JPS6246604B2 - - Google Patents

Info

Publication number
JPS6246604B2
JPS6246604B2 JP58184544A JP18454483A JPS6246604B2 JP S6246604 B2 JPS6246604 B2 JP S6246604B2 JP 58184544 A JP58184544 A JP 58184544A JP 18454483 A JP18454483 A JP 18454483A JP S6246604 B2 JPS6246604 B2 JP S6246604B2
Authority
JP
Japan
Prior art keywords
furnace
sonde
gas temperature
zone
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58184544A
Other languages
Japanese (ja)
Other versions
JPS6077908A (en
Inventor
Mitsuo Kanbe
Takayuki Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18454483A priority Critical patent/JPS6077908A/en
Publication of JPS6077908A publication Critical patent/JPS6077908A/en
Publication of JPS6246604B2 publication Critical patent/JPS6246604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は高炉炉況を安定維持するための高炉炉
況の検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting blast furnace conditions for stably maintaining blast furnace conditions.

従来、炉況を安定維持する高炉操業方法とし
て、炉頂ガスのCO、CO2濃度を検知し、炉全体
のガス利用率ηCO=CO2/(CO+CO2)を算出
すると共に、炉内装入原料直上又は炉内の装入原
料層の上部で炉径方向のCO、CO2濃度分布を検
知し、炉径方向のガス利用率ηCO=CO/(CO
+CO2)分布を算出し、上記炉頂ガスのガス利用
率が最大となる炉径方向ガス利用率分布を定め、
そのガス利用率分布になる様にOre/Coke(以
下O/Cとする。)分布を調整する高炉操業方法
がある。
Conventionally, as a blast furnace operating method to maintain stable furnace conditions, the CO and CO 2 concentrations in the furnace top gas were detected, and the gas utilization rate of the entire furnace ηCO = CO 2 / (CO + CO 2 ) was calculated. The CO and CO2 concentration distribution in the radial direction of the furnace is detected directly above or above the charging material layer in the furnace, and the gas utilization rate in the radial direction ηCO=CO/(CO
+CO 2 ) distribution, determine the furnace radial gas utilization rate distribution that maximizes the gas utilization rate of the furnace top gas,
There is a blast furnace operating method that adjusts the Ore/Coke (hereinafter referred to as O/C) distribution to achieve the gas utilization rate distribution.

しかしながら、この従来法では炉況を安定維持
することができなかつた。この原因は、従来法に
おいて炉頂又は炉内上層部で検知するガス分布
は、炉内の総反応の結果であり、炉高方向のどの
レベルでどのような反応が起きているかは検知で
きない点にある。
However, with this conventional method, it was not possible to maintain stable furnace conditions. The reason for this is that in conventional methods, the gas distribution detected at the furnace top or upper part of the furnace is the result of the total reaction inside the furnace, and it is not possible to detect what kind of reaction is occurring at which level in the furnace height direction. It is in.

即ち従来法は、炉高方向の炉内状況を検知でき
ず、炉況と関係の深い炉高方向の炉内状況を把握
せずに操業していることにある。
In other words, the conventional method cannot detect the situation inside the furnace in the direction of the furnace height, and operates without grasping the situation inside the furnace in the direction of the furnace height, which is closely related to the furnace condition.

本発明者等は、第4,5図に示す垂直パイプ4
の下端内部に温度計例えばシース型熱電対5を設
けた垂直ゾンデ6を、第1及び第2図に示す如
く、高炉炉頂部鉄皮1を、貫通して設けた垂直ゾ
ンデガイドパイプ2の上端部の炉頂ガス遮断弁9
上の垂直ゾンデ昇降案内装置3でガイドして、昇
降可能に配設して、ゾンデ6の下端をストツクラ
イン(以下SLという)7下2m付近まで装入し
て、炉内原料8とともに自然降下せしめて、熱電
対5が融着帯上面レベルの温度を検知すると降下
を停止せしめ、かつ上記自然降下過程の熱電対5
の検出温度を記録することを繰り返し実施した。
なお検出温度の記録は、第4図図示の熱電対5に
電気的に接続されたターミナル15を介して、電
気信号を記録したものである。
The inventors have developed a vertical pipe 4 shown in FIGS.
A vertical probe 6 having a thermometer, for example, a sheathed thermocouple 5 installed inside the lower end, is attached to the upper end of the vertical probe guide pipe 2, which is provided by penetrating the top shell 1 of the blast furnace, as shown in FIGS. 1 and 2. Furnace top gas cutoff valve 9
The sonde 6 is guided by the upper vertical lifting guide device 3 and arranged to be able to be raised and lowered, and the lower end of the sonde 6 is charged to about 2 m below the stock line (hereinafter referred to as SL) 7, and then it naturally falls together with the raw material 8 in the furnace. At least, when the thermocouple 5 detects the temperature at the upper surface level of the cohesive zone, the descent is stopped, and the thermocouple 5 in the natural descent process is stopped.
The detected temperature was repeatedly recorded.
Note that the detected temperature is recorded as an electrical signal via a terminal 15 electrically connected to the thermocouple 5 shown in FIG.

また下端が融着帯上面レベルに達した垂直ゾン
テ6は、そのまま高炉10の休風時まで吊り保持
して、休風時に高炉櫓11に設けたウインチ12
で、下端をゾンテ6のフツク13にかけたワイヤ
ー14を巻き上げて、炉内から抽出する。抽出さ
れたゾンデ6の熱電対5が破損し、又はこの熱電
対5とターミナル15との接続線(図示せず)が
断線しているので、次の測定時は新品のゾンデ6
を使用して行なつた。即ち、炉壁部炉高方向のガ
ス温度分布及び融着帯上面レベルの検知を間欠的
に実施した。
In addition, the vertical sonte 6 whose lower end has reached the level of the upper surface of the cohesive zone is kept suspended until the wind of the blast furnace 10 is suspended.
Then, the wire 14, whose lower end is hooked to the hook 13 of the Sonte 6, is rolled up and extracted from the furnace. Since the thermocouple 5 of the extracted sonde 6 is damaged or the connection wire (not shown) between the thermocouple 5 and the terminal 15 is disconnected, a new sonde 6 will be used for the next measurement.
I did it using . That is, the gas temperature distribution in the furnace wall direction in the furnace height direction and the level of the top surface of the cohesive zone were detected intermittently.

なお第4図において、16はパージ用不活性ガ
ス吹込管、17はサンプリング用ガス吸引管、第
4,5図において、18はパイプ4下端に設けた
パイプ4内への原料の侵入防止材である。
In addition, in FIG. 4, 16 is an inert gas blowing pipe for purging, 17 is a gas suction pipe for sampling, and in FIGS. be.

更に第3図は、第2図の昇降案内装置3の詳細
構造を示す断面図であり、19は上、下両端にフ
ランジ20,20を有する単管で、21及び22
は、単管19内に装入したリング状パツキン及び
カラーであり、23は上端にフランジ24を有す
る単管で、単管23を単管19内へ装入して、単
管19の上部フランジ20とフランジ24とをボ
ルトナツト25で連結して、パツキン21及びカ
ラー22を固定している。なお第4図図示のゾン
デのストツパー26は、上記ボルトナツト25と
当接し、ゾンデの下降を機械的にストツプせしめ
るものである。
Furthermore, FIG. 3 is a sectional view showing the detailed structure of the lifting guide device 3 shown in FIG.
is a ring-shaped packing and a collar inserted into the single tube 19, 23 is a single tube having a flange 24 at the upper end, the single tube 23 is inserted into the single tube 19, and the upper flange of the single tube 19 20 and a flange 24 are connected with bolts and nuts 25 to fix the packing 21 and collar 22. The stopper 26 of the sonde shown in FIG. 4 is in contact with the bolt nut 25 and mechanically stops the sonde from descending.

第6図は、前述の第1〜5図に示す垂直ゾンデ
装置による炉半径方向炉壁部の炉高方向ガス温度
分布の測定結果を例示したものであり、図中の2
7,28,29は異なる日時のガス温度分布を示
す。上記ガス温度分布27,28,29は、SL
下22、20、19m位置が融着帯上面レベルであるこ
とを示す。
Figure 6 illustrates the measurement results of the gas temperature distribution in the furnace height direction on the furnace wall in the radial direction of the furnace using the vertical sonde device shown in Figures 1 to 5 above.
7, 28, and 29 show gas temperature distributions at different dates and times. The above gas temperature distributions 27, 28, 29 are SL
This indicates that the bottom 22, 20, and 19m positions are at the top level of the cohesive zone.

本発明者等は、上記炉壁部融着帯上面レベル及
び炉壁部炉高方向のガス温度分布の検知を、間欠
的に繰り返し行なう過程において、炉壁部におけ
る炉高方向の炉内状況並びに融着帯上面レベル
と、炉況との関係について鋭意検討を重ねた結
果、次のことを知見した。
In the process of intermittently repeatedly detecting the gas temperature distribution at the upper surface level of the cohesive zone on the furnace wall and in the furnace height direction at the furnace wall, the present inventors discovered that As a result of intensive investigation into the relationship between the top surface level of the cohesive zone and the furnace conditions, the following findings were made.

(1) 炉半径方向炉壁部、詳しくは炉芯を相対半径
0とした場合、相対半径0.85〜0.95の範囲の炉
高方向ガス流線に沿つた炉高方向のガス温度分
布から検知でき、しかも炉内ガス温度tが500
℃t≦800℃で、かつガス流れ方向における
単位距離dh当りのガス温度変化量dt、即ちガ
ス温度変化率 dt/dhが、dt/dh≒0、又はdt/dh>0
、(dt/dh≧−20℃) である炉高方向長さで定義する低温保存帯長さ
が、高炉操業条件(原料装入条件及び送風条
件)が一定でも、検知不可能な外乱により変化
すると共に、上記保存帯長さが高炉操業の安
定、詳しくはスリツプ、ドロツプ回数、風圧変
動、銑中〔Si〕%変動と極めて関係が深く、前
記の如く、本発明者等が行なつてきた垂直ゾン
デによるガス温度分布にもとづく低温保存帯長
さの間欠的検知では、適正長に低温保存帯長さ
を制御する制御遅れが生じて、棚、スリツプの
発生、溶銑品質の変動等の炉況不調を解消でき
ず、炉況を安定維持して高炉操業するために
は、常時連続して低温保存帯長さを検知する必
要があること。
(1) When the relative radius of the furnace wall in the radial direction of the furnace, more specifically the furnace core, is set to 0, it can be detected from the gas temperature distribution in the furnace height direction along the furnace height direction gas flow line in the range of relative radius 0.85 to 0.95, Moreover, the furnace gas temperature t is 500
℃t≦800℃, and the gas temperature change amount dt per unit distance dh in the gas flow direction, that is, the gas temperature change rate dt/dh is dt/dh≒0, or dt/dh>0
, (dt/dh≧-20℃) The cold storage zone length, defined as the length in the furnace height direction, changes due to undetectable disturbances even if the blast furnace operating conditions (raw material charging conditions and air blowing conditions) are constant. In addition, the length of the storage zone is closely related to the stability of blast furnace operation, specifically, the number of slips and drops, wind pressure fluctuations, and % fluctuations in pig iron, and as described above, the present inventors have conducted Intermittent detection of the cold storage zone length based on the gas temperature distribution using a vertical sonde may cause a control delay in controlling the cold storage zone length to an appropriate length, resulting in problems with furnace conditions such as shelving, slippage, and fluctuations in hot metal quality. In order to maintain stable furnace conditions and operate the blast furnace without being able to resolve the malfunction, it is necessary to constantly and continuously detect the length of the cold storage zone.

(2) 低温保存帯長さは、炉壁部炉高方向特定位
置、即ち炉芯を相対半径0とするとき、相対半
径0.85〜0.95の範囲のSL下7〜9m位置のガス
温度と強相関があり、その位置のガス温度を連
続測定すれば、低温保存帯長さを連続的に検知
できること。
(2) The cold storage zone length has a strong correlation with the gas temperature at a specific position on the furnace wall in the furnace height direction, that is, at a position of 7 to 9 m below the SL within a relative radius of 0.85 to 0.95, when the relative radius of the furnace core is 0. If the gas temperature at that location is continuously measured, the length of the cold storage zone can be continuously detected.

(3) 低温保存帯長さは、原料装入条件(O/C分
布)の調整(操作)により調節できること。
(3) The length of the cold storage zone can be adjusted by adjusting (manipulating) the raw material charging conditions (O/C distribution).

(4) 相対半径0.85〜0.95の範囲の融着帯上面レベ
ルは、高炉の安定詳しくは銑中〔Si〕%絶対レ
ベルと関係が深く、上記レベルが、SL下18〜
20m位置で、上記銑中〔Si〕%絶対レベルが低
位安定する。上記融着帯上面レベルは、同一の
高炉操業条件では、銑中〔Si〕%を目標値に維
持するために、原料装入条件(O/C分布)の
操作を必要とする程には変化せず、同一操業条
件下でのコークス及び又は鉱石類の水分変動に
もとづく銑中〔Si〕%の目標値からの変動は、
送風条件(送風湿分、送風温度)の操作で目標
銑中〔Si〕%にすることができる。また原料装
入条件を変更して、融着帯上面レベルが変動す
るまでに2〜3日の時間遅れがある。
(4) The level of the top surface of the cohesive zone in the range of relative radius 0.85 to 0.95 is closely related to the stability of the blast furnace, and more specifically to the absolute level of [Si] in the pig iron.
At the 20m position, the absolute level of Si in the pig iron becomes stable at a low level. Under the same blast furnace operating conditions, the above cohesive zone top level does not change enough to require manipulating the raw material charging conditions (O/C distribution) in order to maintain the pig iron [Si]% at the target value. The variation of [Si]% in pig iron from the target value due to the moisture content of coke and/or ore under the same operating conditions is
The target [Si]% in pig iron can be achieved by controlling the air blowing conditions (air humidity, air temperature). Furthermore, there is a time delay of 2 to 3 days before the level of the top surface of the cohesive zone changes when the raw material charging conditions are changed.

(5) 上記(1)〜(4)から、炉壁部融着帯レベルの検知
は、原料装入条件(O/C分布)が変更された
とき、例えば低温保存帯長さを、炉況を安定維
持する適正長に制御するために、原料装入条件
を操作したとき、詳しくはその操作から2〜3
日後に検知すれば、銑中〔Si〕%レベルを目標
値に制御するための融着帯上面レベル制御が可
能であること。また、原料装入条件変更時以外
には、銑中〔Si〕%が目標値より高い時(送風
条件で修正できる偏作があるとき)に、融着帯
レベルを検知すれば、銑中〔Si〕%を目標値に
維持しかつ、融着帯上面レベルを適正レベルに
修正できること。
(5) From (1) to (4) above, the level of the cohesive zone on the furnace wall can be detected when the raw material charging conditions (O/C distribution) are changed. In order to control the material to an appropriate length that maintains stability, when the raw material charging conditions are manipulated, the
If detected after a few days, it is possible to control the top surface level of the cohesive zone to control the pig iron [Si]% level to the target value. In addition, other than when changing raw material charging conditions, if the cohesive zone level is detected when the pig iron [Si]% is higher than the target value (when there is uneven cropping that can be corrected by ventilation conditions), the pig iron [Si]% can be detected. It is possible to maintain the Si]% at the target value and correct the top surface level of the cohesive zone to an appropriate level.

本発明は、上記(1)〜(4)の知見にもとづき、炉況
を安定維持して、かつ高品質(低Si%)の溶銑を
得るための垂直ゾンデによる高炉炉況の検出方法
を提供するものである。
The present invention provides a method for detecting the furnace condition of a blast furnace using a vertical probe, in order to maintain the furnace condition stably and obtain high-quality (low Si%) hot metal, based on the findings in (1) to (4) above. It is something to do.

以下本発明について詳細に説明する。 The present invention will be explained in detail below.

はじめに垂直ゾンデによる低温保存帯長さの検
知方法、詳しくは垂直ゾンデによる炉壁部SL7〜
9m位置の検出ガス温度によつて、低温保存帯長
さが検知できる点について説明する。
First, how to detect the length of the cold preservation zone using a vertical sonde.
The point that the length of the cold storage zone can be detected based on the detected gas temperature at the 9 m position will be explained.

第1〜5図図示の垂直ゾンデ装置によつて検出
した第6図の炉壁部炉高方向の炉内ガス温度分布
から、低温保存帯長さは次の様にして検知でき
る。(1)横軸がガス温度、縦軸がストツクライン
(SL)下距離の第6図のガス温度分布27,2
8,29を、例えば第7図下段に示す如く、横軸
がガス流れ方向距離h〔m〕で、縦軸がガス温度
t〔℃〕で、かつガス温度tが、500℃≦t≦800
℃の領域のガス温度分布図とする。(2)次いで第7
図下段の500℃≦t≦800℃のガス温度分布27,
28,29から、第7図上段に示す如く、ガス流
れ方向のガス温度変化率dt/dh〔℃/m〕に変換す る。(3)次いでガス温度変化率dt/dh〔℃/m〕が
、 dt/dh≒0又はdt/dh>0で、詳しくはdt/
dh≧−20〔℃/ m〕であるガス流れ方向距離の総計を低温保存帯
長さとする。例えば第6,7図に示すガス温度分
布27,28,29では、各々低温保存帯長さ
は、6、3、1〔m〕となつている。
The length of the cold storage zone can be detected in the following manner from the furnace gas temperature distribution in the furnace wall direction of the furnace height shown in FIG. 6 detected by the vertical sonde device shown in FIGS. 1 to 5. (1) Gas temperature distribution in Figure 6 where the horizontal axis is the gas temperature and the vertical axis is the distance below the stock line (SL) 27,2
8, 29, for example, as shown in the lower part of Figure 7, the horizontal axis is the distance h [m] in the gas flow direction, the vertical axis is the gas temperature t [℃], and the gas temperature t is 500℃≦t≦800.
This is a gas temperature distribution map in the °C region. (2) Then the seventh
Gas temperature distribution 27 at 500℃≦t≦800℃ in the lower part of the figure,
28 and 29, it is converted into a gas temperature change rate dt/dh [° C./m] in the gas flow direction, as shown in the upper part of FIG. (3) Next, the gas temperature change rate dt/dh [°C/m] is dt/dh≒0 or dt/dh>0, specifically dt/dh
The total distance in the gas flow direction where dh≧-20 [°C/m] is defined as the cold storage zone length. For example, in the gas temperature distributions 27, 28, and 29 shown in FIGS. 6 and 7, the cold storage zone lengths are 6, 3, and 1 [m], respectively.

そして本発明者等は、数多くの垂直ゾンデによ
る前記の測定結果から、第8図に例示する様に、
低温保存帯長さと炉高方向特定位置、即ち炉壁部
SL下7〜9m位置のガス温度とが強相関を示す
ことを見い出した。
Based on the above measurement results using a large number of vertical sondes, the present inventors have determined that, as illustrated in FIG.
Low-temperature storage zone length and specific position in the furnace height direction, that is, the furnace wall
It was found that there is a strong correlation between the gas temperature at a position of 7 to 9 m below the SL.

この特定位置の決定は次の様に行なつたもので
ある。第1〜5図図示の垂直ゾンデ装置により、
第6図の如き炉壁部炉高方向のガス温度分布を求
めると共に、この温度分布にもとづいて、前記手
段で低温保存長さを求めて、低温保存帯内の特定
点のガス温度と低温保存帯長さとの相関を、特定
点をパラメーターとして求めて、最も相関の高い
特定点を選定した。
This specific position was determined as follows. With the vertical sonde device shown in Figures 1 to 5,
The gas temperature distribution in the furnace wall direction in the furnace height direction as shown in Figure 6 is determined, and based on this temperature distribution, the low temperature storage length is determined by the above means, and the gas temperature at a specific point within the low temperature storage zone and the low temperature storage are determined. The correlation with the band length was determined using specific points as parameters, and the specific point with the highest correlation was selected.

なお第8図は、炉壁部ストツクライン下8m部
のガス温度と、低温保存帯長さとの間には、強相
関があることを示すものであるが、炉壁部SL下
7〜9m部のガス温度が、低温保存帯長さと強相
関を示すことも確認した。
Figure 8 shows that there is a strong correlation between the gas temperature 8 m below the stock line of the furnace wall and the length of the cold storage zone. It was also confirmed that the gas temperature at

従つて低温保存帯長さは、垂直ゾンデの温度計
が、ストツクライン下7〜9m位置にあるよう
に、垂直ゾンデを位置せしめて、この温度計の検
出ガス温度を連続的に検知することにより、上記
SL下7〜9m部のガス温度と、低温保存帯長さ
との相関図又は相関式を用いて、低温保存帯長さ
を連続的に検知できるものである。
Therefore, the length of the cold storage zone can be determined by positioning the vertical sonde so that the thermometer on the vertical sonde is 7 to 9 meters below the stock line and continuously detecting the gas temperature detected by this thermometer. ,the above
The length of the cold storage zone can be continuously detected using a correlation diagram or a correlation equation between the gas temperature 7 to 9 meters below the SL and the length of the cold storage zone.

次に、低温保存帯長さと炉況との関係について
説明する。
Next, the relationship between the cold storage zone length and furnace conditions will be explained.

第9,10図は、第8図図示の如く低温保存帯
長さと強相関を示すSL下8m部のガス温度と風圧
変動、銑中〔Si〕変動の関係を示す。第9,10
図は、炉壁部炉高方向SL下8m部のガス温度が
低下して、第8図に示す如く低温保存帯長さが長
くなると、炉上部での間接還元が進まないため、
炉下部へ未還元鉱石が多量に降下して、風圧変
動、溶銑品質変動を増大させることを示してい
る。
Figures 9 and 10 show the relationship between the gas temperature, wind pressure fluctuations, and pig iron [Si] fluctuations in the 8 m lower part of the SL, which have a strong correlation with the length of the cold storage zone as shown in Figure 8. 9th and 10th
The figure shows that when the gas temperature at the bottom 8 m of the furnace wall in the furnace height direction decreases and the length of the cold storage zone increases as shown in Figure 8, indirect reduction at the top of the furnace does not proceed.
This indicates that a large amount of unreduced ore falls to the lower part of the furnace, increasing wind pressure fluctuations and hot metal quality fluctuations.

上記低温保存帯長さと炉況変動との関係は、炉
内装入物分布の変動によつて、次の様に説明する
ことができる。即ち、高炉の半径方向全体又は特
定位置のO/Cを変化させると、半径方向全体又
は特定位置の熱流比が変化して、炉高方向の温度
分布が変化する。熱流比が低い場合は、低温保存
帯長さは短いが、燃料比を低下させて半径方向全
体的にO/Cが上昇した場合、及び装入物分布調
整により、半径方向の特定位置のO/Cを上げた
場合には、O/Cが上つた置の熱流比が上昇す
る。
The relationship between the cold storage zone length and furnace condition fluctuations can be explained as follows based on fluctuations in the contents distribution in the furnace. That is, when the O/C in the entire radial direction of the blast furnace or at a specific position is changed, the heat flow ratio in the entire radial direction or at a specific position changes, and the temperature distribution in the furnace height direction changes. When the heat flow ratio is low, the length of the cold storage zone is short, but when the O/C increases overall in the radial direction by lowering the fuel ratio, and by adjusting the charge distribution, the O/C at a specific position in the radial direction increases. When /C is increased, the heat flow ratio increases when O/C is increased.

この結果シヤフト上部のガス温度が低下して、
低温保存帯長さが長くなる。低温保存帯では、間
接還元はほとんど起らないため、低温保存率が長
いと、鉱石の還元が進まないままシヤフト下部へ
達する。シヤフト下部における鉱石の還元は大部
分直接還元であるから、この場合は直接還元量が
増大する。
As a result, the gas temperature at the top of the shaft decreases,
The cold storage zone length increases. In the low-temperature storage zone, indirect reduction hardly occurs, so if the low-temperature storage rate is long, the ore reaches the lower part of the shaft without progressing to reduction. Since most of the reduction of ore in the lower part of the shaft is direct reduction, the amount of direct reduction increases in this case.

以上の様に、意図的に或は外乱により、半径方
向全体又は特定位置のO/Cが上つた場合には、
半径方向全体又は特定位置において、低温保存帯
が長くなつてシヤフト下部では直接還元が増大す
る。
As mentioned above, if the O/C in the entire radial direction or at a specific position rises intentionally or due to disturbance,
In the entire radial direction or in specific locations, the cold storage zone is lengthened to increase the direct reduction in the lower part of the shaft.

直接還元は吸熱反応のため、大量に発生すると
炉下部の保有熱が減少し、融着体の肥大化、溶
銑、溶滓の流動性悪化など、高炉操業に好ましく
ない現象が生じ、棚、スリツプ等の荷下り変動、
溶銑品質変動を増大させる。例えば第11図は、
低温保存帯長さとドロツプとスリツプの発生回数
との関係を示したものである。
Direct reduction is an endothermic reaction, so if it occurs in large quantities, the heat retained in the lower part of the furnace will decrease, causing unfavorable phenomena for blast furnace operation such as enlargement of the fused material and poor fluidity of hot metal and slag, leading to problems such as shelves, slips, etc. Unloading fluctuations such as
Increases hot metal quality variation. For example, in Figure 11,
This figure shows the relationship between the length of the cold storage zone and the number of drops and slips.

以上述べたことから明らかな様に、低温保存帯
長さの検知を連続しておこなえば、即ち垂直ゾン
デを、ゾンデの温度計がストツクライン下7〜9
m位置あるように位置せしめて、この位置のガス
温度を連続的に検知し、このガス温度と低温保存
帯長さとの相関関係にもとづいて、低温保存帯長
さを連続検知すれば、原料装入条件(O/C分
布)調節による低温保存帯長さの制御をタイムラ
グなく行なうことができ、高炉炉況を安定維持す
ることができる。
As is clear from the above, if the length of the cold storage zone is detected continuously, that is, if the vertical sonde is used, the thermometer of the sonde will be 7 to 9 degrees below the stock line.
If the gas temperature at this position is continuously detected, and the length of the cold storage zone is continuously detected based on the correlation between this gas temperature and the cold storage zone length, the raw material storage The length of the cold storage zone can be controlled without time lag by adjusting the input conditions (O/C distribution), and the blast furnace condition can be maintained stably.

そこで本発明では、ゾンデの温度計がストツク
ライン下7〜9m位置にあるように垂直ゾンデを
位置せしめて、この温度計の検出ガス温度にもと
づいて、低温保存帯長さを連続的に検知するもの
である。
Therefore, in the present invention, a vertical sonde is positioned so that the sonde's thermometer is located 7 to 9 meters below the stock line, and the length of the cold storage zone is continuously detected based on the gas temperature detected by this thermometer. It is something.

次に、垂直ゾンデにより検知できる炉壁部融着
帯上面レベルと炉況、即ち溶銑中〔Si〕%絶対レ
ベルとの関係について説明する。
Next, the relationship between the upper surface level of the cohesive zone on the furnace wall, which can be detected by a vertical sonde, and the furnace condition, that is, the absolute level of [Si]% in hot metal, will be explained.

第12図は、前記第1〜5図図示の垂直ゾンデ
装置を用いて、炉高方向温度分布で、温度が900
℃〜1100℃の領域で、温度が急激に上昇するSL
下特定位置として検知したところの融着帯上面レ
ベルと、溶銑中〔Si〕%と関係を示したものであ
る。なお第12図縦軸の銑中〔Si〕%は、融着帯
上面レベル測定前後2日間、即ち4日平均値を示
す。
Figure 12 shows the temperature distribution in the furnace height direction using the vertical sonde device shown in Figures 1 to 5 above.
SL where the temperature rises rapidly in the range from ℃ to 1100℃
This figure shows the relationship between the upper surface level of the cohesive zone detected as the lower specific position and the [Si]% in the hot metal. Incidentally, the % Si in pig iron on the vertical axis in FIG. 12 shows the average value for two days before and after the measurement of the top surface level of the cohesive zone, that is, the average value for four days.

この第12図から明らかなように、炉壁部、融
着帯上面レベルは、銑中〔Si〕%の絶対レベルと
関係が深く、上記レベルがSL下18〜20m位置に
あるとき、上記銑中〔Si〕%の絶対レベルが低位
安定する。又、本発明者等の調査結果によると、
融着帯上面レベルは、同一高炉操業条件下では、
銑中〔Si〕%を目標値に維持するために、原料装
入条件(O/C分布)の操作を必要とする程には
変化せず、同一操業条件下でのコークス及び又は
鉱石類の水分変動にもとづく銑中〔Si〕%の目標
値からの変動は、送風条件(送風湿分、送風温
度)の操作で吸収できる。また原料装入条件
(O/C分布)を変更して、融着帯上面レベルが
変動するまでに2〜3日のタイムラグがある。
As is clear from Fig. 12, the furnace wall and cohesive zone top surface levels are closely related to the absolute level of [Si]% in the pig iron. The absolute level of middle [Si]% is stable at a low level. Also, according to the research results of the present inventors,
Under the same blast furnace operating conditions, the top level of the cohesive zone is
In order to maintain the pig iron [Si]% at the target value, the feedstock charging conditions (O/C distribution) do not change enough to require manipulation, and the coke and/or ore content under the same operating conditions. Fluctuations in the pig iron [Si]% from the target value due to moisture fluctuations can be absorbed by manipulating the air blowing conditions (air humidity, air temperature). Furthermore, there is a time lag of 2 to 3 days before the level of the top surface of the cohesive zone changes after changing the raw material charging conditions (O/C distribution).

従つて炉況の安定維持のために、原料装入条件
の変更によるO/C分布調節後、2〜3日後に、
融着帯上面レベルを検知すれば、即ち低温保存帯
長さを検知しているゾンデを、炉内装入原料とと
もに自然降下せしめて、この降下過程の温度計の
検出ガス温度にもとづいて、炉壁部融着帯上面レ
ベルを検知すれば、融着帯レベル検知直前の低温
保存帯長さは検知されているから、例えば融着帯
上面レベルが上方にある場合で、かつ低温保存帯
長さが適正範囲内で短い場合には、低温保存帯長
さを適正範囲で長くすると共に、銑中〔Si〕%レ
ベルを下げるために、融着帯上面レベルを下方に
下げる操作、即ち原料装入条件(O/C分布)変
更を行なうことができる。この結果、炉況を安定
維持しつつ、低〔Si〕レベルの溶銑を得ることが
できる。
Therefore, in order to maintain stable furnace conditions, two to three days after adjusting the O/C distribution by changing the raw material charging conditions,
When the top surface level of the cohesive zone is detected, that is, the sonde that detects the length of the cryogenic storage zone is allowed to naturally descend together with the raw material in the furnace, and based on the gas temperature detected by the thermometer during this descent process, the temperature of the furnace wall is lowered. If the top level of the cohesive zone is detected, the length of the cryopreservation zone immediately before the detection of the cohesive zone level is detected. If it is short within the appropriate range, increase the length of the cold storage zone within the appropriate range and lower the top level of the cohesive zone in order to lower the [Si]% level in the pig iron, i.e., the raw material charging conditions. (O/C distribution) changes can be made. As a result, hot metal with a low [Si] level can be obtained while maintaining stable furnace conditions.

そこで本発明では、原料装入条件変更時には、
ゾンデ内の温度計が、ストツクライン下7〜9m
位置にあるゾンデを炉内装入原料とともに自然降
下せしめて、この降下過程の温度計の検出ガス温
度にもとづいて、炉壁部融着帯上面レベルを検知
するものである。
Therefore, in the present invention, when changing raw material charging conditions,
The thermometer inside the sonde is 7 to 9 meters below the stock line.
The sonde in the position is allowed to fall naturally together with the raw materials in the furnace, and the level of the upper surface of the cohesive zone on the furnace wall is detected based on the gas temperature detected by the thermometer during this descent process.

またその原料装入条件変更後の炉況、或は融着
帯上面レベル検知後で、装入条件を変更しない場
合の炉況(低温保存帯長さ)を、連続検知すると
共に、垂直ゾンデの寿命を延長するために本発明
では、融着帯上面レベル検知後、垂直ゾンデを引
き上げて、温度計をストツクライン下7〜9m位
置に復帰せしめるものである。
In addition, we continuously detect the furnace condition after changing the raw material charging conditions, or after detecting the top surface level of the cohesive zone, the furnace condition (cold storage zone length) without changing the charging conditions. In order to extend the service life, in the present invention, after detecting the level of the upper surface of the cohesive zone, the vertical probe is pulled up and the thermometer is returned to a position of 7 to 9 meters below the stock line.

以下本発明の垂直ゾンデによる高炉炉況の検出
方法を、第1〜5図図示の垂直ゾンデ装置例にも
とづき詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the method of detecting the condition of a blast furnace using a vertical sonde according to the present invention will be explained in detail based on an example of a vertical sonde apparatus shown in FIGS. 1 to 5.

第4,5図の垂直ゾンデ6を、第1図のワイヤ
ー14で吊り保持し、ゾンデ下端を第3図図示の
昇降案内装置3に装入し、しかるのち第2図図示
の炉頂ガス遮断弁9を開き、ガイドパイプ2内を
降下せしめて、ゾンデ下端をSL7面上に位置せ
しめる。
The vertical sonde 6 shown in FIGS. 4 and 5 is suspended and held by the wire 14 shown in FIG. 1, the lower end of the sonde is inserted into the lifting guide device 3 shown in FIG. Open the valve 9, lower the inside of the guide pipe 2, and position the lower end of the sonde on the SL7 surface.

次いでゾンデ下端をSL7面下1〜2m附近ま
で装入する。そして炉内原料8とともに、垂直ゾ
ンデ6を自然降下せしめ、ゾンデ6の熱電対5が
SL下7〜9mの特定位置、例えば8m位置に到
達すると、ワイヤー14を緊張せしめて、ゾンデ
6をその位置に吊り保持する。
Next, insert the lower end of the sonde to about 1 to 2 m below the SL7 surface. Then, the vertical sonde 6 is naturally lowered together with the raw material 8 in the furnace, and the thermocouple 5 of the sonde 6
When a specific position, for example 8 m, is reached, 7 to 9 m below the SL, the wire 14 is tightened to hang and hold the sonde 6 at that position.

そしてゾンデ6のターミナル15を介して、炉
内ガス温度に対応する熱電対5の出力信号、連続
測定記録すると共に、この検出ガス温度にもとづ
いて、低温保存帯長さを連続測定、記録する。
Then, through the terminal 15 of the sonde 6, the output signal of the thermocouple 5 corresponding to the gas temperature in the furnace is continuously measured and recorded, and the length of the cold storage zone is continuously measured and recorded based on the detected gas temperature.

そして原料装入条件変更によるO/C分布調節
が行なわれると、その変更から2〜3日後に、ワ
イヤー14の緊張を解除して、ゾンデ6を炉内原
料8とともに自然降下せしめて、その降下過程中
はゾンデ6のターミナル15を介して、SL下8
mよりも下方の各位置の炉内ガス温度に対応する
熱電対5の出力信号を連続測定してチヤートに記
録して、900℃〜1100℃の温度域で、急激な温度
上昇が見られると、ワイヤー14をウインチ12
で巻き上げて、ゾンデ6をひきあげる。そしてゾ
ンデ6の熱電対5をSL下8m位置に復帰せしめ
る。
When the O/C distribution is adjusted by changing the raw material charging conditions, two to three days after the change, the tension on the wire 14 is released and the sonde 6 is allowed to fall naturally together with the raw material 8 in the furnace. During the process, via terminal 15 of sonde 6, SL lower 8
Continuously measure the output signal of the thermocouple 5 corresponding to the furnace gas temperature at each position below m and record it on a chart. , wire 14 to winch 12
Wind it up and pull up Sonde 6. Then, the thermocouple 5 of the sonde 6 is returned to the position 8 m below the SL.

ゾンデ6が上昇復帰すると、前記低温保存帯長
さの連続測定、記録を再開するものである。なお
炉壁部融着帯上面レベルの検知は、例えばガス温
度分布を記録したチヤートで、上記急激な温度上
昇が認められた時点までのゾンデ6(パイプ4)
の下降量にもとづいて、検知するものである。
When the sonde 6 returns to the upward position, continuous measurement and recording of the length of the cryogenic storage zone is resumed. The level of the top surface of the cohesive zone on the furnace wall can be detected using, for example, a chart that records the gas temperature distribution, and measures the temperature of sonde 6 (pipe 4) up to the point at which the above-mentioned rapid temperature rise was observed.
Detection is performed based on the amount of fall.

以上詳述した様に、本発明は単一の垂直ゾンデ
で、即ち低コストで炉況と密接な関係を示す低温
保存帯長さを略連続的に検知することができると
共に、原料装入条件、溶銑品質と密接な関係を示
す融着帯上面レベルを、原料装入条件変更時に検
知することができるから、炉況を安定維持してか
つ高品質(低〔Si〕レベル)の溶銑を得る高炉操
業を行なう上で、極めて有用なものである。
As described in detail above, the present invention is capable of substantially continuously detecting the length of the cold storage zone, which is closely related to the furnace condition, at low cost, using a single vertical sonde, and also detecting the raw material charging conditions. The top surface level of the cohesive zone, which is closely related to hot metal quality, can be detected when changing raw material charging conditions, allowing stable furnace conditions to be maintained and high quality (low [Si] level) hot metal to be obtained. It is extremely useful for blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体説明図、第2図は第1図
の部分説明図、第3図は第1図の他の部分説明
図、第4図は高炉の垂直ゾンデ装置の説明図、第
5図は第4図の断面図、第6図は垂直ゾンデによ
る炉高方向ガス温度分布の測定結果例を示す図
表、第7図は炉高方向ガス温度分布の図表、第8
図はストツクライン下8m部のガス温度と低温保
存帯長さとの相関関係図表、第9図はストツクラ
イン下8m部のガス温度と風圧変動の図表、第1
0図は同しく溶中〔Si〕%変動との関係説明図
表、第11図は低温保存帯長さをドロツプ・スリ
ツプ回数との関係説明図表、第12図は炉壁部融
着帯上面レベルと銑中〔Si〕%との関係の説明図
表である。 1:高炉炉頂鉄皮、2:ガイドパイプ、3:垂
直ゾンデ昇降案内装置、4:垂直パイプ、5:熱
電対、6:垂直ゾンデ、7:ストツクライン
(SL)、8:炉内原料、9:炉頂ガス遮断弁、1
0:高炉、11:高炉櫓、12:ウインチ、1
3:フツク、14:ワイヤー、15:ターミナ
ル、16:パージ用不活性ガス吹込管、17:サ
ンプリング用ガス吸引管、18:原料侵入防止
材、19:単管、20:フランジ、21:リング
状パツキン、22:カラー、23:単管、24:
フランジ、25:ボルト・ナツト、26:ストツ
パー、27,28,29:炉高方向ガス温度分
布。
FIG. 1 is an overall explanatory diagram of the present invention, FIG. 2 is a partial explanatory diagram of FIG. 1, FIG. 3 is an explanatory diagram of another part of FIG. 1, and FIG. 4 is an explanatory diagram of a vertical sonde device for a blast furnace. Figure 5 is a cross-sectional view of Figure 4, Figure 6 is a chart showing an example of the measurement results of the gas temperature distribution in the furnace height direction using a vertical sonde, Figure 7 is a diagram of the gas temperature distribution in the furnace height direction, and Figure 8 is a diagram showing the gas temperature distribution in the furnace height direction.
Figure 9 is a graph showing the correlation between the gas temperature 8m below the stock line and the length of the cold storage zone. Figure 9 is a graph showing the gas temperature and wind pressure fluctuations 8m below the stock line.
Figure 0 is a diagram explaining the relationship with the molten [Si]% variation, Figure 11 is a diagram explaining the relationship between the length of the cold storage zone and the number of drops and slips, and Figure 12 is the top level of the cohesive zone on the furnace wall. It is an explanatory chart of the relationship between and pig iron [Si]%. 1: Blast furnace top shell, 2: Guide pipe, 3: Vertical sonde lifting guide device, 4: Vertical pipe, 5: Thermocouple, 6: Vertical sonde, 7: Stock line (SL), 8: Raw material in the furnace, 9: Furnace top gas cutoff valve, 1
0: Blast furnace, 11: Blast furnace turret, 12: Winch, 1
3: Hook, 14: Wire, 15: Terminal, 16: Inert gas blowing pipe for purging, 17: Gas suction pipe for sampling, 18: Raw material intrusion prevention material, 19: Single pipe, 20: Flange, 21: Ring shape Patsukin, 22: Color, 23: Single tube, 24:
Flange, 25: Bolt/Nut, 26: Stopper, 27, 28, 29: Furnace height direction gas temperature distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 垂直パイプの下端部内部に温度計を内接した
垂直ゾンデを、高炉炉頂部鉄皮を貫通して、炉半
径方向炉壁部炉内を昇降可能に配設し、通常上記
ゾンデの温度計でストツクライン下7〜9m位置
のガス温度を検知して、炉壁部塊状帯の低温保存
帯長さを連続的に検知すると共に、原料装入条件
変更時には、上記ゾンデを炉内装入原料とともに
自然降下せしめて、この降下過程の温度計の検出
ガス温度にもとづいて炉壁部融着帯上面レベルを
検知し、検知後、垂直ゾンデを引き上げて、温度
計をストツクライン下7〜9m位置に復帰せしめ
て、上記低温保存帯長さを連続的に検知すること
を特徴とする垂直ゾンデによる高炉炉況の検出方
法。
1. A vertical sonde with a thermometer inscribed inside the lower end of the vertical pipe is arranged so as to be able to move up and down inside the furnace in the radial direction of the furnace wall by penetrating the top shell of the blast furnace. The gas temperature at a position of 7 to 9 meters below the stock line is detected, and the length of the cold storage zone of the lumpy zone on the furnace wall is continuously detected.When the raw material charging conditions are changed, the above-mentioned sonde is used together with the raw material charged in the furnace. Let it fall naturally, and detect the upper surface level of the cohesive zone on the furnace wall based on the gas temperature detected by the thermometer during this descent process. After detection, pull up the vertical sonde and place the thermometer at a position of 7 to 9 m below the stock line. A method for detecting the condition of a blast furnace using a vertical sonde, which comprises continuously detecting the length of the low-temperature preservation zone after returning to the normal state.
JP18454483A 1983-10-04 1983-10-04 Detection of condition of blast furnace using vertical sonde Granted JPS6077908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18454483A JPS6077908A (en) 1983-10-04 1983-10-04 Detection of condition of blast furnace using vertical sonde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18454483A JPS6077908A (en) 1983-10-04 1983-10-04 Detection of condition of blast furnace using vertical sonde

Publications (2)

Publication Number Publication Date
JPS6077908A JPS6077908A (en) 1985-05-02
JPS6246604B2 true JPS6246604B2 (en) 1987-10-02

Family

ID=16155057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18454483A Granted JPS6077908A (en) 1983-10-04 1983-10-04 Detection of condition of blast furnace using vertical sonde

Country Status (1)

Country Link
JP (1) JPS6077908A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555878B (en) * 2013-11-25 2015-02-04 武钢集团昆明钢铁股份有限公司 Safe and high-efficient low-silicon molten-ion blowing process
US20210396469A1 (en) * 2018-11-13 2021-12-23 Arcelormittal Direct reduction shaft furnace with probe for measuring interior gas analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107805A (en) * 1978-02-13 1979-08-24 Nippon Steel Corp Detecting method for softened and fused zone in blast furnace
JPS57152401A (en) * 1981-03-17 1982-09-20 Nippon Steel Corp Method and device for measuring heat level in reduction melting furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107805A (en) * 1978-02-13 1979-08-24 Nippon Steel Corp Detecting method for softened and fused zone in blast furnace
JPS57152401A (en) * 1981-03-17 1982-09-20 Nippon Steel Corp Method and device for measuring heat level in reduction melting furnace

Also Published As

Publication number Publication date
JPS6077908A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
JPS6246604B2 (en)
US4149877A (en) Controlling pig iron refining
JPS6067604A (en) Measurement of interior condition of blast furnace
JP4770316B2 (en) Blast furnace tuyere and blast furnace bottom situation evaluation method
KR920007175Y1 (en) Measuring device for temperature and gas of the blast furnace
JP3887838B2 (en) Blast furnace operation method
Kinney The Blast-furnace Stock Column
JP2970460B2 (en) Blast furnace operation method
JPS5910965B2 (en) Blast furnace operation method
JPS5833283B2 (en) Blast furnace operation method
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JPH11140516A (en) Method for evaluating stability of in-furnace deposition shape for blast furnace
JPS5850291B2 (en) Level and shape measurement method of blast furnace melting zone
JPS59162209A (en) Operating method of blast furnace
JP4181075B2 (en) Early detection method for blast furnace hearth temperature level
JPS626721B2 (en)
JPS6140761Y2 (en)
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
JPS6041682B2 (en) Method and device for measuring heat level in a reduction melting furnace
JP2897363B2 (en) Hot metal production method
JP2003306708A (en) Method for stably operating blast furnace
JPS6077912A (en) Vertical movement guiding device for vertical sonde
CN113607593A (en) Temperature measuring method for core area of temperature field in preparation process of high-temperature material
JP2830347B2 (en) Measurement method for layer height of smelting furnace interior
JPS6046307A (en) Measurement of temperatures in blast furnace