の形でゲル化する第1のゾルの内部でwc2
のゾル全ゲル化させることにより屈折率分布を持つ2層
構造のファイバを作製する方法において、第2のゾルを
流し込む系が減圧されていることにより、最終工程筐で
の歩留り、品質全向上させることができる。特にw41
のゾルを回転させながらゲル化した後、第2のゾルを流
し込む場合には、中心部に穴があかない形のウェットゲ
ルを作製することができ、最終工程までの歩留り、品質
を著しく向上させることができる。
As described above, according to the present invention, wc2
In the method of manufacturing a two-layer fiber with a refractive index distribution by completely gelling the sol, the system into which the second sol is poured is under reduced pressure, which improves the yield and quality in the final process cabinet. be able to. Especially w41
When the second sol is gelled while rotating, it is possible to create a wet gel without a hole in the center, which significantly improves the yield and quality up to the final process. be able to.

以上that's all

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも円筒容器中で、管状の形にゲル化する
第1のゾルの内部で第2のゾルをゲル化させることによ
り屈折率分布を持つ2層構造のファイバを作製する方法
において、第2のゾルを流し込む系が減圧されているこ
とを特徴とする石英ガラス系光ファイバ用母材の製造方
法。
(1) A method for producing a two-layered fiber having a refractive index distribution by gelling a second sol inside a first sol gelling into a tubular shape at least in a cylindrical container. 2. A method for producing a base material for a silica glass optical fiber, characterized in that the system into which the sol is poured is under reduced pressure.
(2)前記第1および第2のゾルとは、アルキルシリケ
ート、酸性水溶液、アルコール溶液、平均粒径が0.0
1〜/μmの範囲にあるシリカ微粒子あるいはその分散
液、および屈折率調整用のドーパントを、必要に応じて
含む溶液であることを特徴とする特許請求の範囲第1項
記載の石英ガラス系光ファイバ用母材の製造方法。
(2) The first and second sols are alkyl silicate, acidic aqueous solution, alcohol solution, and have an average particle size of 0.0.
The silica glass-based light according to claim 1, which is a solution containing, if necessary, silica fine particles or a dispersion thereof having a particle diameter of 1 to 1/μm, and a dopant for adjusting the refractive index. Method for manufacturing fiber base material.
(3)前記酸性触媒が、塩酸あるいは塩化水素ガスであ
ることを特徴とする特許請求の範囲第1項〜第2項のい
ずれかに記載の石英ガラス系光ファイバ用母材の製造方
法。
(3) The method for producing a base material for a silica glass optical fiber according to any one of claims 1 to 2, wherein the acidic catalyst is hydrochloric acid or hydrogen chloride gas.
(4)前記シリカ微粒子としてSiCl_4を酸水素炎
バーナーで加水分解して得られるホワイトカーボン、ケ
イ酸ソーダを原料とする湿式法によつて得られる超微粉
末シリカ、あるいはアルキルシリケートをアンモニア水
で加水分解して得られる超微粉末シリカのいずれかを用
いたことを特徴とする特許請求の範囲第1項〜第3項の
いずれかに記載の石英ガラス系光ファイバ用母材の製造
方法。
(4) As the silica fine particles, white carbon obtained by hydrolyzing SiCl_4 with an oxyhydrogen flame burner, ultrafine powder silica obtained by a wet method using sodium silicate as a raw material, or alkyl silicate hydrated with aqueous ammonia. 4. A method for producing a preform for a silica glass optical fiber according to any one of claims 1 to 3, characterized in that any one of ultrafine powdered silica obtained by decomposition is used.
(5)前記シリカ微粒子の分散溶液として、前項記載の
シリカ微粒子をアルコールを0%以上含む水溶液に、溶
媒に対して含まれるシリカ量が0.01〜1.0g/c
m^2となるように分散させたもの、あるいは、アルキ
ルシリケートをアルコールを0%以上含んだアンモニア
水で加水分解して得られる超微粉末シリカを含む溶液を
、溶媒に対して含まれたシリカ量が0.01〜1.0g
/cm^2となるように濃縮したものであることを特徴
とする特許請求の範囲第1項〜第4項のいずれかに記載
の石英ガラス系光ファイバ用母材の製造方法。
(5) As the dispersion solution of the silica fine particles, the amount of silica contained in the aqueous solution containing the silica fine particles described in the previous section and 0% or more of alcohol with respect to the solvent is 0.01 to 1.0 g/c.
m^2, or a solution containing ultrafine powder silica obtained by hydrolyzing an alkyl silicate with aqueous ammonia containing 0% or more alcohol. Amount is 0.01-1.0g
5. A method for producing a preform for a silica glass optical fiber according to any one of claims 1 to 4, characterized in that the preform is concentrated to a concentration of /cm^2.
(6)前記添加元素が、Ge、Ti、P、B、Al、Z
r、Sb、Ta、Nbであることを特徴とする特許請求
の範囲第1項〜第5項のいずれかに記載の石英ガラス系
光ファイバ用母材の製造方法。
(6) The additive element is Ge, Ti, P, B, Al, Z
6. The method for manufacturing a preform for a silica glass optical fiber according to any one of claims 1 to 5, characterized in that the preform is r, Sb, Ta, or Nb.
JP8948486A 1986-04-18 1986-04-18 Production of base material for quartz glass optical fiber Pending JPS62246835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8948486A JPS62246835A (en) 1986-04-18 1986-04-18 Production of base material for quartz glass optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8948486A JPS62246835A (en) 1986-04-18 1986-04-18 Production of base material for quartz glass optical fiber

Publications (1)

Publication Number Publication Date
JPS62246835A true JPS62246835A (en) 1987-10-28

Family

ID=13972014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8948486A Pending JPS62246835A (en) 1986-04-18 1986-04-18 Production of base material for quartz glass optical fiber

Country Status (1)

Country Link
JP (1) JPS62246835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240270A (en) * 2004-02-27 2005-09-08 Lucent Technol Inc Carbon particle fiber assembly technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240270A (en) * 2004-02-27 2005-09-08 Lucent Technol Inc Carbon particle fiber assembly technique
CN104609721A (en) * 2004-02-27 2015-05-13 朗讯科技公司 Carbon particle fiber assembly technique and glass fiber containing same

Similar Documents

Publication Publication Date Title
JPS6191024A (en) Production of cylindrical silica glass
JPS632901B2 (en)
Celzard et al. Applications of the sol-gel process using well-tested recipes
JPS62246835A (en) Production of base material for quartz glass optical fiber
GB2100248A (en) Preparing porous bodies of doped silica gel
JPS6296339A (en) Production of optical fiber preform
JPS62288130A (en) Production of preform for quartz based optical fiber
JPH0328382B2 (en)
JPH0416519A (en) Production of silica-based glass
JPS60108325A (en) Production of glass
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
JPS6065735A (en) Production of quartz glass
JPS61201627A (en) Production of low oh glass
JPH02188431A (en) Production of quartz glass
JPS62288117A (en) Production of doped silica glass
JPS61163133A (en) Preparation of single polarization optical fiber
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPS63117917A (en) Production of glass
JPS62230639A (en) Production of optical fiber preform
JPS6054929A (en) Production of quartz glass
JPS6335430A (en) Production of preform for optical fiber
JPS62187132A (en) Production of glass for optical fiber
JPS62207721A (en) Preparation of lens having refractive index distribution
JPS6144727A (en) Production of glass for optical fiber
JPS598625A (en) Preparation of quartz glass