JPS626721B2 - - Google Patents

Info

Publication number
JPS626721B2
JPS626721B2 JP22332782A JP22332782A JPS626721B2 JP S626721 B2 JPS626721 B2 JP S626721B2 JP 22332782 A JP22332782 A JP 22332782A JP 22332782 A JP22332782 A JP 22332782A JP S626721 B2 JPS626721 B2 JP S626721B2
Authority
JP
Japan
Prior art keywords
furnace
carbon
amount
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22332782A
Other languages
Japanese (ja)
Other versions
JPS59113106A (en
Inventor
Ken Ishiguro
Fumio Naito
Toshikatsu Ashimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22332782A priority Critical patent/JPS59113106A/en
Publication of JPS59113106A publication Critical patent/JPS59113106A/en
Publication of JPS626721B2 publication Critical patent/JPS626721B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉操業方法の改良に関し、特に炉況
を安定維持できる高炉操業方法を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a blast furnace operating method, and in particular provides a blast furnace operating method capable of stably maintaining furnace conditions.

(従来の技術) 従来、炉況を安定維持する高炉操業方法とし
て、炉頂ガスのCO、CO2濃度を検出し、炉全体
のガス利用率ηcp=CO2/(CO+CO2)を検出す
ると共に炉内装入原料上又は、炉内の装入原料層
の上部で炉径方向のCO、CO2濃度分布を検出
し、炉径方向のガス利用率ηcp=CO2/(CO+
CO2)分布を検出し、上記炉頂ガスのガス利用率
が最大となる炉径方向ガス利用率分布を定め、そ
のガス利用率分布になるようにOre/Coke分布
を調節する高炉操業方法がある。
(Conventional technology) Conventionally, as a blast furnace operating method to maintain stable furnace conditions, the CO and CO 2 concentrations in the furnace top gas are detected, and the gas utilization rate of the entire furnace η cp = CO 2 / (CO + CO 2 ) is detected. At the same time, the CO and CO 2 concentration distribution in the radial direction of the furnace is detected on the raw material in the furnace or on the upper part of the charging material layer in the furnace, and the gas utilization rate in the radial direction of the furnace η cp = CO 2 / (CO +
There is a blast furnace operation method that detects the CO 2 ) distribution, determines the gas utilization rate distribution in the furnace radial direction that maximizes the gas utilization rate of the above-mentioned furnace top gas, and adjusts the Ore/Coke distribution to achieve that gas utilization rate distribution. be.

この操業方法は、炉頂ガスのガス利用率が最大
であれば炉内の間接還元率が最大で、直接還元率
が最小であり、直接還元による吸熱反応が最小と
なり、炉熱低下及び通気荷下がり異常が有効に防
止され炉況が安定するという考え方である。
In this operating method, if the gas utilization rate of the furnace top gas is maximum, the indirect reduction rate in the furnace is maximum, the direct reduction rate is minimum, and the endothermic reaction due to direct reduction is minimized, resulting in a decrease in furnace heat and a ventilation load. The idea is to effectively prevent the abnormality of the temperature drop and stabilize the furnace condition.

即ち、高炉内では、第(1)、(2)式に示す反応が生
じており、第(2)式の単独反応(シヤフト部上部で
起きている)を間接還元反応といい、第(1)、(2)式
の同時反応(シヤフト部下部で起きている)を直
接還元反応といい、第(1)式は吸熱反応であり、還
元反応における直接還元反応の割合が小さい程、
炉熱低下が有効に防止され炉況が安定するといわ
れている。
In other words, reactions shown in equations (1) and (2) occur in the blast furnace, and the independent reaction in equation (2) (occurring at the upper part of the shaft) is called an indirect reduction reaction, and the reaction shown in equation (1) is called an indirect reduction reaction. ), the simultaneous reaction of equation (2) (occurring at the bottom of the shaft part) is called a direct reduction reaction, and equation (1) is an endothermic reaction, and the smaller the proportion of direct reduction reaction in the reduction reaction, the more
It is said that a decrease in furnace heat is effectively prevented and the furnace condition is stabilized.

C+CO2→2CO (1) CO+O*→CO2 (2) 第(1)式は、カーボンガス化反応式で、第(2)式中
のO*は鉱石類(塊鉱石、焼結鉱、ペレツト)中
のFeと結合している酸素を示す。
C+CO 2 →2CO (1) CO+O * →CO 2 (2) Equation (1) is the carbon gasification reaction equation, and O * in equation (2) is ore (lump ore, sintered ore, pellets). ) indicates oxygen bonded to Fe in

前記炉頂ガス利用率ηcpは、CO2が多い程及び
COが少ない程、大きくなる。そしてCOが少ない
(CO2が多い)ことは、第(1)式の反応量が少ない
ことを示す。従つて炉頂ガス利用率ηcpが高い
程、間接還元率が大きく、かつ直接還元率が小さ
くて炉況が安定するという考え方である。
The above-mentioned furnace top gas utilization rate η cp increases as the amount of CO 2 increases.
The less CO there is, the bigger it becomes. A small amount of CO (a large amount of CO 2 ) indicates that the amount of reaction in equation (1) is small. Therefore, the idea is that the higher the furnace top gas utilization rate η cp is, the higher the indirect reduction rate and the lower the direct reduction rate, and the more stable the furnace condition will be.

(発明が解決しようとする問題点) しかしながらこの従来法では、炉況を安定維持
することはできなかつた。この原因は、従来法で
検出する炉頂ガスのCO、CO2濃度及び炉内装入
原料上又は、炉内の装入原料層の上部での炉径方
向のCO、CO2濃度分布は炉内の総反応の結果で
あり、炉高方向のどのレベルでどんな反応が起き
ているかを検出していない点にある。即ち、従来
法は炉高方向の炉内状況を検出せず、本発明者等
によつて究明されたところの炉況と関係の深い炉
高方向の炉内状況を把握せずに操業していること
にある。
(Problems to be Solved by the Invention) However, with this conventional method, it was not possible to maintain stable furnace conditions. The reason for this is that the CO and CO 2 concentration in the furnace top gas detected by conventional methods and the CO and CO 2 concentration distribution in the furnace radial direction on the raw material charged in the furnace or at the top of the charging material layer in the furnace are This is the result of the total reaction, and it is not possible to detect what kind of reaction is occurring at which level in the direction of the furnace height. In other words, the conventional method does not detect the situation inside the furnace in the direction of the furnace height, and operates without grasping the situation inside the furnace in the direction of the furnace height, which is closely related to the furnace situation as determined by the present inventors. It's in being.

(問題点を解決するための手段・作用) 本発明者等は、炉高方向の炉内状況と炉況との
関係について種々調査した結果、高炉シヤフト
部中部の炉壁部を上昇する炉内ガスの下方部及び
上方部のCO、CO2、H2濃度の検出値から演算さ
れる高炉シヤフト部中部の炉壁部のカーボン変化
量と高炉操業の安定とは極めて関係が深く、上
記カーボン変化量が第(3)式に示すカーボン析出反
応を示す場合には、炉況が不安定であり、一方上
記カーボン変化量がカーボンガス化反応を示す場
合には、炉況が安定であることを見出した。
(Means/effects for solving the problem) As a result of various investigations into the relationship between the inside situation of the furnace in the direction of the furnace height and the furnace condition, the present inventors found that The amount of carbon change in the furnace wall in the middle of the blast furnace shaft, which is calculated from the detected values of CO, CO 2 and H 2 concentrations in the lower and upper parts of the gas, is extremely closely related to the stability of blast furnace operation. If the amount shows the carbon precipitation reaction shown in equation (3), the furnace condition is unstable, while if the above carbon change amount shows the carbon gasification reaction, the furnace condition is stable. I found it.

2CO→C+CO2 (3) また高炉シヤフト部中部の炉壁部でカーボン
析出反応が検知された場合、燃料比を上昇させて
炉半径方向全体的にO/Cを低下させるか或は例
えばベル式高炉の場合は鉱石装入時のムーバブル
アーマーの炉内せり出し量を増加して炉壁部の鉱
石堆積量を減少させる等して炉壁部のO/Cを低
下させると、炉壁部の熱流比が低下して、シヤフ
ト部上中部の炉壁部のガス温度が昇して、高炉シ
ヤフト部中部の炉壁部でカーボン析出反応をカー
ボンガス化反応に変えることができることも見出
した。
2CO→C+CO 2 (3) If a carbon precipitation reaction is detected on the furnace wall in the middle of the blast furnace shaft, the fuel ratio should be increased to lower the O/C in the entire radial direction of the furnace, or, for example, a bell type In the case of a blast furnace, if the O/C of the furnace wall is lowered by increasing the amount of protrusion of the movable armor into the furnace when charging ore and reducing the amount of ore deposited on the furnace wall, the heat flow on the furnace wall is reduced. It has also been found that as the ratio decreases, the gas temperature at the furnace wall in the upper middle part of the shaft part increases, and the carbon precipitation reaction can be changed to a carbon gasification reaction in the furnace wall part in the middle part of the blast furnace shaft part.

本発明は、上記新知見、、に基づきなさ
れたもので、炉況を安定維持する高炉操業方法を
提供するものであり、その要旨は次の通りであ
る。
The present invention has been made based on the above-mentioned new findings, and provides a blast furnace operating method that stably maintains the furnace condition, and the gist thereof is as follows.

高炉シヤフト部中部の炉壁部を上昇する炉内ガ
スの下方部及び上方部でのCO、CO2、H2濃度を
検知し、これらの検知濃度から高炉シヤフト部中
部の炉壁部のカーボン変化量を求め、このカーボ
ン変化量がカーボン析出反応を示す場合には、炉
壁部のO/Cを低下して、上記カーボン変化量が
カーボンガス化反応を示すようにすることを特徴
とする高炉操業方法。
The CO, CO 2 and H 2 concentrations in the lower and upper parts of the furnace gas rising up the furnace wall in the middle of the blast furnace shaft are detected, and based on these detected concentrations, carbon changes in the furnace wall in the middle of the blast furnace shaft are detected. If the carbon change amount indicates a carbon precipitation reaction, the O/C of the furnace wall is lowered so that the carbon change amount indicates a carbon gasification reaction. Operating method.

以下、本発明の高炉操業方法について詳細に説
明する。
Hereinafter, the blast furnace operating method of the present invention will be explained in detail.

まず上記新知見を得た経緯について説明する。 First, I will explain how the above new findings were obtained.

本発明者等は炉内ガスの炉高方向のCO、
CO2、H2濃度分布及びこの濃度分布に基づくカー
ボン変化量分布を調査した。炉高方向で炉内ガス
を採取し、炉高方向の炉内ガスのCO、CO2、H2
濃度分布を検出するため、水平ゾンデを炉高方向
に多段に配置した。具体的には、第1図に示す羽
口1〜ストツクライン2間の高さH=25.3mの高
炉3において高さHの相対高さ1.00の位置に斜行
ゾンデ4、相対高さ0.77、0.62、0.48、0.32の各
位置に水平ゾンデ5,6,7,8を配置して炉高
方向各段の半径方向の中心部、中間部、周辺部
(炉壁部)の炉内ガスを採取し、ガス組成を分析
することにより、炉径方向の中心部、中間部、周
辺部(炉壁部)のガス流線に沿つた炉高方向の炉
内ガスのCO、CO2、H2濃度分布を求めた。
The present inventors have discovered that CO in the furnace height direction of the furnace gas,
We investigated the CO 2 and H 2 concentration distribution and the carbon change distribution based on this concentration distribution. Collect the furnace gas in the direction of the furnace height, and collect CO, CO 2 and H 2 in the furnace gas in the direction of the furnace height.
In order to detect the concentration distribution, horizontal sondes were placed in multiple stages in the direction of the furnace height. Specifically, in a blast furnace 3 with a height H = 25.3 m between the tuyere 1 and the stock line 2 shown in Fig. 1, an oblique sonde 4 is placed at a relative height of 1.00 of the height H, a relative height of 0.77, Horizontal sondes 5, 6, 7, and 8 are placed at each position of 0.62, 0.48, and 0.32 to collect gas in the furnace at the center, middle, and periphery (furnace wall) in the radial direction of each stage in the furnace height direction. By analyzing the gas composition, we can determine the concentration of CO, CO 2 and H 2 in the furnace gas in the furnace height direction along the gas flow lines at the center, middle and periphery (furnace wall) in the radial direction of the furnace. The distribution was determined.

上記炉高方向の炉内ガスのCO、CO2、H2濃度
分布に基づき、炉高方向のカーボン変化量分布を
求めた。これは基本的に炉内ガス成分変化から炉
内反応を求めることであり、このためには炉内ガ
ス流線に沿つたガス成分変化を求める必要があ
る。そのため上記水平ゾンデによる炉高方向の
CO、CO2、H2濃度分布の測定に際しては、公知
のHeストレーサー法により炉内ガス流線を測定
して各段のゾンデの半径方向ガス採取位置が、半
径方向の中心部、中間部、周辺部(炉壁部)のガ
ス流線上にならぶようにガス採取位置を決めた。
Based on the CO, CO 2 and H 2 concentration distribution of the furnace gas in the furnace height direction, the carbon change amount distribution in the furnace height direction was determined. This is basically to determine the reaction in the furnace from the change in the gas composition in the furnace, and for this purpose it is necessary to determine the change in the gas composition along the gas flow line in the furnace. Therefore, the direction of the furnace height using the horizontal sonde is
When measuring the CO, CO 2 , and H 2 concentration distribution, the gas flow lines in the furnace are measured using the well-known He tracer method, and the radial gas sampling position of the sonde at each stage is determined to be at the center or middle of the radial direction. The gas sampling position was determined so as to align with the gas flow line in the peripheral area (furnace wall).

上記ガス流線に沿つた炉内ガス成分変化から炉
内反応、即ちカーボン変化量を求める方法は、次
の通りである。
The method for determining the in-furnace reaction, that is, the amount of carbon change, from the change in the in-furnace gas component along the gas flow line is as follows.

(1) 炉内ガス分析からCO、CO2、H2〔%〕を求
める。
(1) Obtain CO, CO 2 and H 2 [%] from furnace gas analysis.

(2) 炉内はN2量は変化しないのでN2バランスか
ら炉内各位置のCO、CO2ガス量Qcp、Qcp2
〔Nm3/Nm3−Blast〕は、第(4)(5)式の通りとな
る。(但しO2、N2等の富化がない場合) Qcp=0.79Nm3/Nm3−Blast×CO%/10
0%−(CO%+CO%+H%)(4) Qcp2=0.79Nm3/Nm3−Blast×CO%/
100%−(CO%+CO%+H%)(5) (3) 上記第(4)、(5)式から炉内ガスが流線に沿つて
炉内高さ方向任意位置AからBに上昇する過程
でのガス成分変化量は第(6)、(7)式のように表せ
る。
(2) Since the amount of N2 inside the furnace does not change, the amount of CO and CO2 gas at each location in the furnace is determined from the N2 balance, Q cp , Q cp2
[Nm 3 /Nm 3 −Blast] is as shown in equations (4) and (5). (However, if there is no enrichment of O 2 , N 2 etc.) Q cp = 0.79Nm 3 /Nm 3 -Blast x CO%/10
0%-(CO%+ CO2 %+ H2 %) (4) Q cp2 = 0.79Nm3 / Nm3 -Blast× CO2 %/
100% - (CO% + CO 2 % + H 2 %) (5) (3) From equations (4) and (5) above, the gas in the furnace moves along the streamline from arbitrary position A to B in the height direction inside the furnace. The amount of change in gas composition during the rising process can be expressed as in equations (6) and (7).

ΔQcp=Qcp(B)−Qcp(A) (6) ΔQcp2=Qcp2(B)−Qcp2(A) (7) (4) 上記第(6)、(7)式からA−B間での炉内反応
量、即ちカーボン変化量ICは第(8)式の如く表
せる。
ΔQ cp =Q cp (B)−Q cp (A) (6) ΔQ cp2 =Q cp2 (B)−Q cp2 (A) (7) (4) From equations (6) and (7) above, A− The in-furnace reaction amount between B, ie, the carbon change amount IC, can be expressed as in equation (8).

IC〔Kgmole−C/Nm3−Blast〕 =−(ΔQcp+ΔQcp2)/22.4 (8) 上記カーボン変化量ICが正値の場合は、析
出カーボン量を、また負値の場合はガス化カー
ボン量を示す。
IC [Kgmole-C/Nm 3 -Blast] = - (ΔQ cp + ΔQ cp2 ) / 22.4 (8) If the above carbon change amount IC is a positive value, it is the precipitated carbon amount, and if it is a negative value, it is the gasified carbon Indicate quantity.

以上の方法で調査した炉高方向のカーボン変化
量分布と炉況との関係は、ゾンデ7−5間炉壁部
のカーボン変化量ICが正値の場合は、炉況が不
安定であり、一方ゾンデ7−5間炉壁部のカーボ
ン変化量ICが負値の場合は、炉況が安定であつ
た。
The relationship between the carbon change distribution in the furnace height direction investigated using the above method and the furnace condition is that if the carbon change IC in the furnace wall between sonde 7 and 5 is a positive value, the furnace condition is unstable. On the other hand, when the amount of carbon change IC in the furnace wall between sondes 7 and 5 was a negative value, the furnace condition was stable.

なお中心部及び中間部の炉高方向のカーボン変
化量分布は、いずれのゾンデ間もカーボン変化量
ICが負値であつた。
Furthermore, the carbon change distribution in the furnace height direction in the center and middle areas shows the carbon change distribution between all sondes.
IC was a negative value.

ゾンデ7−5間炉壁部のカーボン変化量ICが
正値の場合、いいかえると高炉シヤフト部中間部
の炉壁部にカーボン析出反応が生じている場合、
炉況が不安定となる理由は、次の通りである。
If the amount of carbon change IC in the furnace wall between sonde 7 and 5 is a positive value, in other words, if a carbon precipitation reaction occurs in the furnace wall in the middle of the blast furnace shaft,
The reasons why the furnace condition becomes unstable are as follows.

カーボン析出反応が発生するゾーンでは間接還
元は起こらないため鉱石は還元が進まないまま高
炉シヤフト部下部へ達する。高炉シヤフト部下部
における鉱石の還元は大部分直接還元であるから
この場合は直接還元量が増大する。このため炉熱
低下及び通気荷下がり異常が発生する。
Since indirect reduction does not occur in the zone where the carbon precipitation reaction occurs, the ore reaches the lower part of the blast furnace shaft without being reduced. Since most of the ore reduction in the lower part of the blast furnace shaft is direct reduction, the amount of direct reduction increases in this case. As a result, a decrease in furnace heat and an abnormality in ventilation loading occur.

またカーボン析出反応が炉中心部及び炉中間部
で発生せず、炉壁部で発生する理由は次の通りで
ある。カーボン析出反応は熱流比が上昇して、ガ
ス温度が低下した領域で発生し易い。一般に高炉
は融着帯の通気抵抗を下げるべく中心部の融着帯
の位置を高くする。このため中心部のO/Cを周
辺部のO/Cより低くして中心部の熱流比を周辺
部の熱流比より低くして中心流を維持することが
操業の基本である。O/C分布制御もこの中心流
維持の範囲内で行うことが原則であり、周辺部熱
流比が中心部熱流比より低くなることはない。
Further, the reason why the carbon precipitation reaction does not occur in the furnace center and the furnace middle part but occurs in the furnace wall is as follows. Carbon precipitation reactions tend to occur in regions where the heat flow ratio increases and the gas temperature decreases. Generally, in a blast furnace, the position of the cohesive zone in the center is raised to lower the ventilation resistance of the cohesive zone. For this reason, the basics of operation are to maintain the central flow by lowering the O/C of the center than the O/C of the periphery and lowering the heat flow ratio of the center than the heat flow ratio of the periphery. In principle, O/C distribution control is also performed within the range of maintaining the central flow, and the peripheral heat flow ratio will not become lower than the central heat flow ratio.

従つて、何らかの検出不可能な原因、例えば原
料粒度の変化によるO/C分布の変化によつて径
方向の熱流比分布が変化して第(3)式のカーボン析
出反応が発生するとしても、まず炉壁部で発生す
ることになる。
Therefore, even if the radial heat flow ratio distribution changes due to some undetectable cause, such as a change in O/C distribution due to a change in raw material particle size, and the carbon precipitation reaction of equation (3) occurs, First, it occurs on the furnace wall.

一方、上記高炉シヤフト部中部の炉壁部のカー
ボン析出反応量と装入物分布との関係について調
査した結果は次の通りである。
On the other hand, the results of investigating the relationship between the amount of carbon precipitation reaction on the furnace wall in the middle of the blast furnace shaft and the charge distribution are as follows.

シヤフト部中部の炉壁部のカーボン析出反応量
はシヤフト部中部の温度分布とガス組成分布に大
きく依存するが、半径方向全体または特定位置の
O/Cを変化させると半径方向全体または特定位
置の熱流比が変化して、半径方向全体または特定
位置の炉高方向の温度分布及びガス組成分布が変
化してシヤフト部中部の炉壁部のカーボン析出反
応量が変化する。
The amount of carbon deposition reaction on the furnace wall in the middle of the shaft depends largely on the temperature distribution and gas composition distribution in the middle of the shaft, but if the O/C is changed in the entire radial direction or at a specific position, As the heat flow ratio changes, the temperature distribution and gas composition distribution in the entire radial direction or in the furnace height direction at a specific position change, and the amount of carbon precipitation reaction on the furnace wall in the middle of the shaft portion changes.

従つて炉壁部でカーボン析出反応が検出された
場合は、燃料比を上昇させて半径方向全体にO/
Cを低下させるか或はベル式高炉の場合は鉱石装
入時のムーバブルアーマーの炉内せり出し量を増
加して炉壁部の鉱石堆積量を減少させるなどし
て、炉壁部のO/Cを低下させる。この結果カー
ボン析出反応が起きている炉壁部の熱流比が低下
して、シヤフト部中部の炉壁部のガス温度が上昇
するためにシヤフト部中部の炉壁部のカーボン析
出反応がカーボンガス化反応に変化する。この結
果シヤフト部中部の炉壁部でも間接還元が進行す
るようになり、シヤフト下部での直接還元量が減
少して、炉況が安定する。
Therefore, if a carbon precipitation reaction is detected on the furnace wall, increase the fuel ratio and apply O/O to the entire radial direction.
O/C of the furnace wall can be reduced by lowering the C or, in the case of a bell-type blast furnace, increasing the amount of protrusion of the movable armor into the furnace when charging ore to reduce the amount of ore deposited on the furnace wall. decrease. As a result, the heat flow ratio on the furnace wall where the carbon precipitation reaction is occurring decreases, and the gas temperature on the furnace wall in the middle of the shaft increases, causing the carbon precipitation reaction in the furnace wall in the middle of the shaft to turn into carbon gas. change into a reaction. As a result, indirect reduction also progresses on the furnace wall in the middle of the shaft, reducing the amount of direct reduction at the lower part of the shaft and stabilizing the furnace condition.

(実施例) 以下、本発明の高炉操業方法の実施例について
述べる。
(Example) Hereinafter, an example of the blast furnace operating method of the present invention will be described.

第3,4,5図は第1図図示の如くゾンデ4,
5,6,7,8を配置して炉高方向のCO、
CO2、H2濃度分布を検出し、前記第(4)〜(8)式から
炉高方向のカーボン変化量分布を演算可能にした
羽口1〜ストツクライン2間高さH=25.3mの高
炉3における半径方向の周辺部(相対半径0.95の
第2図に示す炉高方向のシヤフト部上部U、シヤ
フト部中部M、炉下部Lのカーボン変化量の実測
演算値の推移を示す。また第6図は第3〜5図の
カーボン変化量推移表示期間の上記高炉における
ドロツプとスリツプの発生回数を示す。
Figures 3, 4, and 5 show sonde 4, as shown in Figure 1.
5, 6, 7, and 8 are placed in the direction of the furnace height,
The CO 2 and H 2 concentration distribution was detected, and the carbon change distribution in the furnace height direction could be calculated from equations (4) to (8). The changes in the measured and calculated values of the amount of carbon change in the radial peripheral area (relative radius 0.95) of the blast furnace 3 in the shaft upper part U, shaft part middle M, and furnace lower part L in the furnace height direction are shown in FIG. FIG. 6 shows the number of occurrences of drops and slips in the blast furnace during the carbon change change display period shown in FIGS. 3 to 5.

なお第3図のシヤフト部上部Uの変化量は、第
1図のゾンデ5と4で各々検出したCO、CO2
H2%と第(4)〜(8)式を用いて、また第4図のシヤ
フト部中部Mの変化量はゾンデ5と7で各々検出
したCO、CO2、H2%と第(4)〜(8)式用いて求めた
ものである。更に第5図の炉下部Lの変化量はゾ
ンデ7で検出したCO、CO2、H2%と羽口1レベ
ルの理論ガス組成と第(4)〜(8)式を用いて求めたも
のである。
The amount of change in the upper part U of the shaft part in Figure 3 is based on CO, CO 2 , and CO detected by sondes 5 and 4 in Figure 1, respectively.
Using H 2 % and equations (4) to (8), the amount of change in the middle part M of the shaft section in Fig. 4 can be calculated using CO, CO 2 , H 2 % and (4 ) to (8). Furthermore, the amount of change in the lower part L of the furnace in Figure 5 was determined using the CO, CO 2 and H 2 % detected by sonde 7, the theoretical gas composition at the tuyere 1 level, and equations (4) to (8). It is.

更に第3〜5図の縦軸は、前記ガス組成の検出
及びカーボン変化量の演算を(1回/1〜2日
間)の割合で実施し、月内の平均値を示す。更に
なおドロツプ回数は炉内充填原料の0.5〜1.0mの
小落下回数を、スリツプ回数とは炉内充填原料の
1m異常の大落下回数を示し、第6図の縦軸は月
内の1日当たりの平均発生回数を示す。
Further, the vertical axes in FIGS. 3 to 5 indicate the monthly average value obtained by performing the detection of the gas composition and calculation of the amount of carbon change at a rate of (once/1 to 2 days). Furthermore, the number of drops indicates the number of small drops of 0.5 to 1.0 m of the raw material packed in the furnace, and the number of slips indicates the number of abnormal large drops of 1 meter of the raw material packed in the furnace. shows the average number of occurrences.

S56.5〜6月は第4図に示す如くシヤフト部中
部Mにおいて20〜30Kg/T−p相当のカーボン析
出反応が、また炉下部Lにおいて140Kg/T−p
相当と非常に多いカーボンガス化反応(吸熱反
応)が起きて、第6図に示す如く荷下がりが悪か
つたが、7月に鉱石ベースを80T/chから84T/
chへ増加させて周辺(炉壁部)O/Cの低下を
図つた結果、第4図に示すくシヤフト部中部Mの
カーボン析出反応はなくなり、炉下部Lのカーボ
ンガス化反応量も100Kg/T−p以下に減少して
第6図に示す如く荷下がりが改善された。この間
シヤフト部上部、中部、炉下部の合計のカーボン
ガス化反応量は、ほとんど変化していないが炉壁
部のO/Cを低下して、シヤフト部中部Mのカー
ボン析出反応をカーボンガス化反応に変化させる
ことによつて炉況を安定させることできた。この
ように高炉シヤフト部中部、炉壁部のカーボン変
化量を演算して、カーボン変化量がカーボン析出
反応を示す場合、炉壁部のO/Cを低下して、上
記カーボン変化量がカーボンガス化反応を示すよ
うにすることは炉況安定にとつて極めて有効であ
ることが明らかである。
As shown in Figure 4, from May to June S56, there was a carbon precipitation reaction equivalent to 20 to 30 Kg/T-p in the middle part M of the shaft, and 140 Kg/T-p in the lower part L of the furnace.
A considerable amount of carbon gasification reaction (endothermic reaction) occurred, resulting in poor unloading as shown in Figure 6, but in July the ore base was increased from 80T/ch to 84T/ch.
As a result of trying to lower the peripheral (furnace wall) O/C by increasing ch to The load was reduced to below T-p, and as shown in FIG. 6, the load drop was improved. During this period, the total amount of carbon gasification reaction in the upper shaft part, middle part, and lower part of the furnace did not change much, but the O/C of the furnace wall part was lowered, and the carbon precipitation reaction in the middle part M of the shaft part was changed to a carbon gasification reaction. By changing the temperature, the furnace conditions could be stabilized. Calculating the amount of carbon change in the middle part of the blast furnace shaft and the furnace wall in this way, if the amount of carbon change indicates a carbon precipitation reaction, reduce the O/C of the furnace wall and make sure that the amount of carbon change is equal to the amount of carbon gas. It is clear that making the reactor exhibit a chemical reaction is extremely effective for stabilizing the furnace condition.

第7図は、従来法(炉頂ガス利用率分布管理
法)実施時と本発明法(シヤフト部中部炉壁部カ
ーボン変化量管理法)実施時の炉況の安定度を示
す1日当たりのドロツプとスリツプ回数を示した
もので、本発明法によると炉況を安定維持するこ
とができることが明らかである。
Figure 7 shows the drop per day showing the stability of the furnace condition when the conventional method (furnace top gas utilization distribution management method) and the present invention method (method for controlling the amount of carbon change in the furnace wall in the middle of the shaft) were implemented. It is clear that the furnace condition can be maintained stably according to the method of the present invention.

なお本発明においては、高炉シヤフト部中部の
炉壁部のガス流線上の上下2点のガス採取位置即
ちCO、CO2、H2濃度の検出点の位置が重要であ
り、これは炉況の安定、不安定と十分な相関を示
すカーボン変化量を検出できる高炉シヤフト部中
部の炉壁部のガス流線上の上下2点を調査して選
定する必要がある。
In the present invention, the two gas sampling positions (upper and lower) on the gas flow line of the furnace wall in the middle of the blast furnace shaft, that is, the positions of the CO, CO 2 and H 2 concentration detection points, are important, and this depends on the furnace conditions. It is necessary to investigate and select the upper and lower two points on the gas flow line of the furnace wall in the middle of the blast furnace shaft where the amount of carbon change that shows a sufficient correlation with stability and instability can be detected.

(発明の効果) 以上詳述したように、本発明の高炉操業方法に
よれば炉況を安定維持して操業でき高炉操業にお
けるその価値は大きい。
(Effects of the Invention) As detailed above, according to the blast furnace operating method of the present invention, the furnace can be operated while stably maintaining the furnace condition, and its value in blast furnace operation is great.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は全て本発明の高炉操業方法の説明図であ
り、第1図は炉高方向のガス組成分布の検出方法
の説明図、第2〜7図は本発明の高炉操業方法の
実施例の説明図である。 1……羽口、2……ストツクライン、3……高
炉、4〜8……ゾンデ。
The drawings are all explanatory diagrams of the blast furnace operating method of the present invention, FIG. 1 is an explanatory diagram of the method of detecting the gas composition distribution in the direction of the furnace height, and FIGS. 2 to 7 are explanatory diagrams of the embodiments of the blast furnace operating method of the present invention. It is a diagram. 1...tuyere, 2...stock line, 3...blast furnace, 4-8...sonde.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉シヤフト部中部の炉壁部を上昇する炉内
ガスの下方部及び上方部でのCO、CO2、H2濃度
を検知し、これらの検知度から高炉シヤフト部中
部の炉壁部のカーボン変化量を求め、このカーボ
ン変化量がカーボン析出反応を示す場合には、炉
壁部のO/Cを低下して、上記カーボン変化量が
カーボンガス化反応を示すようにすることを特徴
とする高炉操業方法。
1 Detect CO, CO 2 and H 2 concentrations in the lower and upper parts of the furnace gas rising up the furnace wall in the middle of the blast furnace shaft, and based on the degree of detection, detect the carbon in the furnace wall in the middle of the blast furnace shaft. The amount of carbon change is determined, and if the amount of carbon change indicates a carbon precipitation reaction, the O/C of the furnace wall is lowered so that the amount of carbon change indicates a carbon gasification reaction. Blast furnace operating method.
JP22332782A 1982-12-20 1982-12-20 Method for operating blast furnace Granted JPS59113106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22332782A JPS59113106A (en) 1982-12-20 1982-12-20 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22332782A JPS59113106A (en) 1982-12-20 1982-12-20 Method for operating blast furnace

Publications (2)

Publication Number Publication Date
JPS59113106A JPS59113106A (en) 1984-06-29
JPS626721B2 true JPS626721B2 (en) 1987-02-13

Family

ID=16796409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22332782A Granted JPS59113106A (en) 1982-12-20 1982-12-20 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS59113106A (en)

Also Published As

Publication number Publication date
JPS59113106A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
JPS626721B2 (en)
JP2008184626A (en) Method for operating blast furnace
JP2005290511A (en) Method for operating blast furnace
US20010036436A1 (en) Method for producing iron carbide
US4273577A (en) Blast-furnace operation method
JP2731829B2 (en) Blast furnace operation method
JPH0254706A (en) Method for operating blast furnace
JP2668486B2 (en) Blast furnace operation method using hydrogen gas utilization rate
CA1086956A (en) Method and apparatus for gaseous reduction of metal ores
JPH0978111A (en) Operation of blast furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JPH11269513A (en) Charging of charging material into center part of blast furnace
JP2730751B2 (en) Blast furnace operation method
JPH11323412A (en) Detection of furnace temperature drop in blast furnace
JP2002097505A (en) Blast furnace operating method
SU1052540A1 (en) Method for continuously measuring gas permeability of charge in blast furnace
JP2808342B2 (en) Blast furnace charging method
JPS6361366B2 (en)
JPH0356611A (en) Method for charging carbonaceous material to blast furnace
JPS6246604B2 (en)
JP2617850B2 (en) Blast furnace operation method
JPH11140516A (en) Method for evaluating stability of in-furnace deposition shape for blast furnace
JPH058244B2 (en)
Polovchenko et al. GAS FLOW AND DISTRIBUTION OF MATERIALS IN THE BLAST FURNACE
CN117476122A (en) Method for calculating batch number on top of furnace by using blast furnace blowing amount