JPH0978111A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH0978111A
JPH0978111A JP25946695A JP25946695A JPH0978111A JP H0978111 A JPH0978111 A JP H0978111A JP 25946695 A JP25946695 A JP 25946695A JP 25946695 A JP25946695 A JP 25946695A JP H0978111 A JPH0978111 A JP H0978111A
Authority
JP
Japan
Prior art keywords
furnace
fluidization
distribution
blast furnace
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25946695A
Other languages
Japanese (ja)
Inventor
Takushi Kawamura
拓史 川村
Yoshihiro Inoue
義弘 井上
Yoshiyuki Matsuoka
芳幸 松岡
Shinroku Matsuzaki
真六 松崎
Takashi Nakayama
岳志 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25946695A priority Critical patent/JPH0978111A/en
Publication of JPH0978111A publication Critical patent/JPH0978111A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the fluidization of charged material charged into a blast furnace and to achieve the stable operation by obtaining starting velocity of the fluidization of the charged material in the furnace in each charging butch and gas flowing speed distribution in the furnace and maintaining so that the starting speed of fluidization becomes higher than the gas flowing speed. SOLUTION: At the time of charging the charging material from the furnace top of the blast furnace by dividing into plural times, sampling is executed in a fixed period or when the condition of charging material varies. Grain size distribution and density distribution of the charged material are measured, and based on these, the starting speed of fluidization umf of the charged material is obtd. At the same time, the gas flowing speed distribution ug in the furnace diameter direction is measured, and at least one of the grain size distribution and density distribution of charged material, charged material distribution and hot blast quantity blown from tuyeres of the blast furnace is adjusted. The operation is executed while maintaining so that the starting speed of fluidization umf is higher than the gas flowing speed ug in the furnace. By this method, the stable blast furnace operation is continuously executed in a low fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉内に装入する
装入物の流動化を防止して安定操業を達成するための高
炉操業法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method for preventing fluidization of a charge charged into a blast furnace and achieving stable operation.

【0002】[0002]

【従来の技術】高炉操業において、高炉炉頂部における
装入物の炉径方向の分布状態を適性に保ち、炉内のガス
流速分布や装入原料の還元状態を適性な範囲に維持する
ことは、安定操業を達成する上で極めて重要である。こ
の高炉の安定操業を達成するためには、少なくとも装入
原燃料の流動化現象(固体と気体または液体の混合物に
おいて、運動する流体が固体粒子に及ぼす抗力が重力に
勝ち、あたかも流体の如く運動する状態のこと)を防止
する必要がある。そのため、従来から以下の3種類の方
法が提案されてきた。
2. Description of the Related Art In a blast furnace operation, it is not possible to maintain an appropriate distribution of the charge in the furnace radial direction at the top of the blast furnace, and to maintain the gas flow velocity distribution in the furnace and the reduction state of the charged raw material within an appropriate range. , Is extremely important in achieving stable operation. In order to achieve stable operation of this blast furnace, at least the fluidization phenomenon of the charged raw fuel (in the mixture of solid and gas or liquid, the drag force exerted by the moving fluid on the solid particles overcomes gravity and moves as if it were a fluid). It is necessary to prevent this. Therefore, the following three types of methods have been conventionally proposed.

【0003】まず提案1は、ゾンデを用いて炉径または
炉高方向の炉内ガス組成および/または炉内温度分布を
測定し、該測定値から炉内状態を推定し、これに基づい
て装入物分布や送風条件を制御するものである。また提
案2は、超音波式プロフィールメーター等を用いて装入
物の層厚分布を測定し、該測定値から炉内状態を推定
し、これに基づいて装入物分布や送風状態を制御するも
のである。さらに提案3は、炉内イメージファイバーを
用いて装入物の流動化状態を測定し、これに基づいて該
流動化部位の通気性を制御するものである。
First, the proposal 1 measures the gas composition and / or temperature distribution in the furnace in the diameter or height direction of the furnace by using a sonde, estimates the in-furnace state from the measured value, and based on this, the equipment is installed. It controls the distribution of incoming particles and the blowing conditions. Proposal 2 also measures the layer thickness distribution of the charge using an ultrasonic profile meter, estimates the in-furnace state from the measured values, and controls the charge distribution and blast state based on this. It is a thing. Furthermore, Proposal 3 measures the fluidized state of the charged material using the image fiber in the furnace, and controls the air permeability of the fluidized site based on this.

【0004】上記3提案の例としては特公昭61−21
284号公報や特公昭62−224608号公報や特公
昭64−8207号公報があげられる。特公昭61−2
1284号公報では、過去において得られた炉内半径方
向の任意点における炉内ガスに関与する観測データを中
心流群と周辺流群およびこれらの中間の任意数ガス流群
とに分け、各観測データ群から判別関数法によって高炉
内ガス流速分布を検出する方法が開示されている。
As an example of the above three proposals, Japanese Patent Publication No. 61-21
No. 284, Japanese Patent Publication No. 62-224608, and Japanese Patent Publication No. 64-8207. Japanese Patent Publication 61-2
In 1284, the observation data relating to the in-reactor gas at an arbitrary point in the in-reactor radial direction obtained in the past is divided into a central flow group, a peripheral flow group, and an arbitrary number of gas flow groups in between, and each observation is performed. A method of detecting the gas flow velocity distribution in the blast furnace from the data group by the discriminant function method is disclosed.

【0005】また、特公昭62−224608号公報で
は、原料の堆積角および高炉半径方向のガス流速分布
と、荷下がり速度分布、原料の高炉半径方向の粒度分布
を計測して当該計測値に基づいて炉内融着帯形状を推定
し、この推定した融着帯形状が予め設定した融着帯形状
になるよう、原燃料の装入を制御する方法が開示されて
いる。さらに、特公昭64−8207号公報では、粒度
の小さい装入物層を装入する場所の通気性を流動化開始
通気性以下に制御する方法が開示されている。
In Japanese Patent Publication No. 224608/1987, the deposition angle of the raw material, the gas flow velocity distribution in the radial direction of the blast furnace, the unloading velocity distribution, and the particle size distribution of the raw material in the radial direction of the blast furnace are measured and based on the measured values. There is disclosed a method of estimating the cohesive zone shape in the furnace and controlling the charging of the raw fuel so that the estimated cohesive zone shape becomes a preset cohesive zone shape. Further, Japanese Examined Patent Publication (Kokoku) No. 64-8207 discloses a method of controlling the air permeability at a place where a charge layer having a small particle size is charged to be below the fluidization start air permeability.

【0006】[0006]

【発明が解決しようとする課題】ところが前記特公昭6
1−21284号公報と特公昭62−224608号公
報に開示された方法では、炉内装入物の流動化を判定ま
たは予測することは困難であった。すなわち、前記特公
昭61−21284号公報にて提案された方法では、炉
内特定ガス流群におけるガス流速を検出する手段とし
て、ガス組成とガス温度を使用した推定計算を用いる判
別関数法を採用していることから、装入原燃料が流動化
を起こしていても正常なガス組成や温度を示す場合があ
り、流動化を判定できなかった。その理由は、前記推定
計算に使用するガス組成とガス温度の測定値が同ガス流
群のガス流量と鉱石/コークス層厚比の影響を受け、鉱
石/コークス層厚比によっては、ガス流速が流動化開始
速度を越えていても、正常値を示すことにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the methods disclosed in JP-A 1-212284 and JP-B-62-224608, it is difficult to determine or predict the fluidization of the furnace interior contents. That is, in the method proposed in Japanese Patent Publication No. 61-21284, the discriminant function method using the estimation calculation using the gas composition and the gas temperature is adopted as the means for detecting the gas flow velocity in the specific gas flow group in the furnace. Therefore, even if the charged raw fuel is fluidized, the gas composition and temperature may be normal and the fluidization could not be determined. The reason is that the measured values of the gas composition and the gas temperature used in the estimation calculation are affected by the gas flow rate and the ore / coke layer thickness ratio of the same gas flow group, and the gas flow rate may vary depending on the ore / coke layer thickness ratio. It is to show a normal value even if the fluidization start speed is exceeded.

【0007】また、前記特公昭62−224608号公
報にて提案された方法では、炉径方向のガス流速分布と
荷下がり速度と原料の粒度分布の計測データに基づいて
炉内融着帯形状を推定していることから、流動化現象に
よって前記計測データが変動する場合には、操業に使用
できないものであった。さらに、前記特公昭64−82
07号公報に開示された方法では、粒度の小さい装入物
層を装入する場所のみの通気性を制御していることか
ら、この他の場所例えば比較的粒度の大きい装入物を装
入する炉径方向中心部の流動化を抑制することができな
いものであった。
Further, in the method proposed in Japanese Patent Publication No. 62-224608, the shape of the cohesive zone in the furnace is determined based on the measurement data of the gas flow velocity distribution in the furnace radial direction, the unloading speed and the particle size distribution of the raw material. From the estimation, if the measurement data fluctuates due to the fluidization phenomenon, it cannot be used for the operation. Further, the Japanese Patent Publication No. 64-82
In the method disclosed in Japanese Patent Publication No. 07, since the air permeability is controlled only at the place where the charge layer having a small particle size is charged, other places such as a charge having a relatively large particle size are charged. It was impossible to suppress fluidization of the central part in the radial direction of the furnace.

【0008】本発明は、炉頂より装入される原燃料の粒
度分布と密度分布の測定値を用いて流動化開始速度を求
め、一方で前記ゾンデを用いて装入バッチ毎の炉径方向
におけるガス流速分布を測定することで、炉内装入物の
流動化の兆候を精度よく検知し、装入物の粒度または炉
径方向の分布を調整して高炉の安定操業を達成すること
を課題とするものである。
According to the present invention, the fluidization initiation speed is obtained by using the measured values of the particle size distribution and the density distribution of the raw fuel charged from the furnace top, while the sonde is used to determine the radial direction of each charging batch. By measuring the gas flow velocity distribution in the furnace, it is possible to accurately detect the signs of fluidization of the furnace interior charge and adjust the particle size of the charge or the distribution in the furnace radial direction to achieve stable operation of the blast furnace. It is what

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、その手段は、装入物を
複数回に分割して高炉炉頂より装入する高炉操業法にお
いて、装入バッチ毎における装入物の粒度分布と密度分
布を測定し、この測定値を基に炉内装入物の流動化開始
速度umfを求めるとともに、炉径方向の炉内ガス流速分
布ug を測定し、前記装入物の粒度分布、密度分布、装
入物分布、高炉羽口からの吹込む熱風量のうち少なくと
も一つを調整して下記関係を維持しつつ操業することを
特徴とする高炉操業法にある。 流動化開始速度umf>炉内ガス流速ug
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the means therefor is a blast furnace operating method in which the charge is divided into a plurality of times and charged from the top of the blast furnace. The particle size distribution and density distribution of the charge in each charging batch are measured, the fluidization start speed u mf of the furnace internal charge is determined based on the measured values, and the gas flow velocity distribution u in the furnace in the radial direction is also measured. It is characterized by measuring g and adjusting at least one of the particle size distribution of the charge, the density distribution, the charge distribution, and the amount of hot air blown from the tuyere of the blast furnace to maintain the following relationship while operating. According to the blast furnace operating method. Fluidization start velocity u mf > Furnace gas flow velocity u g

【0010】この際、装入物の粒度分布および密度分布
は定期的、または、装入物条件が変化した時にサンプリ
ングして測定すれば良い。そして、この粒度分布は、例
えば、網目の異なる複数の篩網を用いて、その篩上量と
篩下量との関係で測定し、また、密度分布は上記装入物
の粒度毎の真比重を比重計を用いて計測して求めること
ができる。
At this time, the particle size distribution and the density distribution of the charged material may be measured periodically or when the charged material conditions are changed. Then, this particle size distribution is measured, for example, by using a plurality of sieve screens having different meshes in a relationship between the amount on the screen and the amount under the screen, and the density distribution is the true specific gravity for each particle size of the charge. Can be measured and determined using a hydrometer.

【0011】炉頂より装入する装入物の粒度と密度は、
流動化開始速度を決定する上で重要な因子であり、一般
に粒径が小さい程、密度が大きい程流動化し易くなる。
また、流動化開始速度umfは例えば、下記(1)式によ
って求めることができる。 umf={gφs 2p 2 /2k}×{(ρp −ρ)/μ} ×{εmf 2 /(1−εmf)} ・・・(1) ρp :装入物の密度 ρ :炉内ガスの密度 g :重力加速度 μ :炉内ガスの粘度 φs :装入物の形状係数 Dp :装入物の平均径 εmf:装入物の充填層内空隙率 k :定数
The particle size and density of the charge charged from the furnace top are
This is an important factor in determining the fluidization initiation rate, and generally, the smaller the particle size and the greater the density, the easier the fluidization.
Further, the fluidization start speed u mf can be obtained by the following equation (1), for example. u mf = {gφ s 2 D p 2 / 2k} × {(ρ p −ρ) / μ} × {ε mf 2 / (1−ε mf )} (1) ρ p : Charge Density ρ: Density of the gas in the furnace g: Acceleration of gravity μ: Viscosity of the gas in the furnace φ s : Shape factor of the charge D p : Average diameter of the charge ε mf : Porosity in the packed bed of the charge k :constant

【0012】このことから高炉炉頂より装入する焼結
鉱、塊鉄鉱石、ペレット等の鉱石、またはコークスの装
入バッチ毎の粒度分布と密度分布を測定し、これらの測
定値を前記(1)式に代入し、該装入バッチ毎の流動化
開始速度umfを求める。流動化開始速度は、例えば密度
1000kg/m3 のコークスで粒径50mmの場合は
14.0m/s、密度3600kg/m3 の鉱石で粒径
20mmの場合は8.1m/sとなる。炉径方向の炉内
ガス流速分布ug は高炉炉頂部に設けた炉頂ゾンデガス
流速計を用いて測定する。
From this, the particle size distribution and density distribution of each of the sinter, agglomerated iron ore, ore such as pellets or coke charged from the furnace top of the blast furnace are measured, and these measured values are referred to the above ( Substituting into equation 1), the fluidization start speed u mf for each charging batch is determined. The fluidization initiation speed is, for example, 14.0 m / s when the coke has a density of 1000 kg / m 3 and a particle size of 50 mm, and is 8.1 m / s when the ore has a density of 3600 kg / m 3 and a particle size of 20 mm. Furnace gas flow velocity distribution u g of Ro径direction is measured using a furnace top Zondegasu anemometer provided in the blast furnace top.

【0013】[0013]

【作用】高炉操業中に、炉径方向の複数部位において、
例えば、上記(1)式により求めた流動化開始速度umf
と前記炉頂ゾンデガス流速計で測定した炉内ガス流速u
g を比較し、umf>ug であれば、装入物は流動化を起
こしておらず、操業が正常である。ところが、ug が上
昇してumf=ug となった時、その部位の装入物は流動
化を開始する。さらにug が上昇してumf<ug となっ
た場合、装入物が激しく流動化し、ついには吹抜け(炉
内の装入物がガス流速に運ばれて炉頂より排出されるこ
と)を起こし、操業不能にいたる。
[Operation] During operation of the blast furnace,
For example, the fluidization start velocity u mf obtained by the above equation (1)
And the in-furnace gas flow rate u measured by the above-mentioned furnace top sonde gas anemometer
comparing g, if u mf> u g, charge does not cause fluidization, operation is normal. However, when u g rises to u mf = u g , the charge at that site starts to fluidize. If a u mf <u g more u g is increased, charge is vigorously fluidized, finally blow (the charge in the furnace is discharged from the furnace top is conveyed to the gas flow rate) And caused inoperability.

【0014】前記流動化は、操業中にumfとug を管理
することで事前にその兆候を検知することができる。す
なわち、操業中にug /umfが上昇して1に近づくと、
近い将来に予想される流動化を未然に防止するために、
g /umfを低下することで流動化開始速度umf>炉内
ガス流速ug を維持するのである。
[0014] The fluidization can detect the signs in advance by managing u mf and u g during operation. That is, when u g / u mf rises and approaches 1 during operation,
In order to prevent the liquidation expected in the near future,
than is to maintain fluidization velocity u mf> furnace gas velocity u g in lowering the u g / u mf.

【0015】ug /umfを低下するためには、3つの制
御手段がある。その1つは、炉頂からの装入物の炉径方
向の分布を、例えば、アーマープレートを用いて制御す
ることで炉径方向で流動化を起こしている或いはその兆
候のある部分のガス流速を低下することである。この炉
内ガス流速ug を低下すれば、流動化開始速度umfが同
一である場合にug /umfを低下することができる。
There are three control means for reducing u g / u mf . One of them is a gas flow velocity in a portion where fluidization occurs in the furnace radial direction or has a symptom thereof by controlling the distribution of the charge from the furnace top in the furnace radial direction, for example, by using an armor plate. Is to lower. By lowering the furnace gas flow rate u g, it is possible to decrease the u g / u mf when fluidization velocity u mf is the same.

【0016】2つめは炉頂からの装入物の粒度或いは密
度を向上することである。前記(1)式によれば、流動
化開始速度umfは装入物の粒度の2乗に比例して増加
し、装入物の密度に比例する。従って、装入物の粒度或
いは密度を向上すると、umfが増加することから、同一
g であってもug /umfを低下することができる。
The second is to improve the particle size or density of the charge from the furnace top. According to the above equation (1), the fluidization initiation speed u mf increases in proportion to the square of the particle size of the charge and is proportional to the density of the charge. Accordingly, when improving the particle size or density of the charge, since the u mf is increased, it can be the same u g to reduce u g / u mf.

【0017】3つめは炉内ガス空塔速度を低下すること
である。この方法により、炉内ガス流速が炉径方向全域
に渡って低下することから、炉径方向全域に渡ってug
/umfを低下することができる。
The third is to reduce the superficial gas velocity in the furnace. By this method, since the furnace gas flow rate is decreased over the Ro径direction throughout over the Ro径direction throughout u g
/ Umf can be reduced.

【0018】炉径方向の装入物分布制御は、ベルーアー
マー式高炉の場合にはアーマーの角度を変更する方法が
一般的である。また、装入物の粒度や密度制御は、特定
部位すなわち流動化し易い炉中心部に流入する比較的粒
度の大きな部分の原燃料の粒度をさらに上昇させる、或
いはペレット等の密度の高い原料または大型塊鉱等の粒
度の高い原料の配合比率を上昇する方法があげられる。
なお、炉内ガス空塔速度の低下は、高炉の生産性を犠牲
にして送風量を低下する或いは炉頂圧を増加すること
で、流動化を回避するものである。
In the case of a bell-armor type blast furnace, the charge distribution control in the furnace radial direction is generally performed by changing the angle of the armor. In addition, the particle size and density of the charge can be controlled by further increasing the particle size of the raw fuel at a specific part, that is, the part with a relatively large particle size that flows into the central part of the furnace where fluidization is easy, or by using a dense material such as pellets or a large size. There is a method of increasing the mixing ratio of a raw material having a high particle size such as a lump ore.
The decrease of the superficial gas velocity in the furnace is to avoid fluidization by decreasing the air flow rate or increasing the furnace top pressure at the expense of the productivity of the blast furnace.

【0019】[0019]

【実施例】次に、本発明の一実施例を図1〜図4を参照
して詳細に説明する。まず、高炉の炉径方向のガス流速
分布を直接測定するゾンデについて図2、図3を参照し
て説明する。これは、高炉シャフトの塊状帯上面におい
て炉径方向に移動可能なゾンデ1に複数個のベンチュリ
3,4を設置し、原燃料の装入直後のガス流速分布を測
定するものであり、高炉外から挿入角度25°で炉内に
挿出入可能に設け、これにより、高炉内の装入物2内を
上昇した炉内ガスの流線方向(装入物にほぼ垂直と考え
てよい)と下記両ベンチュリ3,4の中心線a,bがな
す角度を略平行にすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the present invention will be described in detail with reference to FIGS. First, a sonde for directly measuring the gas flow velocity distribution in the furnace radial direction of the blast furnace will be described with reference to FIGS. 2 and 3. This is to install a plurality of venturis 3 and 4 on a sonde 1 which is movable in the furnace radial direction on the upper surface of the massive zone of the blast furnace shaft, and to measure the gas flow velocity distribution immediately after charging the raw fuel. It is provided so that it can be inserted into and taken out of the furnace at an insertion angle of 25 ° from the above, whereby the streamline direction of the gas in the furnace that has risen in the charging material 2 in the blast furnace (may be considered to be almost perpendicular to the charging material) and The angles formed by the center lines a and b of both venturis 3 and 4 can be made substantially parallel.

【0020】このベンチュリ3は、ゾンデ1の先部に設
けた絞り比2.5の高速型であり、ベンチュリ4はゾン
デ1の中間部に設けた絞り比4.0の低速型である。3
aは高速型ベンチュリ3の出側部3oに突設した温度測
定用センサー、3bは一端を高速型ベンチュリ3の絞り
部3sに連通し、他端を差圧発信器8aに連通した静圧
側導管、3cは一端を高速型ベンチュリ3の入側部3i
に連通し、他端を差圧発信器8aに連通した全圧側導
管、4aは低速型ベンチュリ4の出側部4oに突設した
温度測定用センサー、4bは一端を低速型ベンチュリ4
の絞り部4sに連通し、他端を差圧発信器8bに連通し
た静圧側導管、4cは一端を低速型ベンチュリ4の入側
部4iに連通し、他端を差圧発信器8bに連通した全圧
側導管、7aおよび7bは均圧弁、9aおよび9bはN
2 パージガス導入弁、10は差圧変換器、11はガス流
速演算機、12は炉頂圧力計、13は大ベルである。
The venturi 3 is a high speed type with a diaphragm ratio of 2.5, which is provided at the tip of the sonde 1, and the venturi 4 is a low speed type with a diaphragm ratio of 4.0, which is provided in the middle of the sonde 1. 3
a is a temperature measuring sensor projecting from the outlet side 3o of the high-speed venturi 3 and 3b is a static pressure side conduit whose one end communicates with the throttle 3s of the high-speed venturi 3 and the other end communicates with the differential pressure transmitter 8a. 3c has an end portion 3i of the high-speed venturi 3 at one end.
To the differential pressure transmitter 8a, and a pressure measuring sensor 4a projecting from the outlet side 4o of the low-speed venturi 4 and one end of the low-speed venturi 4b.
Of the static pressure side conduit 4c, which communicates with the throttle portion 4s and the other end of which communicates with the differential pressure transmitter 8b. One end of the static pressure conduit 4c communicates with the inlet side part 4i of the low-speed venturi 4 and the other end communicates with the differential pressure transmitter 8b. All pressure side conduits, 7a and 7b are pressure equalizing valves, 9a and 9b are N
2 Purge gas introduction valve, 10 is a differential pressure converter, 11 is a gas flow rate calculator, 12 is a furnace top pressure gauge, and 13 is a large bell.

【0021】そして、この高炉は 内容積 :5,245m3 送風量 :7,900Nm3 /分 送風湿分 :25g/Nm3 酸素付加量 :10,000Nm3 /時間 微粉炭吹込み量:120kg/t−pig 出銑量 :12,000t/日 装入物の装入モード:C(コークス)C(コークス)O
(鉱石)O(鉱石) である。
[0021] Then, the blast furnace internal volume: 5,245m 3 blowing amount: 7,900Nm 3 / minute blower moisture: 25g / Nm 3 oxygen addition amount: 10,000Nm 3 / time pulverized coal blown amount: 120kg / t-pig tapping amount: 12,000 t / day Charge mode of charge: C (coke) C (coke) O
(Ore) O (Ore).

【0022】一般の高炉操業では炉中心部付近のガス流
速が最も大きく、この領域において鉱石が流動化する可
能性が高い。高炉操業中にはしばしばこの部位のガス流
速が大きく変動する状況が観測され、さらに詳細に解析
すると、このときに装入物最上面には鉱石が存在してお
り、通常品質のコークスは極めて流動化し難いことが判
った。高炉炉頂に設置した炉頂ゾンデ1を用いて測定し
た炉径方向中心部における炉頂ガス流速の測定例を図1
に示す。
In general blast furnace operation, the gas flow velocity near the center of the furnace is the highest, and there is a high possibility that ores will be fluidized in this region. During the operation of the blast furnace, it was often observed that the gas flow velocity at this site fluctuated greatly, and a more detailed analysis revealed that at this time, the ore was present on the top of the charge, and normal-quality coke was extremely fluid. It turned out to be difficult to turn into. Fig. 1 is an example of measurement of the top gas velocity in the center of the furnace measured using the top sonde 1 installed at the top of the blast furnace.
Shown in

【0023】コークス装入直後のガス流速は約12m/
sと前記流動化開始速度の14m/sより小さく、また
その変動量も小さく安定していることから、流動化現象
は起こっていないことが判る。ところが、鉱石装入直後
のガス流速は約8m/s程度であり、その変動幅が大き
いことから、上記流動化開始速度の8.1m/sを越え
る場合には流動化を起こしていることが判る。従って、
装入物の性状を変更しない場合、生産量を維持するため
には、操業中のこの部分のガス流速を8.1m/s以下
に抑える必要がある。
Immediately after charging the coke, the gas flow velocity is about 12 m /
s is less than 14 m / s, which is the fluidization start speed, and the amount of fluctuation is small and stable, indicating that no fluidization phenomenon has occurred. However, the gas flow velocity immediately after charging the ore is about 8 m / s, and the fluctuation range is large. Therefore, when the fluidization start speed of 8.1 m / s is exceeded, fluidization may occur. I understand. Therefore,
If the properties of the charge are not changed, it is necessary to keep the gas flow rate in this part during operation to 8.1 m / s or less in order to maintain the production amount.

【0024】高炉はベル方式による4バッチ装入方式を
採用していることから、各装入バッチ毎にηCOとガス流
速の相関傾向が異なる。高炉の安定操業のためにはバッ
チ毎のガス流速変動量を最小にする必要があるが、図4
より概ねガス流速で8m/s程度、ηCOでは7〜17%
が適切であることが判る。
Since the blast furnace adopts a 4-batch charging method by the bell method, the correlation tendency between η CO and the gas flow rate differs for each charging batch. For stable operation of the blast furnace, it is necessary to minimize the gas flow rate fluctuation amount for each batch.
About 8 m / s at gas flow rate, 7 to 17% for η CO
Is found to be appropriate.

【0025】高炉の燃料比を低減するためには、この部
位のηCOを上昇する必要があるが、これが17%を超え
ると、バッチ毎のガス流速変動が大きくなるとともに、
特に鉱石の2バッチ目(O2)を装入した直後にガス流
速が流動化開始速度の8.1m/sを超えて該鉱石の流
動化が起こることから、安定操業が困難になる。また逆
にηCOが7%より低下した場合には、鉱石の1バッチ目
(O1)を装入した直後のガス流速が鉱石の流動化開始
速度の8.1m/s以上となる場合があるが、炉の中心
にはコークスが崩れ込むので鉱石のように流動化現象は
起こり難い。ただしこの場合、バッチ毎のガス流速の差
が大きくなることから、安定操業は困難になる。
In order to reduce the fuel ratio of the blast furnace, it is necessary to increase η CO at this portion, but if it exceeds 17%, the gas flow velocity fluctuation for each batch becomes large, and
In particular, immediately after charging the second batch (O2) of the ore, the gas flow velocity exceeds the fluidization start speed of 8.1 m / s and fluidization of the ore occurs, which makes stable operation difficult. On the contrary, when η CO is lower than 7%, the gas flow velocity immediately after charging the first batch (O1) of the ore may be equal to or higher than the fluidization start speed of the ore of 8.1 m / s. However, since coke collapses in the center of the furnace, the fluidization phenomenon is unlikely to occur like ore. However, in this case, stable operation becomes difficult because the difference in gas flow velocity between batches becomes large.

【0026】この高炉における炉中心部のガス流速の管
理値は、鉱石の平均粒径が20mmであることから、8
m/s±1m/sである。この管理範囲を逸脱する場合
には、後述の対策を取ることで、高炉の安定した操業を
継続するものである。なお、ガス流速と同部位のηCO
関係は、対象とする高炉、原料品質および送風条件によ
って異なるため、上記管理値は予めデータを採取して決
定しておくことが望ましい。
The control value of the gas flow velocity at the center of the blast furnace is 8 because the average particle size of the ore is 20 mm.
m / s ± 1 m / s. In case of deviation from this control range, the stable operation of the blast furnace will be continued by taking the measures described below. Since the relationship between the gas flow velocity and η CO at the same site varies depending on the target blast furnace, raw material quality and blowing conditions, it is desirable to determine the above control values by collecting data in advance.

【0027】(実施例1)高炉に装入するO2の粒度分
布の例を表1に示す。表1中、炉中心部に装入されるO
2は粒度の比較的大きな部分であり、通常はの焼結鉱
粒度+35mmの割合が6.5%程度、粒度35〜25
mmの割合が10.0%程度である。ところが粒度構成
の異なる焼結鉱に変更した際、前記粒度が表1中のよ
うに低下し、これに伴いO2装入直後の炉中心部の流動
化開始速度が8.1m/sから7.5m/sとなり、ゾ
ンデ1で実測した炉内ガス流速の8.1m/sを下回っ
たことから、流動化現象と判断された(図4A点)。
(Example 1) Table 1 shows an example of particle size distribution of O2 charged in a blast furnace. In Table 1, O charged in the center of the furnace
2 is a relatively large particle size portion, and the ratio of the ore particle size +35 mm is usually about 6.5%, and the particle size is 35 to 25.
The ratio of mm is about 10.0%. However, when changing to a sintered ore having a different grain size composition, the grain size decreases as shown in Table 1, and accordingly, the fluidization start speed of the furnace center immediately after O2 charging is from 8.1 m / s to 7. It was 5 m / s, which was lower than the in-reactor gas flow rate of 8.1 m / s actually measured by the Sonde 1, so it was judged to be a fluidization phenomenon (point in FIG. 4A).

【0028】このため、O2の粒度の比較的大きな割合
の部分を上昇するために、塊鉱を配合率を11%から1
4%まで上昇し(表1中)、炉中心部の流動化開始速
度を増加した。その結果、炉中心部の流動化開始速度が
8.1m/sとなり、流動化現象が沈静化に向かい、そ
の部分における還元ガス利用率が10%前後になり、燃
料比が483kg/t−pigから479kg/t−p
igに低下し、炉況も安定した(図4B点)。
For this reason, in order to increase the portion of the O2 particle size having a relatively large proportion, the agglomerates are mixed at a mixing ratio of 11% to 1
It increased to 4% (in Table 1) and increased the fluidization initiation speed in the center of the furnace. As a result, the fluidization start speed in the central part of the furnace became 8.1 m / s, the fluidization phenomenon became calm, the reducing gas utilization rate in that part became around 10%, and the fuel ratio was 483 kg / t-pig. To 479 kg / tp
ig, and the furnace conditions were stable (point in Figure 4B).

【0029】[0029]

【表1】 [Table 1]

【0030】(実施例2)O2のペレット配合率を4%
で高炉を操業している際、炉況の関係でO2装入直後の
炉中心部の炉内ガス流速(ゾンデ1での実測値)が8.
1m/sから9.9m/sまで増加し、前記(1)式で
算定した流動化開始速度の8.1m/s超えた(図4C
点)。このため、O2のペレット配合率を7%(表2
)から9%(表2)まで上昇することで、炉中心部
の流動化開始速度を9.0m/sに増加するとともに、
炉内ガス流速を6.5m/sに低下した。その結果、炉
中心部の流動化現象がなくなり、その部分における還元
ガス利用率が12%前後になり、燃料比が479kg/
t−pigから469kg/t−pigに低下し、炉況
も安定した(図4D点)。
(Example 2) O2 pellet compounding ratio was 4%
During operation of the blast furnace at 8, the gas flow velocity in the furnace (measured value at Sonde 1) in the center of the furnace immediately after O2 charging was 8.
It increased from 1 m / s to 9.9 m / s, and exceeded the fluidization initiation speed of 8.1 m / s calculated by the above formula (1) (Fig. 4C).
point). For this reason, the pellet mixing ratio of O2 is 7% (Table 2
) To 9% (Table 2), the fluidization start speed in the central part of the furnace is increased to 9.0 m / s and
The gas flow velocity in the furnace was lowered to 6.5 m / s. As a result, the fluidization phenomenon in the central part of the furnace disappeared, the reducing gas utilization rate in that part was around 12%, and the fuel ratio was 479 kg /
It decreased from t-pig to 469 kg / t-pig, and the furnace condition was stable (point in FIG. 4D).

【0031】[0031]

【表2】 [Table 2]

【0032】(実施例3)図5に示すようにアーマープ
レートのモードを(2411)と(2418)の併用
(使用度合は2:3)して(前記装入物の装入モードの
CCOOに対応してアーマープレートの各ノッチ数を示
す値であり、その値が大きくなる程、これで蹴られて装
入される装入物の落下位置は炉中心に近くなる)で高炉
操業の際、O1装入直後の炉中心部のガス流速(ゾンデ
1での実測値)が前記(1)式で演算したコークスの流
動化開始速度の14.0m/sを超えて15.0m/s
となり、炉中心部で流動化現象が観測された(図4E
点)。このため図4のようにアーマープレートの使用モ
ードを(2511)と(2518)の併用に変更し、さ
らに使用度合を1:3に変更して、炉中心部へのC2の
蹴り量を促進した(図5)。その結果、炉中心部の流動
化現象がなくなり、その部分における還元ガス利用率が
10%前後になり、燃料比が469kg/t−pigか
ら471kg/t−pigに増加したものの、炉況不調
を免れた(図4B点)。
(Embodiment 3) As shown in FIG. 5, the armor plate modes (2411) and (2418) are used together (the degree of use is 2: 3) (to the CCOO in the charging mode of the charging material). Correspondingly, it is a value indicating the number of each notch of the armor plate, and the larger the value, the closer the dropping position of the charge kicked and charged by this is closer to the center of the furnace.) The gas flow velocity (measured value with sonde 1) in the center of the furnace immediately after charging O1 exceeds 14.0 m / s, which is the fluidization start speed of the coke calculated by the equation (1), and is 15.0 m / s.
And a fluidization phenomenon was observed in the center of the furnace (Fig. 4E
point). Therefore, as shown in FIG. 4, the use mode of the armor plate was changed to the combined use of (2511) and (2518), and the use degree was changed to 1: 3 to promote the kick amount of C2 to the center of the furnace. (Fig. 5). As a result, the fluidization phenomenon in the central part of the furnace disappeared, the reducing gas utilization rate in that part became around 10%, and the fuel ratio increased from 469 kg / t-pig to 471 kg / t-pig, but the reactor condition remained unsatisfactory. It escaped (point in Figure 4B).

【0033】(実施例4)送風量7900Nm3 /分で
操業している際に、O2装入直後の炉中心部におけるガ
ス流速が10m/sまで増加した(図4G点)。その
際、前記3つの実施例を取る時間余裕がなかったことか
ら、緊急避難対策として送風量を7570Nm3 /分ま
で低下することでO2装入直後の炉中心部におけるガス
流速を約9m/sまで低下して、流動化開始速度以下に
した。その後、上記実施例3を併用しつつ送風量を79
00Nm3 /分まで回復し、燃料比を471kg/t−
pigのままで安定した操業ができた(図4H点)。
(Example 4) During operation at an air flow rate of 7900 Nm 3 / min, the gas flow velocity in the central part of the furnace immediately after the introduction of O 2 increased to 10 m / s (point G in FIG. 4). At that time, since there was not enough time to take the above-mentioned three examples, as a measure for emergency evacuation, the air flow rate was reduced to 7570 Nm 3 / min, so that the gas flow velocity in the central part of the furnace immediately after O 2 charging was about 9 m / s. To below the fluidization initiation rate. After that, the air flow rate was adjusted to 79 while using the third embodiment together.
Recovered up to 00 Nm 3 / min, fuel ratio 471 kg / t-
Stable operation was possible with the pig as it was (point H in Fig. 4).

【0034】[0034]

【発明の効果】本発明により、装入物の流動化現象や炉
内ガス流速の安定状況が容易に判り、低燃料比で安定し
た高炉操業を継続して行うことができる等の多大な効果
を奏するものである。
EFFECTS OF THE INVENTION According to the present invention, it is possible to easily understand the fluidization phenomenon of the charge and the stable state of the gas flow velocity in the furnace, and it is possible to continuously perform stable blast furnace operation at a low fuel ratio. Is played.

【図面の簡単な説明】[Brief description of drawings]

【図1】炉内ガス流速と流動化開始速度の関係を示す図FIG. 1 is a diagram showing a relationship between a gas flow velocity in a furnace and a fluidization start speed.

【図2】本実施例に高炉の縦断面図FIG. 2 is a vertical sectional view of a blast furnace according to this embodiment.

【図3】ゾンデの側断面図[Figure 3] Side sectional view of the sonde

【図4】炉中心部の炉内ガス流速と還元ガス利用率(η
CO)の関係を示す図
[Fig. 4] Flow velocity of reducing gas and reducing gas utilization rate (η
CO ) relationship diagram

【図5】アーマープレートを調整した場合の炉径方法に
おけるC2の相対層厚の関係を示す図
FIG. 5 is a diagram showing the relationship of the relative layer thickness of C2 in the furnace diameter method when the armor plate is adjusted.

【符号の説明】 1 ゾンデ 2 高炉内の装入物 3 ゾンデ先端ベンチュリ部 3a 温度センサー 3b 全圧側導管 3c 静圧側導管 3o ベンチュリの出側部 3i ベンチュリの入側部 3s ベンチュリの絞り部 4 ゾンデ中間ベンチュリ部 4a 温度センサー 4b 全圧側導管 4c 静圧側導管 4o ベンチュリの出側部 4i ベンチュリの入側部 4s ベンチュリの絞り部 7a 均圧弁 7b 均圧弁 8a 差圧発信器 8b 差圧発信器 9a パージガス導入弁 9b パージガス導入弁 10 差圧変換器 11 ガス流速演算機 12 炉頂圧力計 13 大ベル MA アーマープレート BF 高炉[Explanation of symbols] 1 Sonde 2 Charge in blast furnace 3 Sonde tip Venturi part 3a Temperature sensor 3b Total pressure side conduit 3c Static pressure side conduit 3o Venturi outlet side 3i Venturi inlet side 3s Venturi throttle 4 Sonde middle Venturi part 4a Temperature sensor 4b Full pressure side conduit 4c Static pressure side conduit 4o Venturi outlet side 4i Venturi inlet side 4s Venturi throttle part 7a Pressure equalizing valve 7b Pressure equalizing valve 8a Differential pressure transmitter 8b Differential pressure transmitter 9a Purge gas introducing valve 9b Purge gas introduction valve 10 Differential pressure converter 11 Gas flow rate calculator 12 Furnace top pressure gauge 13 Large bell MA Armor plate BF Blast furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 真六 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 中山 岳志 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinroku Matsuzaki 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Takeshi Nakayama 1st Nishinosu, Oita City, Oita Prefecture New Japan Oita Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 装入物を複数回に分割して高炉炉頂より
装入する高炉操業法において、装入バッチ毎における装
入物の粒度分布と密度分布を測定し、この測定値を基に
炉内装入物の流動化開始速度umfを求めるとともに、炉
径方向の炉内ガス流速分布ug を測定し、前記装入物の
粒度分布、密度分布、装入物分布、高炉羽口からの吹込
む熱風量のうち少なくとも一つを調整して下記関係を維
持しつつ操業することを特徴とする高炉操業法。 流動化開始速度umf>炉内ガス流速ug
1. In a blast furnace operating method in which the charge is divided into a plurality of times and charged from the top of the blast furnace, the particle size distribution and density distribution of the charge in each charging batch are measured, and the measured values are used as the basis. with obtaining the fluidization velocity u mf of the furnace interior container to measure the Ro径direction of the in-furnace gas flow velocity distribution u g, particle size distribution of the charge density distribution, burden distribution, blast furnace tuyeres A method for operating a blast furnace, characterized in that at least one of the hot air volumes blown from is adjusted to operate while maintaining the following relationship. Fluidization start velocity u mf > Furnace gas flow velocity u g
JP25946695A 1995-09-13 1995-09-13 Operation of blast furnace Withdrawn JPH0978111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25946695A JPH0978111A (en) 1995-09-13 1995-09-13 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25946695A JPH0978111A (en) 1995-09-13 1995-09-13 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH0978111A true JPH0978111A (en) 1997-03-25

Family

ID=17334471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25946695A Withdrawn JPH0978111A (en) 1995-09-13 1995-09-13 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH0978111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275321A1 (en) * 2012-12-07 2015-10-01 Nippon Steel & Sumikin Engineering co., Ltd. a corporation Method for operating blast furnace and method for producing molten pig iron
WO2021085221A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Blast furnace operation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275321A1 (en) * 2012-12-07 2015-10-01 Nippon Steel & Sumikin Engineering co., Ltd. a corporation Method for operating blast furnace and method for producing molten pig iron
US9816151B2 (en) * 2012-12-07 2017-11-14 Nippon Steel & Sumikin Engineering Co., Ltd. Method for operating blast furnace and method for producing molten pig iron
WO2021085221A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Blast furnace operation method
JPWO2021085221A1 (en) * 2019-10-31 2021-11-25 Jfeスチール株式会社 Blast furnace operation method
CN114599802A (en) * 2019-10-31 2022-06-07 杰富意钢铁株式会社 Blast furnace operation method
TWI783285B (en) * 2019-10-31 2022-11-11 日商杰富意鋼鐵股份有限公司 Blast furnace operation method
EP4029953A4 (en) * 2019-10-31 2022-11-16 JFE Steel Corporation Blast furnace operation method
CN114599802B (en) * 2019-10-31 2024-03-29 杰富意钢铁株式会社 Method for operating blast furnace

Similar Documents

Publication Publication Date Title
JPH0978111A (en) Operation of blast furnace
JP2005290511A (en) Method for operating blast furnace
EP3896177B1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
JP5135959B2 (en) Raw material charging method and raw material charging apparatus for blast furnace
JP3624658B2 (en) Evaluation method of in-furnace deposition shape stability in blast furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
EP4317462A1 (en) Pig iron production method
JPH0254706A (en) Method for operating blast furnace
JP3014549B2 (en) Blast furnace operation method
JP2931502B2 (en) Blast furnace operation method
JPH05186811A (en) Method for operating blast furnace
JPH08188808A (en) Method for operating blast furnace
JPH06228617A (en) Two step shaft blast furnace
JPS626721B2 (en)
JPH10219317A (en) Operation of blast furnace
Polovchenko et al. GAS FLOW AND DISTRIBUTION OF MATERIALS IN THE BLAST FURNACE
JP2765734B2 (en) Operation method of iron bath reactor
JP2021121689A (en) Method for estimating amount of ore layer collapse in bell-armor type blast furnace
JP2981015B2 (en) Operating method of circulating fluidized bed reactor
JPS624442B2 (en)
JP2617850B2 (en) Blast furnace operation method
KR20000028284A (en) Method for deciding ventilation inside melting furnace
JPH08170114A (en) Detection/discrimination of gas speed distribution in blast furnace throat part and blast furnace operation
JPH07268411A (en) Method for activating core of blast furnace
JPH0356611A (en) Method for charging carbonaceous material to blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203