JPS624682B2 - - Google Patents

Info

Publication number
JPS624682B2
JPS624682B2 JP11826379A JP11826379A JPS624682B2 JP S624682 B2 JPS624682 B2 JP S624682B2 JP 11826379 A JP11826379 A JP 11826379A JP 11826379 A JP11826379 A JP 11826379A JP S624682 B2 JPS624682 B2 JP S624682B2
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
glass
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11826379A
Other languages
Japanese (ja)
Other versions
JPS5642202A (en
Inventor
Hiroyasu Sugiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11826379A priority Critical patent/JPS5642202A/en
Publication of JPS5642202A publication Critical patent/JPS5642202A/en
Publication of JPS624682B2 publication Critical patent/JPS624682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は光通信等に使用する光固体回路の構成
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an optical solid-state circuit used for optical communications and the like.

最近の光フアイバは低損失となり伝送に使用で
きる波長領域が広くなつた。従つて波長の異なる
光を同一のフアイバ中に伝送させる光波長多重伝
送が可能になる。光フアイバに波長の異なる複数
の光信号を伝送する光多重伝送では、その光信号
を目的に応じた伝送系の要所で2本以上の光フア
イバに分波分岐したり、または逆に2本以上の光
フアイバからの光を1本のフアイバに合波結合さ
せることは不可欠な問題である。
Recent optical fibers have low loss and can be used for transmission over a wide range of wavelengths. Therefore, optical wavelength division multiplexing transmission in which lights of different wavelengths are transmitted through the same fiber becomes possible. In optical multiplexing transmission, which transmits multiple optical signals with different wavelengths through optical fibers, the optical signals are split into two or more optical fibers at key points in the transmission system depending on the purpose, or vice versa. It is an essential problem to combine the lights from the above optical fibers into one fiber.

また、同一波長の光を分岐・結合する光カプラ
は、モニタする使い方以外に、同一波長の光源を
用いる双方向通信には不可欠のデバイスであり、
また多分岐のカプラは1つの場所より多数の場所
へ信号を伝送するのに大変有効な光デバイスであ
る。そのため、このような機能を持つ光の集積回
路の発展性が半導体のIC化と同様に期待され
る。
In addition, optical couplers that split and combine light of the same wavelength are not only used for monitoring purposes, but are also essential devices for two-way communication using light sources of the same wavelength.
Additionally, a multi-branch coupler is a very effective optical device for transmitting signals from one location to multiple locations. Therefore, it is expected that optical integrated circuits with such functions will have the same potential for development as semiconductor ICs.

従来、光集積回路の製造はガラスのスパツタリ
ング等による導波路を形成する試みがなされてい
るが、伝送損失が大きかつたり、あるいは膜厚が
薄くマルチモード伝送向きでなかつた。また、光
の結合は2つの光の導波路を数千Å〜数μmのオ
ーダーに接近させることにより、一方の光導波路
中を伝搬する光が、進行とともに次第に他方の光
導波路中へ移行することにより行われる。従来の
このような結合線路でフイルタが付いたものは知
られていない。
Conventionally, in the manufacture of optical integrated circuits, attempts have been made to form waveguides by glass sputtering, etc., but these have resulted in large transmission losses or are too thin to be suitable for multi-mode transmission. In addition, light coupling is achieved by bringing two optical waveguides close to each other on the order of several thousand Å to several μm, so that the light propagating in one optical waveguide gradually moves into the other optical waveguide as it progresses. This is done by There is no known conventional coupling line with a filter.

本発明は上述の点に鑑みなされたもので、2つ
の導波路間に誘電体多層膜フイルタを配置したフ
イルター付光結合回路を提供するものである。
The present invention has been made in view of the above-mentioned points, and provides an optical coupling circuit with a filter in which a dielectric multilayer film filter is arranged between two waveguides.

本発明はシリコン(Si)、石英ガラス(SiO2)、
水晶、サフアイア(Al2O3)、その他の材料でで
きた基板表面に溝パターンを形成し、CVD法等
により、光導波路のクラツドとなるガラス層を堆
積し、さらに前記ガラス層よりも屈折率の大きな
光導波路のコアとなるガラス層をCVD法等によ
り堆積した後、エツチングまたは表面の研磨によ
り、光の導波路となる部分以外の場所に堆積した
ガラス層を除去し、基板表面を平坦にし、その上
にクラツド層となるガラス層を堆積させて光を閉
じ込める光導波路を形成する。裏面側も表面側と
同様に光導波路を形成するが、裏面側に溝を形成
した後、溝内に誘電体多層膜フイルタを形成す
る。その後裏面側に、前記フイルタを介して2つ
の光導波路が接するように表面側と同様の光導波
路を形成するものである。
The present invention uses silicon (Si), quartz glass (SiO 2 ),
A groove pattern is formed on the surface of a substrate made of quartz, sapphire (Al 2 O 3 ), or other material, and a glass layer that will become the cladding of the optical waveguide is deposited by CVD or the like, and the refractive index is higher than that of the glass layer. After depositing a glass layer, which will become the core of a large optical waveguide, by CVD, etc., the glass layer deposited in areas other than the part that will become the optical waveguide is removed by etching or surface polishing, and the substrate surface is made flat. Then, a glass layer serving as a cladding layer is deposited thereon to form an optical waveguide that confines light. An optical waveguide is formed on the back side in the same way as on the front side, but after forming a groove on the back side, a dielectric multilayer film filter is formed in the groove. Thereafter, an optical waveguide similar to that on the front side is formed on the back side so that the two optical waveguides are in contact with each other via the filter.

以下本発明の光固体回路の一実施例について、
図面を用いて詳細な説明を行なう。
An embodiment of the optical solid-state circuit of the present invention will be described below.
A detailed explanation will be given using drawings.

第1図は本発明のフイルタ付光結合回路の一実
施例の断面構造図である。(a)は背面結合形、(b)は
側面結合形の例である。1は異方性エツチングを
行い、所定パターンの溝を形成した{100}面を
表面とするSi基板である。3aは表面側に、3b
は裏面側に形成された光の導波路となる高屈折率
のコアカラスである。2a〜2dは光の導波路3
aおよび3bをくるむようにして光を閉じこめる
はたらきをする低屈折率のガラスであつて以後ク
ラツトガラスと言う。4は波長選択性を有する誘
電体多層膜フイルタである。
FIG. 1 is a cross-sectional structural diagram of an embodiment of an optical coupling circuit with a filter according to the present invention. (a) is an example of a back-to-back type, and (b) is an example of a side-to-side type. 1 is a Si substrate whose surface is a {100} plane, which has been anisotropically etched to form grooves in a predetermined pattern. 3a is on the front side, 3b
is a core glass with a high refractive index that serves as a light waveguide formed on the back side. 2a to 2d are optical waveguides 3
It is a glass with a low refractive index that functions to confine light by wrapping it around a and 3b, and is hereinafter referred to as clath glass. 4 is a dielectric multilayer filter having wavelength selectivity.

このような光固体回路を製作するとき、Siを基
板として、溝パターンを形成する場合にはエツチ
ング液として、苛性アルカリ、たとえばKOH水
溶液あるいはアミン系水溶液、たとえばヒドラジ
ン(NH2NH2)水溶液を用い、エツチング速度の
面方位依存性を利用してSi表面に溝を形成する。
前記エツチング液を用いるとSiのエツチング速度
は一般に異方性を示し、{111}面のエツチング速
度は他の面のそれに比べ小さい。たとえば、
{100}面を表面とするSi基板に適当な形状のSiO2
がSi3N4などのエツチング保護膜を形成し、異方
性エツチングを行うと、開き角70.53゜のV溝が
形成される。本図の実施例はこの溝を光導波路を
形成するための場所として利用するものである。
また前述したように裏面側に形成した溝内には誘
電体多層膜フイルタを形成する。
When manufacturing such optical solid-state circuits, Si is used as a substrate, and when groove patterns are formed, a caustic alkali, such as a KOH aqueous solution, or an amine-based aqueous solution, such as a hydrazine (NH 2 NH 2 ) aqueous solution, is used as an etching solution. , grooves are formed on the Si surface using the dependence of etching rate on surface orientation.
When the above etching solution is used, the etching rate of Si generally exhibits anisotropy, and the etching rate of the {111} plane is lower than that of other planes. for example,
SiO 2 of an appropriate shape for a Si substrate with {100} plane as the surface
When an etching protection film such as Si 3 N 4 is formed and anisotropic etching is performed, a V-groove with an opening angle of 70.53° is formed. The embodiment shown in the figure utilizes this groove as a place for forming an optical waveguide.
Further, as described above, a dielectric multilayer film filter is formed in the groove formed on the back side.

第2図aは本発明の光固体回路と光フアイバを
結合して、光分波を行う場合の一実施例を示す概
略図である。I〜は光導波路である。A〜Cは
表面側及び裏面側の光導波路間に形成された誘電
体多層膜である。5〜9はフアイバである。フア
イバ8から出射された波長λ,λ,λ,λ
の光波は基板の裏面側に形成された光導波路
に結合される。光導波路を伝搬する波長λ
光波は裏面側に形成された光導波路と表面側に
形成された光導波路の間に形成された波長λ
の光は透過し、他の波長の光を反射する誘電体多
層膜Aを透過し、光導波路に結合され、フアイ
バ5に出射される。同様に光導波路を伝搬する
波長λの光波は光導波路間に形成された波長λ
の光は透過し、他の波長の光を反射する誘電体
多層膜B5を透過し、光導波路に結合され、フ
アイバ6に出射される。同様に光導波路を伝搬
する波長λの光波は光導波路間に形成された波
長λの光は透過し、他の波長の光を反射する誘
電体多層膜Cを透過し、光導波路に結合され、
フアイバ7に出射される。光導波路を伝搬する
波長λの光波は誘電体多層膜A,B,Cで反射
されるので、フアイバ9に出射される。
FIG. 2a is a schematic diagram showing an embodiment of the present invention in which the optical solid-state circuit and optical fiber are coupled to perform optical demultiplexing. I~ is an optical waveguide. A to C are dielectric multilayer films formed between the optical waveguides on the front side and the back side. 5 to 9 are fibers. Wavelengths λ 1 , λ 2 , λ 3 , λ emitted from the fiber 8
The light wave No. 4 is coupled to an optical waveguide formed on the back side of the substrate. A light wave with a wavelength λ 1 propagating through the optical waveguide has a wavelength λ 1 formed between the optical waveguide formed on the back side and the optical waveguide formed on the front side.
The light passes through the dielectric multilayer film A that reflects light of other wavelengths, is coupled to the optical waveguide, and is emitted to the fiber 5. Similarly, a light wave with a wavelength λ 2 propagating through an optical waveguide has a wavelength λ 2 formed between the optical waveguides.
The light of No. 2 passes through the dielectric multilayer film B5 that reflects light of other wavelengths, is coupled to the optical waveguide, and is emitted to the fiber 6. Similarly, a light wave with a wavelength λ 3 propagating through an optical waveguide passes through a dielectric multilayer film C formed between the optical waveguides, which transmits light with a wavelength λ 3 and reflects light with other wavelengths, and is coupled to the optical waveguide. is,
The light is emitted to the fiber 7. The light wave of wavelength λ 4 propagating through the optical waveguide is reflected by the dielectric multilayer films A, B, and C, and is thus emitted to the fiber 9.

逆に光合波を行う場合には第2図bのごとく、
フアイバ5に波長λの光波を、フアイバ6に波
長λの光波を、フアイバ7に波長λの光波
を、フアイバ9に波長λの光波を入射させるこ
とにより、光導波路,,と光導波路との
間でそれぞれ結合が行われ、フアイバ8に波長λ
〜λの光波が出射される。
Conversely, when performing optical multiplexing, as shown in Figure 2b,
By inputting a light wave with a wavelength λ 1 into the fiber 5, a light wave with a wavelength λ 2 into the fiber 6, a light wave with a wavelength λ 3 into the fiber 7, and a light wave with a wavelength λ 4 into the fiber 9, an optical waveguide is formed. Coupling is performed between the fiber 8 and the wavelength λ.
1 to λ4 light waves are emitted.

なお、光導波路間に形成された誘電体多層膜
A,B,Cで光導波路と結合しなかつた波長λ
,λ,λの光波は、各々の光導波路,
,を伝搬し、それぞれ光フアイバ5′,6′,
7′に結合されるので、モニタとして利用でき
る。
Note that the wavelength λ that is not coupled to the optical waveguide by the dielectric multilayer films A, B, and C formed between the optical waveguides is
1 , λ 2 , and λ 3 are transmitted through the respective optical waveguides,
, respectively through optical fibers 5', 6',
7', so it can be used as a monitor.

第3図は本発明の光固体回路と光フアイバを結
合して、光分波を行う場合の他の実施例を示す概
略図である。
FIG. 3 is a schematic diagram showing another embodiment in which the optical solid-state circuit and optical fiber of the present invention are coupled to perform optical demultiplexing.

フアイバ10から出射された波長λ,λ
光波は基板の裏面側に形成された光導波路に結
合される。光導波路を伝搬する波長λの光波
は基板の表面側に形成さた光導波路と裏面側に
形成された光導波との間に形成された波長λ
の光は透過し他の波長の光を反射する誘電体多層
膜Aを透過し、光導波路に結合され、フアイバ
11に出射される。なお、光導波路のクラツドを
形成する低屈折率ガラスとしては、例えばCVD
法等により堆積させたSiO2ガラス;SiO2−B2O3
ガラス;フツ素をドープしたSiO2等のガラスを
用いてもよい。
Light waves of wavelengths λ 1 and λ 2 emitted from the fiber 10 are coupled to an optical waveguide formed on the back side of the substrate. The light wave with a wavelength λ 1 propagating through the optical waveguide has a wavelength λ 1 formed between the optical waveguide formed on the front side of the substrate and the optical waveguide formed on the back side.
The light passes through the dielectric multilayer film A that transmits light of other wavelengths and reflects light of other wavelengths, is coupled to an optical waveguide, and is emitted to the fiber 11. In addition, as the low refractive index glass that forms the cladding of the optical waveguide, for example, CVD
SiO 2 glass deposited by methods such as SiO 2 −B 2 O 3
Glass: Glass such as SiO 2 doped with fluorine may be used.

光導波路のコアを形成する高屈折率ガラスとし
ては、例えばCVD法等により堆積させた、
P2O5、GeO2、B2O3等をドープしたドープトシリ
カガラスあるいはリン酸系ガラス等の低損失ガラ
スを用いることができるが、これに限るものでは
なく、アルコール等の液体中に分散させたガラス
微粉末を光導波路を形成する基板上に沈澱させ、
これを乾燥、焼成、溶融してガラス層を形成して
も良い。誘導体多層膜としてはSiO2、TiO2の薄
膜を交互に多層蒸着したものを用いるが、これに
限るものではなく、例えばMgF2及びZnS等の材
料で誘電体層膜を構成してもよい。
As the high refractive index glass forming the core of the optical waveguide, for example, glass deposited by CVD method etc.
Low-loss glass such as doped silica glass doped with P 2 O 5 , GeO 2 , B 2 O 3 or the like or phosphate glass can be used, but is not limited to this. The dispersed glass fine powder is precipitated on the substrate forming the optical waveguide,
This may be dried, fired, and melted to form a glass layer. As the dielectric multilayer film, a film in which thin films of SiO 2 and TiO 2 are deposited alternately is used, but the dielectric film is not limited to this, and the dielectric film may be made of materials such as MgF 2 and ZnS.

光導波路を形成する基板としてガラスを用いる
場合には、光導波路を形成する場合に、基板温度
が余り上昇しない高周波スパツタリングを用いて
行えば良い。
When glass is used as the substrate for forming the optical waveguide, high-frequency sputtering may be used to form the optical waveguide, which does not cause a significant rise in substrate temperature.

以上の説明から明らかなように、本発明による
フイルタ付光結合回路は、2つの導波路の結合長
及びギヤツプを精度よく制御することができ、こ
れを制御することにより、一方の導波路中を伝搬
する光が、他方の導波路中に移行する量を変える
ことができるだけでなく、さらにギヤツプ間に波
長選択性を有する誘電体多層膜フイルタがあるの
で、種々の波長の光波から特定の波長の光波を分
離することができる。また、レンズ、ミラー等を
用いる光分波器に比べ、非常に小型の固体回路を
構成することができる。また本発明によるフイル
タ付結合回路を光合波分岐等を行う光固体回路と
組合せて用いることにより、種々の機能を持つ小
型の光固体回路を形成することができる利点があ
る。
As is clear from the above description, the optical coupling circuit with a filter according to the present invention can accurately control the coupling length and gap between two waveguides, and by controlling this, Not only can the amount of propagating light transferred into the other waveguide be changed, but there is also a dielectric multilayer filter between the gaps that has wavelength selectivity, so that it is possible to change the amount of light that propagates into the other waveguide. Light waves can be separated. Furthermore, compared to an optical demultiplexer using lenses, mirrors, etc., a much smaller solid-state circuit can be constructed. Further, by using the filter-equipped coupling circuit according to the present invention in combination with a solid-state optical circuit that performs optical multiplexing, branching, etc., there is an advantage that a compact solid-state optical circuit having various functions can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフイルター付光結合回路の断
面構造図、第2図及び第3図は光固体回路と光フ
アイバの結合例である。 1:シリコン基板、2a〜2d:低屈折率のク
ラツドガラス、3a,3b:光の導波路となる高
屈折率のコアガラス、4:誘電体多層膜、〜
:光導波路、A〜C:各々異なる波長選択性を
有する誘電体多層膜、5〜11:フアイバ。
FIG. 1 is a cross-sectional structural diagram of an optical coupling circuit with a filter according to the present invention, and FIGS. 2 and 3 are examples of coupling between an optical solid-state circuit and an optical fiber. 1: Silicon substrate, 2a to 2d: Low refractive index clad glass, 3a, 3b: High refractive index core glass serving as a light waveguide, 4: Dielectric multilayer film, ~
: Optical waveguide, A to C: Dielectric multilayer film each having different wavelength selectivity, 5 to 11: Fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 基板表面に所定パターンの溝を形成し、該溝
をガラス膜で被覆し、その上から上記ガラス膜よ
りも高屈折率のガラス層を堆積して上記溝をう
め、しかる後基板表面から余分のガラス層を除去
して表面を平坦にし、その表面上に溝内に堆積し
たガラスよりも低屈折率のガラス膜を被着させ光
導波路を形成した後、裏面より表面層に形成した
光の導波路と対向するように所定パターンの溝を
形成し、表面層に形成した光導波路の基板の溝底
面及び溝側面に被覆された低屈折率ガラス膜のい
ずれか一方のガラス膜面を露出させ、該露出され
た低屈折率のガラス膜面上に誘電体多層膜を形成
し、次いで裏面側に前記誘電体多層膜を介して表
面側の光導波路と接する光の導波路を形成したこ
とを特徴とするフイルター付光結合回路。
1 Form grooves in a predetermined pattern on the substrate surface, cover the grooves with a glass film, deposit a glass layer with a higher refractive index than the glass film on top of the grooves to fill the grooves, and then remove excess from the substrate surface. After removing the glass layer and making the surface flat, and forming an optical waveguide by depositing a glass film with a lower refractive index than the glass deposited in the groove on the surface, the light beam formed on the surface layer is A predetermined pattern of grooves is formed to face the waveguide, and either one of the glass film surfaces of the low refractive index glass film coated on the groove bottom and groove side surfaces of the substrate of the optical waveguide formed in the surface layer is exposed. , a dielectric multilayer film was formed on the exposed low refractive index glass film surface, and then an optical waveguide was formed on the back side in contact with the optical waveguide on the front side through the dielectric multilayer film. Features an optical coupling circuit with a filter.
JP11826379A 1979-09-14 1979-09-14 Photocoupling circuit with filter Granted JPS5642202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11826379A JPS5642202A (en) 1979-09-14 1979-09-14 Photocoupling circuit with filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11826379A JPS5642202A (en) 1979-09-14 1979-09-14 Photocoupling circuit with filter

Publications (2)

Publication Number Publication Date
JPS5642202A JPS5642202A (en) 1981-04-20
JPS624682B2 true JPS624682B2 (en) 1987-01-31

Family

ID=14732291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11826379A Granted JPS5642202A (en) 1979-09-14 1979-09-14 Photocoupling circuit with filter

Country Status (1)

Country Link
JP (1) JPS5642202A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690335B2 (en) * 1982-07-07 1994-11-14 富士通株式会社 Method for producing reflective surface of optical waveguide
JPH0685006B2 (en) * 1983-03-04 1994-10-26 富士通株式会社 Optical circuit element
JPH0740083B2 (en) * 1984-08-28 1995-05-01 富士通株式会社 Optical demultiplexer
JPH0660966B2 (en) * 1986-09-01 1994-08-10 富士通株式会社 Optical device manufacturing method

Also Published As

Publication number Publication date
JPS5642202A (en) 1981-04-20

Similar Documents

Publication Publication Date Title
JP7400741B2 (en) Optical device and its manufacturing method
US4765702A (en) Glass integrated optical component
JP4932029B2 (en) Waveguide-type variable optical attenuator
KR20050074290A (en) Method and apparatus for compactly coupling an optical fiber and a planar optical wave guide
JPH0321881B2 (en)
JP3952696B2 (en) Optical coupling structure
JPH09105824A (en) Waveguide type optical element
JPS624682B2 (en)
JPS59208509A (en) Optical multiplexer for single mode
JPH0660982B2 (en) Waveguide-type Matsuha-Tsender optical interferometer
US6483964B1 (en) Method of fabricating an optical component
JP2848144B2 (en) Tunable optical filter
JPS624683B2 (en)
US5410623A (en) Optical device having two optical waveguides connected and a method of producing the same
JP3125902B2 (en) Star type optical wiring circuit
JPH0980246A (en) Production of quartz-glass waveguide
JP2728421B2 (en) Optical waveguide
KR20050097923A (en) Array waveguide lattice type optical multiplexer/demultiplexer circuit
CA2141379A1 (en) Broadband integrated optical proximity coupler
JPH0720336A (en) Structure of optical waveguide and its production
JPH01214803A (en) Optical directional coupler
JP3214544B2 (en) Planar optical waveguide
JPH0727087B2 (en) Polarization separation coupling waveguide
JP2003222748A (en) Optical waveguide type polarization separation element and its manufacturing method
JPS6365406A (en) Optical waveguide and its production