JPH09105824A - Waveguide type optical element - Google Patents

Waveguide type optical element

Info

Publication number
JPH09105824A
JPH09105824A JP26148095A JP26148095A JPH09105824A JP H09105824 A JPH09105824 A JP H09105824A JP 26148095 A JP26148095 A JP 26148095A JP 26148095 A JP26148095 A JP 26148095A JP H09105824 A JPH09105824 A JP H09105824A
Authority
JP
Japan
Prior art keywords
filter
groove
dielectric multilayer
waveguide
multilayer filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26148095A
Other languages
Japanese (ja)
Other versions
JP3175814B2 (en
Inventor
Yasuyuki Inoue
靖之 井上
Taisuke Oguchi
泰介 小口
Yoshinori Hibino
善典 日比野
Masao Kawachi
正夫 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26148095A priority Critical patent/JP3175814B2/en
Publication of JPH09105824A publication Critical patent/JPH09105824A/en
Application granted granted Critical
Publication of JP3175814B2 publication Critical patent/JP3175814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variation in the insertion loss of a reflection type wavelength multiplexer demultiplexer (WDM) and improve the product yield by inserting a curved optical element into a groove which is formed crossing waveguides. SOLUTION: The curved optical element 7 is inserted into the groove 6 which is formed across the single-made optical waveguides 3-5 formed on the plane substrate 1. It is considered that the insertion loss of a dielectric multi- layered film filter reflection type WDM consisting of a dielectric multi-layered film filter a is caused by the tilt angle of the dielectric multi-layered film filter, so when the dielectric multi-layered film is formed, vapor deposition is performed under conditions where the filter curves and the curvature is intentionally utilized to suppress the tiling of the filter. Here, a relation of 0<=Dg->Df<=W×W/(8×R) is valid, where R is the radius of the curvature of the dielectric multi-layered film filter, W is the lateral width of the filter, Df is the film thickness of the filter, and Dg is the groove width.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光通信用の導波形光
素子に関するものであって、さらに詳しくは、異なる波
長の光を合分波する機能を有する波長合分波器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical element for optical communication, and more particularly to a wavelength multiplexer / demultiplexer having a function of multiplexing / demultiplexing lights having different wavelengths.

【0002】[0002]

【従来の技術】図14に示すような、基板1上に形成さ
れた光導波路3,4,5の交差部6に誘電体多層膜フィ
ルタ7を挿入した回路は、単純でしかも優れた誘電体多
層膜フィルタの波長特性を有効に利用できるためクロス
トークの小さな波長合分波器(WDM)として極めて有
用である。(図15において、符号2はクラッドであ
る。)その動作原理を簡単に説明する。コモンポート
3′から波長多重された光が入射されたとき、誘電体多
層膜フィルタの透過波長λ1 の光は誘電体多層膜フィル
タを透過してポート4′から出力される。一方、誘電体
多層膜フィルタの阻止波長λ2 の光は導波路の交差部に
おいて誘電体多層膜フィルタによって反射され、ポート
5′から出力される。一般に誘電体多層膜フィルタを用
いて1nm以下の波長分解能を持つ波長フィルタを実現
することは難しいが、例えば1.3μm光透過/1.5
5μm光阻止のように10nm〜数百nmの波長分解能
を有する波長フィルタを実現することは容易であり、そ
のクロストークが極めて小さいという特徴を有する。実
際に1.3μm光透過/1.55μm光阻止の誘電体多
層膜フィルタを用いて作製した図14の回路において、
1.55μm光をコモンポート3′から入射したときポ
ート4′に漏れ込む光は、ポート5′からの出力光に比
べて−45dBと小さく、極めて良好な特性を示した。
このように誘電体多層膜フィルタを用いた反射型WDM
は、誘電体多層膜フィルタの優れた波長特性を有効に利
用して簡易なWDMを実現できるため実用的な光部品と
して現在盛んに研究開発が進められている。
2. Description of the Related Art As shown in FIG. 14, a circuit in which a dielectric multilayer filter 7 is inserted at an intersection 6 of optical waveguides 3, 4, 5 formed on a substrate 1 has a simple and excellent dielectric. Since the wavelength characteristics of the multilayer filter can be effectively used, it is extremely useful as a wavelength division multiplexer (WDM) with small crosstalk. (In FIG. 15, reference numeral 2 is a clad.) The operation principle will be briefly described. When the wavelength-multiplexed light enters from the common port 3 ', the light having the transmission wavelength λ 1 of the dielectric multilayer filter passes through the dielectric multilayer filter and is output from the port 4'. On the other hand, the light having the blocking wavelength λ 2 of the dielectric multilayer filter is reflected by the dielectric multilayer filter at the intersection of the waveguides and output from the port 5 '. Generally, it is difficult to realize a wavelength filter having a wavelength resolution of 1 nm or less using a dielectric multilayer filter, but for example, 1.3 μm light transmission / 1.5
It is easy to realize a wavelength filter having a wavelength resolution of 10 nm to several hundreds nm, such as 5 μm light blocking, and its crosstalk is extremely small. In the circuit of FIG. 14 actually manufactured by using a dielectric multilayer filter of 1.3 μm light transmission / 1.55 μm light blocking,
When 1.55 .mu.m light was incident from the common port 3 ', the light leaking into the port 4'was as small as -45 dB as compared with the output light from the port 5', showing extremely good characteristics.
In this way, the reflection type WDM using the dielectric multilayer filter
Has been actively researched and developed as a practical optical component because a simple WDM can be realized by effectively utilizing the excellent wavelength characteristics of the dielectric multilayer filter.

【0003】[0003]

【発明が解決しようとする課題】従来、上記の誘電体多
層膜フィルタを用いた反射型WDMをシングルモード光
導波路を用いて作製した場合、挿入損失ばらつきが大き
いという問題があった。すなわち、コモンポート3′か
ら入射した波長λ2 の光が誘電体多層膜フィルタで反射
されて、ポート5′に出力されるときの挿入損失にばら
つきが大きいという問題があった。そこでこの挿入損失
ばらつきを抑えることが、製品歩留りを向上する上で最
重要課題であった。
Conventionally, when a reflection type WDM using the above-mentioned dielectric multi-layer film filter is manufactured by using a single mode optical waveguide, there is a problem that variation in insertion loss is large. That is, there is a problem in that the insertion loss when the light of wavelength λ 2 incident from the common port 3'is reflected by the dielectric multilayer filter and output to the port 5'is large. Therefore, suppressing this insertion loss variation was the most important issue in improving the product yield.

【0004】また、反射型WDMを大量に作製するとき
に、誘電体多層膜フィルタを溝に挿入する工程が難し
く、その作業に時間を要していた。低コストなWDMを
実現するためには、誘電体多層膜フィルタの溝への挿入
工程を容易にする必要があった。
Further, when a large number of reflective WDMs are manufactured, the process of inserting the dielectric multilayer filter into the groove is difficult, and the work takes time. In order to realize a low-cost WDM, it was necessary to facilitate the step of inserting the dielectric multilayer filter into the groove.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明による導波形光素子は、平面基板上に形成さ
れたシングルモード光導波路と、該光導波路を横切って
形成された溝と、該溝内に挿入された反りのある光素子
とを具えたことを特徴とする。
In order to solve the above problems, a waveguide type optical element according to the present invention comprises a single mode optical waveguide formed on a flat substrate and a groove formed across the optical waveguide. , And a warped optical element inserted in the groove.

【0006】ここで、前記光導波路が交差部を有する交
差シングルモード光導波路であり、前記溝が該交差部に
加工されており、前記反りのある光素子が誘電体多層膜
フィルタから構成される誘電体多層膜フィルタ反射型波
長合分波器であって、該誘電体多層膜フィルタの反りの
曲率半径Rと、フィルタの横幅W、フィルタの膜厚D
f、前記溝幅Dgとの間に、
Here, the optical waveguide is an intersecting single-mode optical waveguide having an intersecting portion, the groove is processed at the intersecting portion, and the warped optical element is composed of a dielectric multilayer film filter. A dielectric multi-layer film filter reflection type wavelength multiplexer / demultiplexer, wherein the radius of curvature R of the warp of the dielectric multi-layer film filter, the lateral width W of the filter, and the film thickness D of the filter.
f, between the groove width Dg,

【0007】[0007]

【数2】0≦Dg−Df≦W×W/(8×R) という関係式が成り立つようにするとよい。## EQU00002 ## It is preferable that the relational expression 0.ltoreq.Dg-Df.ltoreq.W.times.W / (8.times.R) holds.

【0008】さらに、前記誘電体多層膜フィルタがポリ
イミド基板と誘電体の多層膜とから構成されているとよ
く、前記シングルモード光導波路が埋め込み導波路であ
り、前記溝の該シングルモード導波路よりも上部におい
て溝幅が広がるようなテーパが設けられているとよい。
Further, it is preferable that the dielectric multilayer filter is composed of a polyimide substrate and a dielectric multilayer, the single mode optical waveguide is a buried waveguide, and the single mode waveguide of the groove is Also, it is preferable that the upper part be provided with a taper so that the groove width widens.

【0009】[0009]

【発明の実施の形態】上述した第一の課題を解決するた
めに、我々はまず挿入損失の原因を調べた。挿入損失の
大部分は、誘電体多層膜フィルタにおける反射で生じ
る。その要因としては誘電体多層膜フィルタの倒れ角θ
と考えられる。この様子を図15に示す。溝6の幅Dg
と誘電体多層膜フィルタ7の厚みDfとの間に差がある
ために、誘電体多層膜フィルタが傾いてしまう。我々は
当初、この誘電体多層膜フィルタの倒れを抑制するため
に、フィルタ膜厚Dfと溝幅Dgとの差を小さくして、
両者の間の隙間を細めると共に、溝の深さを深くするこ
とによってフィルタの倒れを抑制しようと試みた。しか
しながら、タイシングソーを用いて細かい溝を深く加工
しようとすると、加工時に歯に加わる負荷が大きくな
り、溝そのものが傾く傾向にあることが明らかになっ
た。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the first problem described above, we first investigated the cause of insertion loss. Most of the insertion loss is caused by reflection in the dielectric multilayer filter. The cause is the tilt angle θ of the dielectric multilayer filter.
it is conceivable that. This state is shown in FIG. Width Dg of groove 6
And the thickness Df of the dielectric multilayer filter 7, the dielectric multilayer filter is inclined. We initially reduced the difference between the filter film thickness Df and the groove width Dg in order to prevent the dielectric multilayer filter from collapsing,
Attempts were made to suppress the collapse of the filter by narrowing the gap between the two and increasing the depth of the groove. However, it has been clarified that when a fine groove is deeply machined by using a saw, the load applied to the teeth during machining becomes large and the groove itself tends to be inclined.

【0010】そこで本発明では、誘電体多層膜フィルタ
の倒れを抑制するために、誘電体多層膜フィルタの反り
を利用することとした。すなわち、誘電体多層膜の成膜
時にフィルタに反りが生じるような条件で蒸着を行い、
その反りを故意に利用してフィルタの倒れを抑制する。
具体的には、誘電体多層膜フィルタの膜厚Dfが溝幅D
gよりも小さく、かつ、誘電体多層膜フィルタの反りs
と膜厚Dfとを合計した厚みが溝幅Dgよりも大きくな
るように設定すれば、誘電体多層膜フィルタはその中央
部が溝の側面に密着する。その結果としてフィルタが溝
の中で倒れる問題は解消される。上記の条件を式で表す
と以下のようになる。
Therefore, in the present invention, in order to prevent the dielectric multilayer filter from collapsing, the warp of the dielectric multilayer filter is used. That is, vapor deposition is performed under the condition that the filter is warped when the dielectric multilayer film is formed,
The warp is intentionally used to prevent the filter from collapsing.
Specifically, if the film thickness Df of the dielectric multilayer filter is the groove width D
less than g and the warp s of the dielectric multilayer filter
If the total thickness of the dielectric film filter and the film thickness Df is set to be larger than the groove width Dg, the central portion of the dielectric multilayer film filter is in close contact with the side surface of the groove. As a result, the problem of the filter falling over in the groove is eliminated. The above condition is expressed by the following formula.

【0011】[0011]

【数3】 0≦Dg−Df≦s (1) 図16に多層膜フィルタの反りの様子を示す。反りの曲
率半径をR、反りの量をs、幅Wの反ったフィルタの弦
に相当する長さをW′とする。R≫Wのとき、W′/2
=W/2と近似できる。三角形abcとcbdは相似で
ある。よって、s:W/2=W/2:2R−sとなり、
この式を変形して
## EQU00003 ## 0.ltoreq.Dg-Df.ltoreq.s (1) FIG. 16 shows how the multilayer filter warps. The radius of curvature of the warp is R, the amount of warp is s, and the length corresponding to the chord of the warped filter having a width W is W ′. When R >> W, W '/ 2
= W / 2 can be approximated. The triangles abc and cbd are similar. Therefore, s: W / 2 = W / 2: 2R-s,
Transform this formula

【0012】[0012]

【数4】 (Equation 4)

【0013】従って、フィルタの反りsは、曲率半径R
がフィルタの横幅Wに比べて十分に大きいとき、以下の
関係式で表される。
Therefore, the warp s of the filter is determined by the radius of curvature R
Is sufficiently larger than the lateral width W of the filter, it is expressed by the following relational expression.

【0014】[0014]

【数5】 s=W×W/(8×R) (2) 上記2つの式から以下の式が成り立つ範囲で溝幅Dgお
よびフィルタの膜厚Dfを選ぶことによってフィルタを
溝の側面に密着させることが可能となる。
S = W × W / (8 × R) (2) By selecting the groove width Dg and the film thickness Df of the filter within the range where the following expression is satisfied from the above two expressions, the filter is adhered to the side surface of the groove. It becomes possible.

【0015】[0015]

【数6】0≦Dg−Df≦W×W/(8×R) フィルタは自らの反りによって、溝の側面に押さえつけ
られるような状態になっているため、誘電体多層膜フィ
ルタの倒れが抑制されることになる。その結果、課題で
あった光の挿入損失ばらつきは抑制されて、低挿入損失
で製品歩留りが高い反射WDMを作製することができ
る。
[Equation 6] 0 ≦ Dg−Df ≦ W × W / (8 × R) Since the filter is pressed against the side surface of the groove by its own warp, the dielectric multilayer filter is prevented from falling. Will be done. As a result, it is possible to suppress the variation in the insertion loss of light, which is a problem, and to manufacture a reflective WDM with a low insertion loss and a high product yield.

【0016】第二の課題に対しては、壁面が導波路表面
に対して垂直な溝を加工した後にさらにV字型の歯を用
いて溝の入り口を広げることによって誘電体多層膜フィ
ルタの溝挿入を容易にする。このとき導波路としてその
コアが内部に埋め込まれたものを用いることによって、
光の挿入損失を増加させずにフィルタ挿入を容易にし、
低コストな波長合分波器を実現させることができる。
For the second problem, after the groove whose wall surface is perpendicular to the waveguide surface is processed, the groove entrance is further widened by using V-shaped teeth to form the groove of the dielectric multilayer filter. Facilitates insertion. At this time, by using a waveguide whose core is embedded inside,
Facilitates filter insertion without increasing optical insertion loss,
A low-cost wavelength multiplexer / demultiplexer can be realized.

【0017】本発明の反射型WDMは、クロストークが
極めて小さく理想的な波長特性を持ち、従来の課題であ
った挿入損失ばらつきが小さい。このため製品歩留りが
大幅に向上した。また誘電体多層膜フィルタの溝への挿
入作業が容易になった。以上の結果として低コストな反
射型WDMが実現された。
The reflection type WDM of the present invention has an extremely small crosstalk and an ideal wavelength characteristic, and has a small insertion loss variation, which has been a problem in the past. As a result, the product yield is significantly improved. Further, the insertion work into the groove of the dielectric multilayer filter becomes easier. As a result of the above, a low-cost reflective WDM was realized.

【0018】[0018]

【実施例】【Example】

実施例1 本実施例ではシリコン基板上に石英系のガラスを堆積さ
せて作製した石英系プレーナ光波回路(PLC)を用い
る。石英系PLCはシリコン基板上に火炎堆積法と反応
性イオンエッチング法で作製され、低損失でシングルモ
ード光ファイバと整合性の良い光導波回路が実現されて
いる。詳しくは、河内正男「プレーナ光波回路」電学論
C、113巻6号、440〜445ページ、平成5年、
に記述されている。
Example 1 In this example, a silica-based planar lightwave circuit (PLC) manufactured by depositing silica-based glass on a silicon substrate is used. A silica-based PLC is manufactured on a silicon substrate by a flame deposition method and a reactive ion etching method, and an optical waveguide circuit having low loss and good compatibility with a single mode optical fiber is realized. For more details, Masao Kawauchi, "Planar Lightwave Circuit," Denron Theory C, Vol. 113, No. 6, 440-445, 1993,
It is described in.

【0019】第1の実施例の回路構成を図1に示す。シ
リコン基板1上にコア3,4および5がクラッド2に覆
われて形成され、シングルモード光導波路3,4および
5を構成している。光導波路3と5が交わる位置に溝6
が形成され、溝内に反りを有する光素子7、この例では
誘電体多層膜フィルタが挿入されている。また図1のA
A′の拡大断面図を図2に示す。さらに図1の誘電体多
層膜フィルタ挿入部の拡大図を図3に、図3を真上から
みた図を図4に、図4中のBB′線の拡大断面図を図5
に示す。この例では光導波路3と4の光軸は一致してい
る。導波路はコアとクラッドの比屈折率差が0.45
%、コアサイズが7μm角になっている。誘電体多層膜
フィルタは1.3μmの光は透過して1.55μmの光
は反射するように設計されている。
The circuit configuration of the first embodiment is shown in FIG. The cores 3, 4 and 5 are formed on the silicon substrate 1 so as to be covered with the clad 2 to form the single mode optical waveguides 3, 4 and 5. A groove 6 is formed at a position where the optical waveguides 3 and 5 intersect.
Is formed, and an optical element 7 having a warp in the groove, which is a dielectric multilayer filter in this example, is inserted. Also, in FIG.
An enlarged sectional view of A'is shown in FIG. Further, an enlarged view of the dielectric multilayer filter insertion portion of FIG. 1 is shown in FIG. 3, a view of FIG. 3 seen from directly above is shown in FIG. 4, and an enlarged sectional view of line BB ′ in FIG. 4 is shown in FIG.
Shown in In this example, the optical axes of the optical waveguides 3 and 4 coincide with each other. The waveguide has a relative refractive index difference of 0.45 between the core and the clad.
%, The core size is 7 μm square. The dielectric multilayer filter is designed so that light of 1.3 μm is transmitted and light of 1.55 μm is reflected.

【0020】以下にその簡単な動作原理を示す。1.3
μmと1.55μmの光が合波された状態でコモンポー
ト3′から入射されたとき、光はシングルモード光導波
路3を伝搬した後、1.55μmの光のみが誘電体多層
膜フィルタ7で反射されて光導波路5を経てポート5′
に出力される。一方1.3μmの光は誘電体多層膜フィ
ルタ7を透過して、光導波路4を伝搬してポート4′か
ら出力される。
The simple operation principle will be described below. 1.3
When the lights of μm and 1.55 μm are combined and incident from the common port 3 ′, the light propagates through the single mode optical waveguide 3 and then only the light of 1.55 μm is passed through the dielectric multilayer filter 7. The reflected light passes through the optical waveguide 5 and the port 5 '.
Is output to On the other hand, the 1.3 μm light transmits through the dielectric multilayer filter 7, propagates through the optical waveguide 4, and is output from the port 4 ′.

【0021】ここで本実施例に用いた誘電体多層膜フィ
ルタの拡大図を図6に示す。誘電体多層膜フィルタは5
μm厚のポリイミド薄膜8の表面にSiO2 /TiO2
多層膜9を9μm蒸着して作製し、全体のフィルタの厚
みは14μmとした。従来の誘電体多層膜フィルタはほ
とんど反らないような条件を用いて作製していたが、本
発明では逆にSiO2 /TiO2 の蒸着時に生じる誘電
体膜内の内部応力を積極的に利用して誘電体多層膜フィ
ルタの反りを発生させた。具体的には横幅Wが1mmの
フィルタで反りsが10μm、曲率半径Rが13mmと
なるものを作製した。この結果、フィルタの反り量10
μmとフィルタの厚み14μmの合計24μmよりも細
い幅の溝にこのフィルタを挿入すれば、フィルタの中央
部が溝の側面に密着するので溝の中でのフィルタの倒れ
は抑制される。本実施例では溝幅が20μm、溝深さが
150μmの溝をダイシングソーを用いて作製し、そこ
に曲率半径13mm、横幅が1mm、反り10μmのフ
ィルタを挿入して誘電体多層膜フィルタ反射型WDMを
100サンプル作製した。このときコモンポート3′か
ら入射されてポート5′から出力される1.55μm光
の挿入損失の分布を図7に示す。また比較のために、従
来用いていた曲率半径が130mm、横幅が1mm、反
り1μmのフィルタを挿入して作製した誘電体多層膜フ
ィルタ反射型WDMの挿入損失の分布も併せて図8に示
す。明らかに反りの大きな誘電体多層膜フィルタを用い
ることによって、波長合分波器の平均挿入損失および挿
入損失ばらつきが低減されていることがわかる。
Here, an enlarged view of the dielectric multilayer filter used in this embodiment is shown in FIG. Dielectric multilayer filter is 5
SiO 2 / TiO 2 is formed on the surface of the polyimide thin film 8 having a thickness of μm.
The multilayer film 9 was produced by vapor deposition of 9 μm, and the thickness of the entire filter was 14 μm. The conventional dielectric multilayer filter was manufactured under the condition that it hardly warps, but in the present invention, conversely, the internal stress in the dielectric film generated during the deposition of SiO 2 / TiO 2 is positively utilized. Then, the warp of the dielectric multilayer filter was generated. Specifically, a filter having a width W of 1 mm and a warp s of 10 μm and a radius of curvature R of 13 mm was manufactured. As a result, the warp amount of the filter is 10
If this filter is inserted into a groove having a width smaller than 24 μm, which is a total of μm and the thickness of the filter of 14 μm, the center portion of the filter is brought into close contact with the side surface of the groove, so that the collapse of the filter in the groove is suppressed. In this embodiment, a groove having a groove width of 20 μm and a groove depth of 150 μm is manufactured by using a dicing saw, and a filter having a radius of curvature of 13 mm, a width of 1 mm and a warp of 10 μm is inserted therein, and a dielectric multilayer filter reflective type. 100 WDM samples were prepared. FIG. 7 shows the distribution of the insertion loss of 1.55 μm light that is incident from the common port 3 ′ and is output from the port 5 ′ at this time. For comparison, FIG. 8 also shows the distribution of insertion loss of a dielectric multilayer filter reflective WDM, which is manufactured by inserting a conventionally used filter having a radius of curvature of 130 mm, a lateral width of 1 mm, and a warp of 1 μm. It can be seen that the average insertion loss and the variation of the insertion loss of the wavelength multiplexer / demultiplexer are reduced by using the dielectric multi-layer film filter having a large warp.

【0022】実施例2 実施例1で述べたように誘電体多層膜フィルタの反りを
利用することによって、挿入損失の値が小さくかつその
ばらつきが小さな波長合分波器が作製可能となった。し
かしながらそれにともなって誘電体多層膜フィルタに反
りがある場合はフィルタの溝挿入が難しくなるという問
題が生じた。実施例1で示したように溝幅は20μm
で、そこに10μmの反りを持つ厚み14μmの誘電体
多層膜フィルタを挿入することはかなり難しく、時間を
要する作業であった。
Example 2 By using the warp of the dielectric multilayer filter as described in Example 1, it is possible to manufacture a wavelength multiplexer / demultiplexer having a small insertion loss value and a small variation. However, when the dielectric multi-layered film filter has a warp, the groove insertion of the filter becomes difficult. The groove width is 20 μm as shown in Example 1.
It was quite difficult and time-consuming to insert a 14 μm-thick dielectric multilayer filter having a warp of 10 μm therein.

【0023】この問題を解消するために我々は、溝幅が
一定の溝をダイシングソーを用いて加工した後に、さら
に先端がV字型の歯を用いて同じ位置を再加工すること
によって、溝の入り口を広げた。ここで溝の加工を行う
順番として、V字型の歯を用いてV形状の溝を加工した
後に、歯厚が一定の通常の歯を用いて溝加工を行うと、
2回の溝加工の僅かな位置ズレが原因で、溝が傾いてし
まうという問題があった。よって先に、歯厚が一定の歯
10で溝幅が一定の溝を加工した後、溝の入り口の幅を
広げる目的でV字型の歯10′を用いて溝加工を行うと
有効である。溝幅一定の溝の加工の前後の様子を図9
(a),(b)に、さらにその溝の入り口を広げるため
の加工の前後の様子を図10(a),(b)に示す。こ
こで図9(c),図10(c)はそれぞれダイシングソ
ーの歯の断面形状を示す。
In order to solve this problem, we have prepared a groove having a constant groove width by using a dicing saw, and then re-machining the groove at the same position by using V-shaped teeth. Widened the entrance. Here, as the order of performing the groove processing, when the V-shaped groove is processed using the V-shaped tooth and then the groove processing is performed using the normal tooth having a constant tooth thickness,
There is a problem that the groove is tilted due to a slight positional deviation between the two groove processes. Therefore, it is effective to first form a groove having a constant groove width with the tooth 10 having a constant tooth thickness, and then perform groove processing using the V-shaped tooth 10 'for the purpose of widening the width of the groove entrance. . Fig. 9 shows the state before and after processing a groove with a constant groove width.
10 (a) and 10 (b), and FIGS. 10 (a) and 10 (b) show the states before and after processing for further widening the entrance of the groove. Here, FIG. 9C and FIG. 10C respectively show cross-sectional shapes of the teeth of the dicing saw.

【0024】このようにして作製した溝に曲率半径13
mm、横幅が1mm、反り10μmの誘電体多層膜フィ
ルタを挿入した様子を図11に示す。そのフィルタ部の
拡大図を図12に、図12の中のCC′線における拡大
断面図を図13に示す。
A radius of curvature of 13 is formed in the groove thus produced.
FIG. 11 shows a state in which a dielectric multilayer filter having a width of 10 mm and a warp of 10 μm is inserted. An enlarged view of the filter portion is shown in FIG. 12, and an enlarged sectional view taken along the line CC ′ in FIG. 12 is shown in FIG.

【0025】具体的な寸法は、導波路のコアが表面から
23μm埋め込まれており、先端が60°の歯を深さ2
5μmで加工した。この時溝の入り口の幅は29μmと
なり、V字型の歯で加工しないときの20μmに比べて
大幅にフィルタの挿入が容易になった。この結果として
フィルタ挿入にかかる時間が短縮され、誘電体多層膜フ
ィルタを用いて低コストな波長合分波器を実現できた。
The specific dimensions are as follows: the core of the waveguide is embedded 23 μm from the surface, and the tooth with the tip of 60 ° has a depth of 2
It was processed at 5 μm. At this time, the width of the entrance of the groove was 29 μm, which made the insertion of the filter much easier than 20 μm when the V-shaped teeth were not processed. As a result, the time required to insert the filter was shortened, and a low-cost wavelength multiplexer / demultiplexer was realized using the dielectric multilayer filter.

【0026】以上、本発明の実施例を石英系導波路を用
いた場合について説明してきたが、本発明の回路は石英
系導波路以外の拡散ガラス導波路、ポリマ導波路などい
かなる埋め込み導波路に対しても適用可能である。
Although the embodiment of the present invention has been described with respect to the case where the silica-based waveguide is used, the circuit of the present invention can be applied to any buried waveguide such as a diffusion glass waveguide or a polymer waveguide other than the silica-based waveguide. It can also be applied.

【0027】また本発明では1.3μm光を透過し、
1.55μm光を反射する波長合波器に関して説明を行
ったが、実施例で示した誘電体多層膜フィルタを入れ換
えることによってそれ以外の波長領域の波長合分波器と
しても使用できることは明らかである。
In the present invention, 1.3 μm light is transmitted,
Although the wavelength multiplexer that reflects 1.55 μm light has been described, it is clear that it can be used as a wavelength multiplexer / demultiplexer in other wavelength regions by replacing the dielectric multilayer filters shown in the examples. is there.

【0028】さらに本発明ではポリイミド薄膜基板の上
にSiO2 /TiO2 の誘電体多層膜を形成した誘電体
多層膜フィルタを用いたが、それぞれの材料はこれに限
定するものではなく、フィルタが請求項に示す反りを有
していればよい。
Further, in the present invention, a dielectric multilayer filter in which a dielectric multilayer film of SiO 2 / TiO 2 is formed on a polyimide thin film substrate is used, but each material is not limited to this, and the filter is not limited to this. It is sufficient if it has the warp shown in the claims.

【0029】[0029]

【発明の効果】本発明の波長合波器は、非常に良好な特
性を有しさらに容易に作製可能であるため家庭用の光送
受信モジュールの波長合分波器や線路監視用カップラな
どに適用可能である。
INDUSTRIAL APPLICABILITY The wavelength multiplexer of the present invention has very good characteristics and can be easily manufactured. Therefore, the wavelength multiplexer is applied to a wavelength multiplexer / demultiplexer of a household optical transceiver module, a line monitoring coupler, and the like. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の誘電体多層膜フィルタを用いた
反射型WDMを示す図である。
FIG. 1 is a diagram showing a reflective WDM using a dielectric multilayer filter of a first embodiment.

【図2】図1のAA′線における拡大断面図である。FIG. 2 is an enlarged cross-sectional view taken along the line AA ′ of FIG.

【図3】図1のフィルタ部の拡大図である。FIG. 3 is an enlarged view of the filter unit in FIG.

【図4】図3を上から見た図である。FIG. 4 is a view of FIG. 3 seen from above.

【図5】図4のBB′線における拡大断面図である。5 is an enlarged cross-sectional view taken along the line BB ′ of FIG.

【図6】第1の実施例で用いた誘電体多層膜フィルタの
形状を示す図である。
FIG. 6 is a diagram showing the shape of a dielectric multilayer filter used in the first embodiment.

【図7】第1の実施例の反射型WDMにおいて、コモン
ポート3′から入射されてポート5′から出力される
1.55μm光の挿入損失分布を示す図である。
FIG. 7 is a diagram showing an insertion loss distribution of 1.55 μm light that is incident from the common port 3 ′ and is output from the port 5 ′ in the reflective WDM of the first embodiment.

【図8】第1の実施例の比較対照である従来の誘電体多
層膜フィルタを用いた反射型WDMにおいて、コモンポ
ート3′から入射されてポート5′から出力される1.
55μm光の挿入損失分布を示す図である。
FIG. 8 is a schematic diagram of a reflection type WDM using a conventional dielectric multilayer filter, which is a comparative control of the first embodiment, in which light is incident from a common port 3 ′ and is output from a port 5 ′.
It is a figure which shows the insertion loss distribution of 55-micrometer light.

【図9】第2の実施例において、溝幅一定の溝加工を説
明するための図である。
FIG. 9 is a diagram for explaining groove processing with a constant groove width in the second embodiment.

【図10】図9で作製した溝の入り口を広げるための加
工を説明する図である。
FIG. 10 is a diagram illustrating a process for widening the entrance of the groove manufactured in FIG.

【図11】第2の実施例の誘電体多層膜フィルタを用い
た反射型WDMを示す図である。
FIG. 11 is a diagram showing a reflective WDM using the dielectric multilayer filter of the second embodiment.

【図12】図11のフィルタ部の拡大図である。FIG. 12 is an enlarged view of the filter unit in FIG.

【図13】図12のCC′線における拡大断面図であ
る。
13 is an enlarged cross-sectional view taken along the line CC ′ of FIG.

【図14】従来技術による誘電体多層膜フィルタを用い
た反射型WDMを示す図である。
FIG. 14 is a view showing a reflection type WDM using a dielectric multilayer filter according to a conventional technique.

【図15】従来技術による反射型WDMフィルタにおい
て、挿入損失が大きくかつばらつく原因を説明するため
の図である。
FIG. 15 is a diagram for explaining the cause of large and varying insertion loss in a conventional reflective WDM filter.

【図16】フィルタの反り量を説明するための図であ
る。
FIG. 16 is a diagram for explaining a warp amount of a filter.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 クラッド 3 入力導波路 3′ コモンポート 4 第1の出力導波路 4′ 第1の出力ポート 5 第2の出力導波路 5′ 第2の出力ポート 6 誘電体多層膜フィルタの挿入溝 6′ 溝の入り口を広げた誘電体多層膜フィルタの挿入
溝 7 誘電体多層膜フィルタ 8 ポリイミド薄膜基板 9 SiO2 /TiO2 誘電体多層膜 10 ダイシングソーの歯 10′ 先端の形状がV字型になっているダイシングゾ
ーの歯 W 誘電体多層膜フィルタの横幅 s 優先体多層膜フィルタの反り量 R 誘電体多層膜フィルタの曲率半径 Df 誘電体多層膜フィルタの膜厚 Dg 誘電体多層膜フィルタ挿入溝の溝幅 θ 誘電体多層膜フィルタの倒れ角
1 Silicon Substrate 2 Clad 3 Input Waveguide 3'Common Port 4 First Output Waveguide 4'First Output Port 5 Second Output Waveguide 5'Second Output Port 6 Dielectric Multilayer Filter Insertion Groove 6'Insert groove of the dielectric multilayer filter with widened entrance of the groove 7 Dielectric multilayer filter 8 Polyimide thin film substrate 9 SiO 2 / TiO 2 Dielectric multilayer film 10 Dicing saw tooth 10 'Tip shape is V-shaped Of the dicing zo W width of the dielectric multilayer filter s warpage amount of the priority multilayer filter R radius of curvature of the dielectric multilayer filter Df thickness of the dielectric multilayer filter Dg insertion of the dielectric multilayer filter Groove width θ Tilt angle of dielectric multilayer filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河内 正夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Kawachi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平面基板上に形成されたシングルモード
光導波路と、該光導波路を横切って形成された溝と、該
溝内に挿入された反りのある光素子とを具えたことを特
徴とする導波形光素子。
1. A single mode optical waveguide formed on a flat substrate, a groove formed across the optical waveguide, and a warped optical element inserted in the groove. Waveguide type optical device.
【請求項2】 前記光導波路が交差部を有する交差シン
グルモード光導波路であり、前記溝が該交差部に加工さ
れており、前記反りのある光素子が誘電体多層膜フィル
タから構成される誘電体多層膜フィルタ反射型波長合分
波器であって、 該誘電体多層膜フィルタの反りの曲率半径Rと、フィル
タの横幅W、フィルタの膜厚Df、前記溝幅Dgとの間
に、 【数1】0≦Dg−Df≦W×W/(8×R) という関係式が成り立つことを特徴とする請求項1に記
載の導波形光素子。
2. A dielectric single-mode optical waveguide in which the optical waveguide has an intersecting portion, the groove is processed in the intersecting portion, and the warped optical element is a dielectric multilayer filter. A multilayer multi-layer film filter reflection-type wavelength multiplexer / demultiplexer, wherein the curvature radius R of the warp of the dielectric multi-layer film filter, the lateral width W of the filter, the film thickness Df of the filter, and the groove width Dg are: The waveguide type optical element according to claim 1, wherein a relational expression of 0 ≦ Dg−Df ≦ W × W / (8 × R) is established.
【請求項3】 前記誘電体多層膜フィルタがポリイミド
基板と誘電体の多層膜とから構成されていることを特徴
とする請求項2に記載の導波形光素子。
3. The waveguide type optical device according to claim 2, wherein the dielectric multilayer filter is composed of a polyimide substrate and a dielectric multilayer film.
【請求項4】 前記シングルモード光導波路が埋め込み
導波路であり、 前記溝の該シングルモード導波路よりも上部において溝
幅が広がるようなテーパが設けられていることを特徴と
する請求項1から3のいずれかに記載の導波形光素子。
4. The single-mode optical waveguide is a buried waveguide, and a taper is provided in the groove above the single-mode waveguide so as to widen the groove width. 3. The waveguide type optical element according to any one of 3 above.
JP26148095A 1995-10-09 1995-10-09 Waveguide optical device and method of manufacturing the same Expired - Lifetime JP3175814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26148095A JP3175814B2 (en) 1995-10-09 1995-10-09 Waveguide optical device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26148095A JP3175814B2 (en) 1995-10-09 1995-10-09 Waveguide optical device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09105824A true JPH09105824A (en) 1997-04-22
JP3175814B2 JP3175814B2 (en) 2001-06-11

Family

ID=17362499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26148095A Expired - Lifetime JP3175814B2 (en) 1995-10-09 1995-10-09 Waveguide optical device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3175814B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480647B1 (en) 1998-06-04 2002-11-12 Nec Corporation Waveguide-type wavelength multiplexing optical transmitter/receiver module
WO2004057397A1 (en) * 2002-12-20 2004-07-08 Ngk Insulators, Ltd. Optical device
US7039279B2 (en) 2001-10-04 2006-05-02 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US7044649B2 (en) 2001-10-04 2006-05-16 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
JP2007025605A (en) * 2005-07-21 2007-02-01 Sumitomo Electric Ind Ltd Optical waveguide device
US7172344B2 (en) 2001-10-04 2007-02-06 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
US7324729B2 (en) 2003-06-02 2008-01-29 Ngk Insulators, Ltd. Optical device
JP2012027388A (en) * 2010-07-27 2012-02-09 Nitto Denko Corp Optical sensor module
CN110869823A (en) * 2017-07-31 2020-03-06 科磊股份有限公司 Spectral filter for high power fiber optic illumination source
TWI717044B (en) * 2018-10-11 2021-01-21 日商三菱電機股份有限公司 Photosynthesis demultiplexer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033051B2 (en) * 2012-11-16 2016-11-30 大成建設株式会社 Basic unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480647B1 (en) 1998-06-04 2002-11-12 Nec Corporation Waveguide-type wavelength multiplexing optical transmitter/receiver module
US7172344B2 (en) 2001-10-04 2007-02-06 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US7039279B2 (en) 2001-10-04 2006-05-02 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US7044649B2 (en) 2001-10-04 2006-05-16 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
EP1574887A1 (en) * 2002-12-20 2005-09-14 Ngk Insulators, Ltd. Optical device
EP1574887A4 (en) * 2002-12-20 2006-05-31 Ngk Insulators Ltd Optical device
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
WO2004057397A1 (en) * 2002-12-20 2004-07-08 Ngk Insulators, Ltd. Optical device
US7324729B2 (en) 2003-06-02 2008-01-29 Ngk Insulators, Ltd. Optical device
JP2007025605A (en) * 2005-07-21 2007-02-01 Sumitomo Electric Ind Ltd Optical waveguide device
JP2012027388A (en) * 2010-07-27 2012-02-09 Nitto Denko Corp Optical sensor module
CN110869823A (en) * 2017-07-31 2020-03-06 科磊股份有限公司 Spectral filter for high power fiber optic illumination source
EP3635453A4 (en) * 2017-07-31 2021-03-31 Kla-Tencor Corporation Spectral filter for high-power fiber illumination sources
TWI717044B (en) * 2018-10-11 2021-01-21 日商三菱電機股份有限公司 Photosynthesis demultiplexer

Also Published As

Publication number Publication date
JP3175814B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
US6253015B1 (en) Planar waveguides with high refractive index
KR101121459B1 (en) Method and apparatus for compactly coupling an optical fiber and a planar optical wave guide
US5467415A (en) Method for making polarization independent silica optical circuits
US4756587A (en) Optical multi/demultiplexer
WO2004092782A2 (en) Mode transformation and loss reduction in silicon waveguide structures utilizing tapered transition regions
JPH09105824A (en) Waveguide type optical element
JPH09166716A (en) Planar optical waveguide element
WO2002075409A2 (en) Arrayed waveguide grating with waveguides of unequal widths
EP0484878B1 (en) Y-branching optical circuit
JP3344446B2 (en) Optical transceiver module
JPH08304664A (en) Wavelength demultiplexing element
US6442315B1 (en) Optical waveguide chip and method of formation thereof
JP2002156539A (en) Optical waveguide
EP0667542B1 (en) Broadband integrated optical proximity coupler
CN110941048B (en) High extinction ratio coarse wavelength division multiplexer/demultiplexer based on multi-mode interference principle
JP3228233B2 (en) Optical waveguide device
US20040240770A1 (en) Reducing the polarization dependent coupling coefficient in planar waveguide couplers
Reichelt et al. Wavelength-division multi demultiplexers for two-channel single-mode transmission systems
WO2007133915A1 (en) Integrated optical waveguide assemblies
JP3257785B2 (en) Manufacturing method of optical transceiver module
US6928215B1 (en) Optical tap for optical integrated circuits
JPS624682B2 (en)
KR100792627B1 (en) A wavelength demultiplexer based on multimode interference using quasi-state
JPS63106606A (en) Optical multiplexer and demultiplexer
KR100270320B1 (en) Straight arrayed waveguide grating wavelength division optical waveguide devices using total internal reflection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term