JPS624683B2 - - Google Patents

Info

Publication number
JPS624683B2
JPS624683B2 JP11826679A JP11826679A JPS624683B2 JP S624683 B2 JPS624683 B2 JP S624683B2 JP 11826679 A JP11826679 A JP 11826679A JP 11826679 A JP11826679 A JP 11826679A JP S624683 B2 JPS624683 B2 JP S624683B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
glass
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11826679A
Other languages
Japanese (ja)
Other versions
JPS5642203A (en
Inventor
Hiroyasu Sugiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11826679A priority Critical patent/JPS5642203A/en
Publication of JPS5642203A publication Critical patent/JPS5642203A/en
Publication of JPS624683B2 publication Critical patent/JPS624683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は光通信等に使用する光固体回路の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical solid-state circuit used for optical communications and the like.

最近の光フアイバは低損失となり伝送に使用で
きる波長領域が広くなつた。従つて波長の異なる
光を同一のフアイバ中に伝送させる光波長多重伝
送が可能になる。光フアイバに波長の異なる複数
の光信号を伝送する光多重伝送では、その光信号
を目的に応じた伝送系の要所で二つ以上の光フア
イバに分波分岐したり、または逆に二つ以上の光
フアイバからの光を1本のフアイバに合波結合さ
ることは不可欠な問題である。
Recent optical fibers have low loss and can be used for transmission over a wide range of wavelengths. Therefore, optical wavelength division multiplexing transmission in which lights of different wavelengths are transmitted through the same fiber becomes possible. In optical multiplexing transmission, which transmits multiple optical signals with different wavelengths through optical fibers, the optical signals are split into two or more optical fibers at important points in the transmission system depending on the purpose, or vice versa. It is an essential problem to combine the lights from the above optical fibers into one fiber.

また、同一波長の光を分岐・結合する光カプラ
は、モニタする使に方以外に、同一波長の光源を
用いる双方向通信には不可欠のデバイスであり、
また多分岐のカプラは1つの場所より多数の場所
へ信号を伝送するのに大変有効な光デバイスであ
る。そのため、このような機能を持つ光の集積回
路の発展性が半導体のIC化と同様に期待され
る。しかし、光集積形光回路を実現するには、横
断面内で二次完方向に光を閉じこめる光導波路構
造にする必要がある。
In addition, optical couplers that split and combine light of the same wavelength are not only used for monitoring purposes, but are also essential devices for two-way communication using light sources of the same wavelength.
Additionally, a multi-branch coupler is a very effective optical device for transmitting signals from one location to multiple locations. Therefore, it is expected that optical integrated circuits with such functions will have the same potential for development as semiconductor ICs. However, in order to realize an optical integrated optical circuit, it is necessary to create an optical waveguide structure that confines light in a quadratic perfect direction within a cross section.

従来、光集積回路の製造はガラスのスパツタリ
ング等による導路形を形成する試みがされている
が、伝送損失が大きかつたり、あるいは膜厚が薄
くマルチモード伝送向きでなかつた。
Conventionally, in the manufacture of optical integrated circuits, attempts have been made to form guide paths by sputtering glass, etc., but these have resulted in large transmission losses or are too thin to be suitable for multi-mode transmission.

本発明は上述の欠点に鑑みなされたもので、低
損失な光フアイバのコア部と同程度の大きさの光
導波路を基板の溝内にうめこんだ形で形成し、光
導波路間の結合量を増すため、および光導波路間
のギヤツプ及び結合長さを制御するのに便利なよ
うに裏面側より表面層に形成した光の導波路と対
向するように所定パターンの溝を形成し、表面層
に形成された光の導波路の低屈折率ガラス膜を介
して表面側の光導波路と接する光導波路を裏面側
から形成する光結合線路の製造方法を提供するも
のである。
The present invention was made in view of the above-mentioned drawbacks, and it forms an optical waveguide of the same size as the core part of a low-loss optical fiber by embedding it in a groove of a substrate, thereby reducing the amount of coupling between the optical waveguides. In order to conveniently control the gap and coupling length between the optical waveguides, grooves in a predetermined pattern are formed so as to face the optical waveguides formed in the surface layer from the back side. The present invention provides a method for manufacturing an optical coupling line in which an optical waveguide is formed from the back surface side to contact an optical waveguide on the front surface side through a low refractive index glass film of the optical waveguide formed on the surface.

本発明はシリコン(Si)、石英ガラス、水晶
(SiC2)、サフアイヤ(Al2O3)、その他の材料の
基板を用いて、基板の表面及び裏面に所定パター
ンの溝を形成し、その溝内に光導波路を、光導波
路のクラツドとなる低屈折率ガラス膜を介して表
面と裏面側の光導波路が互いに部分的な領域で接
するように形成するものである。
The present invention uses a substrate made of silicon (Si), quartz glass, crystal (SiC 2 ), sapphire (Al 2 O 3 ), or other materials, and forms grooves in a predetermined pattern on the front and back surfaces of the substrate, and An optical waveguide is formed inside the optical waveguide so that the optical waveguides on the front and back sides are in partial contact with each other through a low refractive index glass film that serves as the cladding of the optical waveguide.

以下本発明の実施例について、図面を用いて詳
細な説明を行う。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の方法によるSi基板とする光結
合線路の製造工程の例を順次に示したものであ
る。
FIG. 1 sequentially shows an example of the manufacturing process of an optical coupling line using a Si substrate according to the method of the present invention.

第1図aに示すごとく{100}面を表面とする
Siウエハ1を準備する。Si基板の厚さは約250μ
m程度である。bはこのSi基板を熱酸化して形成
したシリコン酸化膜にホトレジストを用いてパタ
ーニングを行なつたシリコン酸化膜(SiO2)2を
保護膜としてSi基板1をKOH水容液中で異方性
エツチングを行い、開き角70.53゜のV溝もしく
は台形状の溝を形成したものである。次にcに示
すごとくSi基板の溝に光の導波路をつくるため、
光導波路のクラツドとなるガラス層(以後クラツ
ド層と呼ぶ)3aを形成もる。Si基板1に溝を形
成した後、基板表面全面にCVD法等によりクラ
ツド層となるSiO2もしくは屈折率を低下させる
ようなドーバントを含むシリカガラス層3aを形
成する。なおクラツド層3aの厚さは光を伝搬さ
せるに必要な膜厚でよい。次に、dに示すごと
く、クラツド層3aの上面に、クラツド層3aよ
り屈折率の大きな、光の導波路のコア層となる
P2O2、GeO2、B2O3等のドーパントを含むシリカ
ガラス層4aをCVD法等により堆積させる。ガ
ラス層4を以後コアガラス層と呼ぶ。コアガラス
層4の堆積厚さはマルチモード用の場合60μm以
上が適当である。次いでeに示すごとくSi基板1
の溝部に堆積した部分の7ラツド層3a及びコア
ガラス層4aを残し、他の部分に堆積した層をエ
ツチング等の方法により除去して表面を平坦にす
る。ただし、場合により表面に凹凸を形成しても
差支えない。次いでfに示すごとく、eで形成し
た基板の上にクラツド層3bをCVD法等により
堆積させ、光導波路のコアガラス層4aをくるみ
光導波路を形成する。次にgまたはjに示すごと
く裏面より表面層に形成した光導波路と対向する
ように所定パターンの溝を形成し、表面層に形成
した光導波路の低屈折率ガラス膜3aの底面か側
面かいずれかのガラス膜面を露出させる。次いで
裏面にも同様の方法で、低屈折率ガラス膜3aを
介して表面側の光導波路と接する光の導波路を形
成する。h,kは裏面より形成した溝内にクラツ
ド層3dを形成したものである。i,lはクラツ
ド層3dの上面にコアガラス層4bを堆積させ、
Si基板1の溝部に堆積した部分のクラツド層3d
及びコアガラス層4bを残し、他の部分に堆積し
たガラス層を除去して表面を平坦にし、次いで
CVD法等によりクラツド層3eを堆積させ、光
導波路を形成したものである。
As shown in Figure 1a, the {100} plane is the surface.
Prepare Si wafer 1. The thickness of the Si substrate is approximately 250μ
It is about m. b is a silicon oxide film formed by thermally oxidizing this Si substrate and patterned using a photoresist. Using a silicon oxide film (SiO 2 ) 2 as a protective film, the Si substrate 1 is anisotropically formed in a KOH aqueous solution. Etching is performed to form a V-groove or trapezoidal groove with an opening angle of 70.53°. Next, as shown in c, to create an optical waveguide in the groove of the Si substrate,
A glass layer 3a (hereinafter referred to as a cladding layer) which becomes a cladding of the optical waveguide is formed. After forming grooves in the Si substrate 1, a silica glass layer 3a containing SiO 2 to serve as a cladding layer or a dopant that lowers the refractive index is formed over the entire surface of the substrate by CVD or the like. Note that the thickness of the cladding layer 3a may be any thickness necessary to propagate light. Next, as shown in d, a core layer of the optical waveguide, which has a higher refractive index than the cladding layer 3a, is placed on the upper surface of the cladding layer 3a.
A silica glass layer 4a containing dopants such as P 2 O 2 , GeO 2 and B 2 O 3 is deposited by CVD or the like. Glass layer 4 is hereinafter referred to as core glass layer. The deposited thickness of the core glass layer 4 is suitably 60 μm or more in the case of multi-mode use. Next, as shown in e, Si substrate 1
The 7-rad layer 3a and the core glass layer 4a deposited in the grooves are left, and the layers deposited in other parts are removed by etching or the like to flatten the surface. However, depending on the situation, it is acceptable to form irregularities on the surface. Next, as shown in f, a cladding layer 3b is deposited by CVD or the like on the substrate formed in step e, and the core glass layer 4a of the optical waveguide is wrapped around it to form an optical waveguide. Next, as shown in g or j, grooves with a predetermined pattern are formed so as to face the optical waveguide formed on the surface layer from the back surface, and grooves are formed on either the bottom or side surface of the low refractive index glass film 3a of the optical waveguide formed on the surface layer. Expose the glass membrane surface. Next, in the same manner, an optical waveguide is formed on the back surface in contact with the optical waveguide on the front surface via the low refractive index glass film 3a. In h and k, a cladding layer 3d is formed in a groove formed from the back side. i, l deposit a core glass layer 4b on the top surface of the cladding layer 3d;
Cladding layer 3d deposited in the groove of the Si substrate 1
And leave the core glass layer 4b and remove the glass layer deposited on other parts to make the surface flat, and then
A cladding layer 3e is deposited by CVD or the like to form an optical waveguide.

g〜iは背面結合形の光結合線路を構成する例
であり、j〜lは側面結合形の光結合線路を構成
する例である。
g to i are examples of configuring back-coupled optical coupling lines, and j to l are examples of configuring side-coupled optical coupling lines.

このようにして形成される光の結合線路は2つ
の導波路間のギヤツプを堆積させるクラツド層
(3a+3d)の厚さを変えることにより任意に制御
することができ、光の結合量を変えることができ
る。また、光導波路の損失が小さく実用上極めて
有効なものである。
The optical coupling line formed in this way can be arbitrarily controlled by changing the thickness of the cladding layer (3a + 3d) depositing the gap between the two waveguides, and the amount of optical coupling can be changed. can. Furthermore, the loss of the optical waveguide is small and it is extremely effective in practice.

なお、光導波路のクラツド層を形成する低屈折
率ガラスとしては例えば、CVD法等により堆積
させたSiO2ガラス、SiO2−B2O3ガラス、フツ素
をドーブしたSiO2ガラス等を用いてもよい。光
導波路のコアを形成する高屈折率ガラスとして
は、例えば、CVD法等により堆積させたP2O5
GeO2、B2O3等をドーブしたドーブドシリカガラ
ス、リン酸系ガラス等の低損失ガラスを用いるこ
とができるが、これに限るものではなくアルコー
ル等の液体中に分散させたガラスの微粉末を基板
上に沈澱させ、これを乾燥、焼成、溶融してコア
ガラス層を形成しても良い。またZnCl2等の低損
失な誘電体材料を用いてもよい。光導波路を形成
する基板としてガラスを用いる場合には光導波路
を形成するとき、基板温度が余り上昇しない高周
波スパツタリングを用いて行えばよい。
In addition, as the low refractive index glass forming the cladding layer of the optical waveguide, for example, SiO 2 glass deposited by CVD method, SiO 2 −B 2 O 3 glass, SiO 2 glass doped with fluorine, etc. are used. Good too. As the high refractive index glass forming the core of the optical waveguide, for example, P 2 O 5 deposited by CVD method, etc.
Low-loss glasses such as doped silica glass doped with GeO 2 , B 2 O 3 , etc., phosphate glass, etc. can be used, but are not limited to these. The core glass layer may be formed by precipitating the powder on the substrate and drying, firing, and melting the powder. Further, a low loss dielectric material such as ZnCl 2 may be used. When glass is used as the substrate for forming the optical waveguide, the optical waveguide may be formed using high-frequency sputtering, which does not cause a significant rise in substrate temperature.

第2図は本発明の方法により製作した光固体回
路と光フアイバを結合する一実施例を示す概略図
である。第2図aは光合波の場合の一例で、光フ
アイバ5,6,7からそれぞれ出射された波長λ
,λ,λの光波は光導波,,に結合
され、光導波路,,を伝搬し、光導波路
,,と裏面側に形成された光導波路との
結合部A,B,Cで結合がおこり、光導波路中
で波長λ,λ,λの光波が合波され、フア
イバ8に結合される。逆に光分岐を行う場合には
フアイバ8から出射された波長λ,λ,λ
,λの光波は、裏面に形成された光導波路
に結合され光導波路を伝搬し、光導波路と表
面に形成された光導波路,,との結合部分
C,B,Aで結合がおこる。波長λの光波はC
部分で光導波路に結合されてフアイバ7に出射
される。波長λの光波はB部分で光導波路に
結合されてフアイバ6に出射される。波長λ
光波はA部分で光導波路に結合されてフアイバ
5に出射される。波長λの光波は光導波路中
をそのまま伝搬しフアイバ9に出射される。第2
図bは光合成の場合の他の例で、光フアイバ1
0,11から出射された波長λ,λの光波は
それぞれ光導波路,に結合される。裏面側に
形成された光導波路を伝搬する波長λの光波
は、表面側に形成された光導波路との結合部
A′で結合がおこり、光導波V中で波長λ,λ
の光波が合波され、フアイバ12に出射され
る。
FIG. 2 is a schematic diagram showing an embodiment of coupling an optical solid-state circuit manufactured by the method of the present invention and an optical fiber. Figure 2a shows an example of optical multiplexing, in which the wavelengths λ emitted from optical fibers 5, 6, and 7 are respectively
The light waves of 1 , λ 2 , and λ 3 are coupled to the optical waveguide, , and propagated through the optical waveguide, , and are coupled at coupling parts A, B, and C between the optical waveguide and the optical waveguide formed on the back side. occurs, and the light waves of wavelengths λ 1 , λ 2 , and λ 3 are combined in the optical waveguide and coupled to the fiber 8 . Conversely, when performing optical branching, the wavelengths λ 1 , λ 2 , λ emitted from the fiber 8
The light waves of λ 3 and λ 4 are coupled to the optical waveguide formed on the back surface and propagate through the optical waveguide, and coupling occurs at coupling portions C, B, and A between the optical waveguide and the optical waveguide formed on the front surface. A light wave with wavelength λ 3 is C
It is coupled to an optical waveguide at a portion thereof and is emitted to a fiber 7. The light wave of wavelength λ 2 is coupled to the optical waveguide at part B and is emitted to the fiber 6 . A light wave of wavelength λ 1 is coupled to the optical waveguide at part A and output to fiber 5 . The light wave with wavelength λ 4 propagates through the optical waveguide as it is and is emitted to fiber 9 . Second
Figure b is another example of photosynthesis, where the optical fiber 1
The light waves of wavelengths λ 2 and λ 1 emitted from the wavelengths 0 and 11 are coupled to the optical waveguides, respectively. The light wave of wavelength λ 1 propagating through the optical waveguide formed on the back side is connected to the optical waveguide formed on the front side.
Coupling occurs at A′, and wavelengths λ 1 , λ
The two light waves are combined and emitted to the fiber 12.

なお、結合部A′で結合されなかつた波長λ
の光波はそのまま光導波路中を伝搬し、フアイ
バ13に出射されるものでモニタ等として利用で
きる。
Note that the wavelength λ 1 that is not coupled at the coupling part A′
The light waves propagate through the optical waveguide as they are and are emitted to the fiber 13, which can be used as a monitor or the like.

波長選択、結合量の調節は、表面側に形成され
た光導波路と裏面側に形成された光導波路の結合
部の結合の長さ及びギヤツプを制御することによ
り行う。
The wavelength selection and the adjustment of the coupling amount are performed by controlling the coupling length and gap of the coupling portion between the optical waveguide formed on the front side and the optical waveguide formed on the back side.

以上の説明から明らかなように、本発明の光回
路はCVD法等により堆積させた光導波路からな
り、光の減衰が少なく、かつ複数の光導波路を同
時に形成でき、さらに光の分岐、結合などの光固
体回路を同時に形成することができる利点があ
る。
As is clear from the above explanation, the optical circuit of the present invention is composed of optical waveguides deposited by CVD method etc., has low light attenuation, can form multiple optical waveguides at the same time, and has the ability to branch and couple light. It has the advantage that two optical solid-state circuits can be formed simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の光回路製造工程を示
す断面図、第2図は実施例で製作した光固体回路
と光フアイバを結合する概略図である。 1:Si基板、2:保護板、3a〜3e:クラツ
ド層、4a,4b:コア層、5〜13:光フアイ
バ、〜:光導波路、A:光導波路及びの
結合部、B:光導波路及びの結合部、C:光
導波路及びの結合部、A′:光導波路及び
の結合部。
FIG. 1 is a cross-sectional view showing the process of manufacturing an optical circuit according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of coupling an optical solid-state circuit manufactured in the embodiment with an optical fiber. 1: Si substrate, 2: Protective plate, 3a to 3e: Clad layer, 4a, 4b: Core layer, 5 to 13: Optical fiber, ~: Optical waveguide, A: Optical waveguide and coupling part, B: Optical waveguide and C: A coupling portion between an optical waveguide and A′: A coupling portion between an optical waveguide and an optical waveguide.

Claims (1)

【特許請求の範囲】[Claims] 1 基板表面に所定パターンの溝を形成し、該溝
をガラス膜で被覆し、その上から上記ガラス膜よ
りも高屈折率のガラス層を堆積して上記溝をう
め、しかる後基板表面から余分のガラス層を除去
し、その表面上に溝内に堆積したガラスよりも低
屈折率のガラス膜を被着させて光導波路を形成し
た後、裏面より表面層に形成した光の導波路と対
向するように所定のパターンの溝を形成し、表面
層に形成した光導波路の低屈折率ガラス膜面の少
なくとも一部を露出させ、該低屈折率ガラス層を
介して表面側の光導波路と接する光の導波路を裏
面側に形成することを特徴とする光結合線路の製
造方法。
1 Form grooves in a predetermined pattern on the substrate surface, cover the grooves with a glass film, deposit a glass layer with a higher refractive index than the glass film on top of the grooves to fill the grooves, and then remove excess from the substrate surface. After removing the glass layer and depositing a glass film with a lower refractive index than the glass deposited in the groove on the surface to form an optical waveguide, the optical waveguide formed on the surface layer is faced from the back side. Form grooves in a predetermined pattern so as to expose at least a part of the low refractive index glass film surface of the optical waveguide formed on the surface layer, and contact the optical waveguide on the surface side through the low refractive index glass layer. A method for manufacturing an optical coupling line, characterized in that an optical waveguide is formed on the back side.
JP11826679A 1979-09-14 1979-09-14 Production of photocoupling line Granted JPS5642203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11826679A JPS5642203A (en) 1979-09-14 1979-09-14 Production of photocoupling line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11826679A JPS5642203A (en) 1979-09-14 1979-09-14 Production of photocoupling line

Publications (2)

Publication Number Publication Date
JPS5642203A JPS5642203A (en) 1981-04-20
JPS624683B2 true JPS624683B2 (en) 1987-01-31

Family

ID=14732372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11826679A Granted JPS5642203A (en) 1979-09-14 1979-09-14 Production of photocoupling line

Country Status (1)

Country Link
JP (1) JPS5642203A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171907A (en) * 1983-03-18 1984-09-28 Agency Of Ind Science & Technol Production of optical guide
JPS60156014A (en) * 1983-12-27 1985-08-16 Omron Tateisi Electronics Co Production of flush type optical waveguide device
JPS636506A (en) * 1986-06-27 1988-01-12 Fujitsu Ltd Production of optical waveguide

Also Published As

Publication number Publication date
JPS5642203A (en) 1981-04-20

Similar Documents

Publication Publication Date Title
Kawachi Silica waveguides on silicon and their application to integrated-optic components
KR910006730B1 (en) Device including a substrate - supported optical waveguide
US6704487B2 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
JP2585332B2 (en) Waveguide type optical device
US7236668B2 (en) Spot-size transformer, method of producing spot-size transformer and waveguide-embedded optical circuit using spot-size transformer
JP4932029B2 (en) Waveguide-type variable optical attenuator
TW201030402A (en) Method and apparatus for efficient coupling between silicon photonic chip and optical fiber
US20090116786A1 (en) Multi-Channel Dispersion Compensator
US4851025A (en) Process for producing a planar optical waveguide
US4711514A (en) Product of and process for forming tapered waveguides
JP4652507B2 (en) Optical waveguide circuit and manufacturing method thereof
US5539850A (en) Polarization and wavelength independent optical waveguide tap
JPH09105824A (en) Waveguide type optical element
JP2007078861A (en) Thermooptic variable attenuator and its manufacturing method
JPS624683B2 (en)
JP2848144B2 (en) Tunable optical filter
JPS624682B2 (en)
JP4086485B2 (en) Polarization-independent directional coupler and optical circuit using the same
JPH10206911A (en) Optical monitor circuit and it production
WO2023243018A1 (en) Silicon photonic circuit and method for manufacturing silicon photonic circuit
JP2682919B2 (en) Optical waveguide and method of manufacturing the same
JP7401823B2 (en) Optical waveguide components and their manufacturing method
Okayama et al. Si wire waveguide wavelength filter using asymmetric width waveguide branch coupler and Bragg grating
JP2018132621A (en) Optical waveguide element and method for manufacturing optical waveguide element
Daudpota et al. Simulation of Silicon Oxycarbide Waveguides for Shorter Band Photonics