JP2728421B2 - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JP2728421B2
JP2728421B2 JP5311488A JP5311488A JP2728421B2 JP 2728421 B2 JP2728421 B2 JP 2728421B2 JP 5311488 A JP5311488 A JP 5311488A JP 5311488 A JP5311488 A JP 5311488A JP 2728421 B2 JP2728421 B2 JP 2728421B2
Authority
JP
Japan
Prior art keywords
refractive index
optical waveguide
cladding layer
loss
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5311488A
Other languages
Japanese (ja)
Other versions
JPH01225905A (en
Inventor
俊彦 馬場
泰雄 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP5311488A priority Critical patent/JP2728421B2/en
Publication of JPH01225905A publication Critical patent/JPH01225905A/en
Application granted granted Critical
Publication of JP2728421B2 publication Critical patent/JP2728421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 コアと基板間にコアよりも低屈折率の第1クラッド層
と,コアと同じ媒質の第2クラッド層の組(1組あるい
はそれ以上)からなる共振反射クラッドを設け,広い波
長範囲からなるあらゆる偏光状態の光を低損失で導波す
る実質的な単一モードの光導波路である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Resonant reflection composed of a pair (one or more) of a first cladding layer having a lower refractive index than the core and a second cladding layer of the same medium as the core between the core and the substrate. This is a substantially single-mode optical waveguide that is provided with a clad and guides light of all polarization states having a wide wavelength range with low loss.

〔産業上の利用分野〕[Industrial applications]

本発明は,半導体などの高屈折率の基板上に形成され
る平板型誘電体の光導波路に関するものであり,特に光
集積回路に有用な光導波路に関する。
The present invention relates to a planar dielectric optical waveguide formed on a substrate having a high refractive index such as a semiconductor, and more particularly to an optical waveguide useful for an optical integrated circuit.

〔従来の技術と本発明が解決しようとする課題〕[Conventional technology and problems to be solved by the present invention]

近年,光通信や光電子機器が急速かつ広範な発展を遂
げ,従来の発光・受光素子や伝送路(光ファイバ)のみ
で構成された単純なシステムばかりでなく,変調器,ア
イソレータ,光スイッチ,分岐,結合器,分波,合波器
といった様々な光回路を付加した高機能システムが要求
されるようになりつつある。
In recent years, optical communication and optoelectronic devices have rapidly and widely developed. Not only simple systems consisting only of conventional light emitting / receiving elements and transmission lines (optical fibers), but also modulators, isolators, optical switches, and branching devices A high-performance system to which various optical circuits such as a coupler, a demultiplexer, and a multiplexer are added has been required.

しかしながら,このようなシステムに用いられる光回
路は,現状では微小レンズやプリズム等の個別素子の組
み合わせで構成されており,高精度な光軸合わせを含む
組み立て工程に膨大な手間と人手を要するため,将来に
予想される大量需要をまかなうのは困難と考えられる。
However, the optical circuit used in such a system is currently composed of a combination of individual elements such as microlenses and prisms, and the assembly process including high-precision optical axis alignment requires enormous labor and labor. It is considered difficult to meet the anticipated mass demand in the future.

このような問題を克服するためには,多くの光機能素
子を一体集積化して一括大量生産を可能にする光集積回
路技術が必要不可欠である。中でも発光・受光素子や電
子回路との集積化が可能な半導体基板光集積回路の開発
は,急を要する課題である。
In order to overcome such a problem, an optical integrated circuit technology that enables a large number of optical functional elements to be integrated and integrated mass-production is indispensable. In particular, the development of a semiconductor substrate optical integrated circuit that can be integrated with a light emitting / receiving element or an electronic circuit is an urgent issue.

しかしながら光集積回路の基本となる光導波路とし
て,従来のコアとクラッドの屈折率差を用いた全反射型
光導波路を半導体基板上に製作する場合,コア内への光
閉じ込めが弱いため,光の電磁界の一部がクラッドへし
みだし,高屈折率半導体基板へ放射されて高損失とな
る。第4図はこのような全反射型光導波路の例であり、
11は半導体などの高屈折率の基板,12はクラッド層,13は
コア層,14は屈折率分布,15は導波光の界分布,16の黒塗
り部分は基板内にしみ込んだ放射損失光を表している。
However, when a conventional total reflection type optical waveguide using a refractive index difference between a core and a clad is manufactured on a semiconductor substrate as an optical waveguide which is a basic optical integrated circuit, light confinement in the core is weak, so that light is not transmitted. Part of the electromagnetic field seeps into the cladding and is radiated to the high refractive index semiconductor substrate, resulting in high loss. FIG. 4 shows an example of such a total reflection type optical waveguide.
11 is a substrate with a high refractive index such as a semiconductor, 12 is a cladding layer, 13 is a core layer, 14 is a refractive index distribution, 15 is a field distribution of guided light, and 16 black-painted portions are radiation loss light penetrating into the substrate. Represents.

このような放射損失光を減少させるには、クラッド層
12を厚くしなければならず,製作上の難点がある。ま
た,コアとクラッド間の微小な屈折率差を制御する必要
があり,さらに光導波路自体では何の光制御機能も持た
ないなどの問題があった。
To reduce such radiation loss light, the cladding layer
12 has to be thicker, which has manufacturing difficulties. In addition, it is necessary to control a small difference in refractive index between the core and the clad, and there is a problem that the optical waveguide itself has no light control function.

これらの問題を解決するため,新しく共振反射型光導
波路(通称ARROW)が提案されている。
To solve these problems, a new resonant reflection type optical waveguide (ARROW) has been proposed.

第5図はこれを図示したもので、17は高屈折率nSの半
導体基板,18は屈折率n1,厚さd1の第1クラッド層,19は
屈折率n2厚さd2の第2クラッド層,20は屈折率nC厚さdC
の誘電体コア層,21は屈折率分布,22は導波光の界分布を
表す。各屈折率間には次のような関係がある。ただし,
n0はコア上部の媒質(通常は空気)の屈折率である。
FIG. 5 illustrates this, wherein 17 is a semiconductor substrate having a high refractive index n S , 18 is a first cladding layer having a refractive index n 1 and a thickness d 1 , and 19 is a first cladding layer having a refractive index n 2 and a thickness d 2 . The second cladding layer 20 has a refractive index n C and a thickness d C
, 21 denotes a refractive index distribution, and 22 denotes a field distribution of guided light. The following relationship exists between the refractive indices. However,
n 0 is the refractive index of the medium above the core (usually air).

nC>n0,n1>nC,n1>n2, nC≧n2,n2<nS この第5図の共振反射型光導波路は,SiO2などの比較
的低い屈折率を有する誘電体コア層20と半導体基板17の
間のクラッド層に,高屈折率の第1クラッド層18と低屈
折率の第2クラッド層19からなる厚さ2μm程度の干渉
反射クラッドを用い,干渉反射の高反射率(99.9%以
上)特性を利用して光を導波する。そして,高次モード
は基本モードに比べて放射損失が著しく大きいので,実
質的に単一モード導波路が実現できる。
n C > n 0 , n 1 > n C , n 1 > n 2 , n C ≧ n 2 , n 2 <n S The resonant reflection type optical waveguide of FIG. 5 has a relatively low refractive index such as SiO 2. As a cladding layer between the dielectric core layer 20 and the semiconductor substrate 17 having a thickness, an interference reflection cladding having a thickness of about 2 μm and comprising a first cladding layer 18 having a high refractive index and a second cladding layer 19 having a low refractive index is used. Light is guided using the high reflectance (99.9% or more) characteristic of interference reflection. Since the higher-order mode has a significantly larger radiation loss than the fundamental mode, a single-mode waveguide can be substantially realized.

第5図の共振反射型光導波路は,1)広い波長範囲で低
損失,2)クラッド層が薄く(従来の1/2以下)かつ低損
失を得るための膜厚許容幅が広いので製作し易い,3)光
ファイバとの高効率結合に適する厚膜コアでも実質的に
単一モード導波路が可能,4)半導体素子,電子回路との
集積化が可能,等の光集積回路用導波路に適した多くの
特長を有する。
The resonant reflection type optical waveguide shown in Fig. 5 is manufactured because 1) low loss over a wide wavelength range, 2) thin cladding layer (less than 1/2 of conventional), and a wide allowable thickness for obtaining low loss. Easy, 3) Waveguide for optical integrated circuit, such as a single-mode waveguide is practically possible even with a thick film core suitable for high-efficiency coupling with optical fiber, 4) Integration with semiconductor elements and electronic circuits, etc. It has many features suitable for

また,この共振反射型光導波路の導波損失は強い偏光
方向依存性,波長依存性をもつので,偏光器(偏光フィ
ルタ),光分波器等への応用が可能である。
Since the waveguide loss of the resonant reflection type optical waveguide has strong polarization direction dependence and wavelength dependence, it can be applied to a polarizer (polarization filter), an optical demultiplexer, and the like.

しかしながら,このような偏光方向および波長に対す
る強い依存性は,単に光を導波させる場合には,常に好
ましい特性であるとは限らない。導波路に偏光依存性が
あると,その偏光方向成分のみが低損失で導波され,他
の直交する偏光方向成分は放射損失となってしまうた
め,入射する光の偏光方向を制御する必要がある。ま
た,波長依存性があると広範囲な波長の光を多重化して
導波させることができないなど様々な制約が生じてしま
う。
However, such a strong dependence on the polarization direction and the wavelength is not always a preferable characteristic when light is simply guided. If the waveguide has polarization dependence, only the polarization direction component is guided with low loss, and other orthogonal polarization direction components become radiation loss. Therefore, it is necessary to control the polarization direction of the incident light. is there. Further, if there is wavelength dependency, various restrictions occur such that light of a wide range of wavelengths cannot be multiplexed and guided.

本発明は,先に述べた共振反射型光導波路に劣らない
特長を有し,しかも導波損失の偏波依存性,波長依存性
が小さく,広範囲の光集積回路への適応が可能な,平板
型単一モードの光導波路を提供することを目的とする。
The present invention has a feature that is not inferior to the above-described resonant reflection type optical waveguide, and has a small polarization dependence and wavelength dependence of the waveguide loss, and is applicable to a wide range of optical integrated circuits. It is an object of the present invention to provide a single-mode optical waveguide.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は,コア層と基板との間に,第1クラッド層と
第2クラッド層を設けた構造とするが,コア層に接する
第1クラッド層の屈折率をコア層よりも低くし,第2ク
ラッド層の屈折率は第1クラッド層よりも高くするもの
である。これにより,コア層を伝播する光の一部を第1
クラッド層により全反射させ,また一部第1クラッド層
にしみ込んだ光は第2クラッド層によって干渉反射され
るようにする。
The present invention has a structure in which a first clad layer and a second clad layer are provided between a core layer and a substrate, but the first clad layer in contact with the core layer has a lower refractive index than the core layer. The refractive index of the two cladding layers is higher than that of the first cladding layer. As a result, part of the light propagating through the core layer is
Light that is totally reflected by the cladding layer and partially penetrates the first cladding layer is interference-reflected by the second cladding layer.

第1図に本発明の原理を示す。図において,1は屈折率
nSの半導体基板,2は屈折率n1厚さd1の第1クラッド層,3
は屈折率n2厚さd2の第2クラッド層,4は屈折率nC厚さdC
のコア層,5は屈折率分布,6は導波光の界分布を表す。ま
た各層の屈折率間には次のような関係がある。
FIG. 1 shows the principle of the present invention. In the figure, 1 is the refractive index
The semiconductor substrate of n S, 2 the first cladding layer of refractive index n 1 thickness d 1, 3
Is a second cladding layer having a refractive index n 2 and a thickness d 2 , and 4 is a refractive index n C and a thickness d C
Represents a refractive index distribution, and 6 represents a field distribution of guided light. The following relationship exists between the refractive indices of the respective layers.

nC>n0,n1<nC,n1<n2, nC≧n2,n2<nS 〔作用〕 本発明による光導波路は,従来の共振反射型光導波路
と類似の構造をもつ。基板には半導体などの高屈折率材
料を用い,コア層と基板の間に2層1組の干渉反射クラ
ッドを挟んで,その非常に高い反射率を利用して光を導
波する。しかし従来の共振反射型光導波路の場合には,
第1クラッド層はコア層より屈折率の高い媒質,例えば
Si(n1=3.5)あるいはTiO2(n1=2.3)などを用いてい
るため,干渉反射クラッドによって生じる反射は2つの
クラッド層の高屈折率差によって生じる単純な干渉反射
である。
n C > n 0 , n 1 <n C , n 1 <n 2 , n C ≧ n 2 , n 2 <n S [Operation] The optical waveguide according to the present invention has a structure similar to that of the conventional resonant reflection type optical waveguide. With. A high refractive index material such as a semiconductor is used for the substrate, and a set of two layers of interference reflection cladding is interposed between the core layer and the substrate, and light is guided using the extremely high reflectance. However, in the case of the conventional resonant reflection type optical waveguide,
The first cladding layer is a medium having a higher refractive index than the core layer, for example,
Since Si (n 1 = 3.5) or TiO 2 (n 1 = 2.3) is used, the reflection caused by the interference reflection cladding is a simple interference reflection caused by a high refractive index difference between the two cladding layers.

これに対して本発明の光導波路では,第1クラッド層
の屈折率が,コア層及び第2クラッド層よりも小さい。
したがって,光はコア層と第1クラッド層の境界で一部
全反射するが,一部しみ出した光が第2クラッド層の中
で干渉を起こす。そして各層を最適膜厚に設定し,基本
モードと高次モードの損失差を大きくとることで,実質
的な単一モードが得られる。
On the other hand, in the optical waveguide of the present invention, the refractive index of the first cladding layer is smaller than that of the core layer and the second cladding layer.
Therefore, the light is partially totally reflected at the boundary between the core layer and the first cladding layer, but the partially leaked light causes interference in the second cladding layer. Then, each layer is set to an optimum thickness, and the loss difference between the fundamental mode and the higher-order mode is made large, whereby a substantially single mode is obtained.

本発明の光導波路は,低損失で,光閉じ込めが強く,
光ファイバとの高効率結合が可能である。また半導体素
子との集積化が可能であるなど,共振反射型光導波路と
同様の特長をもち,さらに導波損失の偏波依存性が共振
反射型光導波路の1/10以下と小さくできるとともに,広
い波長範囲の光に対して低損失の特性が得られる。
The optical waveguide of the present invention has low loss, strong optical confinement,
Highly efficient coupling with an optical fiber is possible. In addition, it has the same features as a resonant reflection type optical waveguide, such as integration with semiconductor elements, and the polarization dependence of the waveguide loss can be reduced to 1/10 or less of the resonance reflection type optical waveguide. Low loss characteristics are obtained for light in a wide wavelength range.

〔実施例〕〔Example〕

第2図に実施例として波長で規格化した第1クラッド
層の厚さd1に対する各モードの導波損失特性を計算結果
により示す。図の横軸は波長で規格化した第1クラッド
層の厚さd1′(=d1/λ)であり,縦軸は波長で規格化
した損失のα(dB・λ/m)である。
Shows the calculation results waveguiding loss characteristics of each mode to the thickness d 1 of the first clad layer normalized by the wavelength as an example in Figure 2. The horizontal axis of the figure is the thickness d 1 ′ (= d 1 / λ) of the first cladding layer normalized by wavelength, and the vertical axis is α (dB · λ / m) of the loss normalized by wavelength. .

ここでコア層と第2クラッド層には,導波路材料とし
てよく用いられるC7059ガラス(n2=1.54),第1クラ
ッド層にはSiO2(n1=1.46)を仮定した。またnS=3.8
5,nC=1.54とし,規格化コア層dC′(dC/λ)を6.3と
したとき,d1′=0.4で,TE,TMとも基本モードの損失が
波長0.633μmに対して1dB/cm以下,高次モードの損失
が10dB/cm以上の実用的な単一モードが得られる。
Here, it is assumed that the core layer and the second cladding layer are made of C7059 glass (n 2 = 1.54), which is often used as a waveguide material, and the first cladding layer is SiO 2 (n 1 = 1.46). N S = 3.8
When 5, n C = 1.54 and the normalized core layer d C ′ (d C / λ) is 6.3, at d 1 ′ = 0.4, the loss of the fundamental mode for both TE and TM is 1 dB at a wavelength of 0.633 μm. A practical single mode of less than / cm and higher-order mode loss of more than 10 dB / cm is obtained.

一般的に,基本モードのTE波とTM波との間の損失差は
数倍程度と小さく,これに対して基本モードのTE波と高
次モードのTE波あるいは高次モードのTM波との間の損失
差は2桁以上得られるので,実質的な単一モードによる
導波路が実現できる。
Generally, the loss difference between the fundamental mode TE wave and the TM wave is as small as several times, whereas the loss difference between the fundamental mode TE wave and the higher-order mode TE wave or the higher-order mode TM wave is small. Since a loss difference between two or more digits can be obtained, a substantially single-mode waveguide can be realized.

また,損失d1′に対して単調減少するため,共振反射
型光導波路のように第1クラッド層の屈折率で最低損失
が制限されることがなく,どの様な損失値にも設定可能
である。したがって,どのような波長の光に対しても,
第1クラッド層の厚さ次第で低損失の導波路が得られる
ことになる。
Further, since the loss d 1 ′ monotonically decreases, the minimum loss is not limited by the refractive index of the first cladding layer as in the case of the resonant reflection type optical waveguide, and any loss value can be set. is there. Therefore, for light of any wavelength,
A low-loss waveguide can be obtained depending on the thickness of the first cladding layer.

第3図に,第2図の場合と同じ条件でd1′=0.4とし
たときのTE基本モードの光パワー分布を示す。共振反射
型光導波路の場合と同様に,コア内の光閉じ込めが極め
て強いことがわかる。
FIG. 3 shows the optical power distribution of the TE fundamental mode when d 1 ′ = 0.4 under the same conditions as in FIG. It can be seen that the light confinement in the core is extremely strong, as in the case of the resonant reflection type optical waveguide.

次に製作例を示す。 Next, a production example will be described.

波長0.633μmに対して,C7059ガラスのコア層を厚さ
4μm,SiO2の第1クラッド層を厚さ0.3μm,C7059ガラス
の第2クラッド層を厚さ2μmとした。製作には高周波
スパッタを用い,各層を連続形成した。
For a wavelength of 0.633 μm, the core layer of C7059 glass was 4 μm in thickness, the first cladding layer of SiO 2 was 0.3 μm in thickness, and the second cladding layer of C7059 glass was 2 μm in thickness. Each layer was continuously formed using high frequency sputtering.

He-Neレーザ光(λ=0.633μm)を用いて測定したと
ころ,導波光の近視野像から単一モードが確認された。
また,このときの導波損失の測定結果を,第2図中に○
●印で示す。TEモードで0.5dB/cm,TMモードで0.7dB/cm
の低損失特性が得られた。
Measurement was performed using He-Ne laser light (λ = 0.633 μm), and a single mode was confirmed from the near-field image of the guided light.
The measurement results of the waveguide loss at this time are shown in FIG.
Indicated by ●. 0.5dB / cm in TE mode, 0.7dB / cm in TM mode
The low loss characteristic of was obtained.

本発明の光導波路は,従来の共振反射型光導波路と組
み合わせることで,各種の半導体基板上モノリシック光
集積回路の構成が可能になる。
By combining the optical waveguide of the present invention with a conventional resonant reflection type optical waveguide, it becomes possible to configure monolithic optical integrated circuits on various semiconductor substrates.

〔発明の効果〕〔The invention's effect〕

本発明の光導波路によれば,広い波長範囲の,どのよ
うな偏光状態の光に対しても低損失に,かつ基本モード
と高次モード間の損失差を大きくとって実質的に単一モ
ードで光を導波することができる。
ADVANTAGE OF THE INVENTION According to the optical waveguide of this invention, it is low loss with respect to the light of any polarization state of a wide wavelength range, and the loss difference between a fundamental mode and a high-order mode is made large, and a substantially single mode Can guide light.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理説明図,第2図は本発明の1実施
例による光導波路の導波損失特性図,第3図は本発明の
1実施例によるTE基本モードの光パワー分布図,第4図
は従来の全反射型光導波路の説明図,第5図は従来の共
振反射型光導波路の説明図である。 第1図中, 1:基板(nS) 2:第1クラッド層(n1,d1) 3:第2クラッド層(n2,d2) 4:コア装置(nC,dC) 5:屈折率分布 6:導波光の界分布
FIG. 1 is a diagram for explaining the principle of the present invention, FIG. 2 is a diagram showing a waveguide loss characteristic of an optical waveguide according to one embodiment of the present invention, and FIG. 3 is a diagram showing an optical power distribution of a TE fundamental mode according to one embodiment of the present invention. FIG. 4 is an explanatory view of a conventional total reflection type optical waveguide, and FIG. 5 is an explanatory view of a conventional resonance reflection type optical waveguide. In FIG. 1, 1: substrate (n S ) 2: first cladding layer (n 1 , d 1 ) 3: second cladding layer (n 2 , d 2 ) 4: core device (n C , d C ) 5 : Refractive index distribution 6: Field distribution of guided light

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板(1)と,光を導波する誘電体材料か
らなるコア層(4)と,コア層(4)および基板(1)
の中間に設けた第1クラッド層(2)および第2クラッ
ド層(3)からなる干渉反射クラッドとをそなえ, 第1クラッド層(2)の屈折率を,コア層(4)および
第2クラッド層(3)のいずれの屈折率よりも低くする
とともに,基板(1)の屈折率を第2クラッド層(3)
の屈折率よりも高くすることを特徴とする光導波路。
A substrate (1), a core layer (4) made of a dielectric material for guiding light, a core layer (4) and a substrate (1)
And an interference reflection cladding comprising a first cladding layer (2) and a second cladding layer (3) provided in the middle of the core layer (4) and the second cladding layer (2). The refractive index of the substrate (1) is made lower than any of the refractive indices of the layer (3), and the refractive index of the substrate (1) is made second.
An optical waveguide characterized by having a refractive index higher than the refractive index.
JP5311488A 1988-03-07 1988-03-07 Optical waveguide Expired - Fee Related JP2728421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311488A JP2728421B2 (en) 1988-03-07 1988-03-07 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311488A JP2728421B2 (en) 1988-03-07 1988-03-07 Optical waveguide

Publications (2)

Publication Number Publication Date
JPH01225905A JPH01225905A (en) 1989-09-08
JP2728421B2 true JP2728421B2 (en) 1998-03-18

Family

ID=12933772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311488A Expired - Fee Related JP2728421B2 (en) 1988-03-07 1988-03-07 Optical waveguide

Country Status (1)

Country Link
JP (1) JP2728421B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229939B1 (en) * 1999-06-03 2001-05-08 Trw Inc. High power fiber ribbon laser and amplifier
JP4993309B2 (en) * 2008-05-09 2012-08-08 株式会社リコー Optical waveguide device, wavelength conversion device, and harmonic laser light source device
JP6806063B2 (en) * 2015-08-04 2021-01-06 Agc株式会社 Resin optical waveguide
CN113161463B (en) * 2021-03-01 2023-04-07 武汉光迅科技股份有限公司 Inclined cavity chip structure

Also Published As

Publication number Publication date
JPH01225905A (en) 1989-09-08

Similar Documents

Publication Publication Date Title
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
US4715672A (en) Optical waveguide utilizing an antiresonant layered structure
CN112255727A (en) End-face coupler and semiconductor device
CN209928057U (en) Transverse electric polarizer
Henry Silicon optical bench waveguide technology
US20060120667A1 (en) Dual grating assisted optical coupler
Fujii High-isolation polarization-independent optical circulator coupled with single-mode fibers
Ramer et al. Experimental integrated optic circuit losses and fiber pigtailing of chips
WO2004010174A2 (en) Optical coupler apparatus and methods having reduced geometry sensitivity
JP2004522982A (en) Polarization-independent single-mode ridge optical waveguide with strong confinement
EP0877284B1 (en) Acousto-optic silica optical circuit switch
Hsu et al. Single-mode coupling between fibers and indiffused waveguides
JP2728421B2 (en) Optical waveguide
Cheben et al. Polarization compensation in silicon-on-insulator arrayed waveguide grating devices
CN110426865B (en) Thermo-optical switch utilizing guided mode reflection displacement effect and multimode interference effect in silicon waveguide corner mirror
JP2004191954A (en) Optical function element and optical module
JPH052116A (en) Optical waveguide
Yanagawa et al. Broad-band high-silica optical waveguide star coupler with asymmetric directional couplers
JP2856525B2 (en) Optical waveguide polarizer
US20030039447A1 (en) Strip-loaded optical waveguide
JP2000121852A (en) Waveguide grating dispersion compensating element
US5883991A (en) Optical waveguide circulator
Asakawa et al. A versatile design of selective radiation wavelength filter using multilayer cladding waveguide
JP2641238B2 (en) Polarizer
JP2862630B2 (en) Waveguide type optical isolator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees