JPS6246575A - Thin-film semiconductor device - Google Patents

Thin-film semiconductor device

Info

Publication number
JPS6246575A
JPS6246575A JP18614285A JP18614285A JPS6246575A JP S6246575 A JPS6246575 A JP S6246575A JP 18614285 A JP18614285 A JP 18614285A JP 18614285 A JP18614285 A JP 18614285A JP S6246575 A JPS6246575 A JP S6246575A
Authority
JP
Japan
Prior art keywords
range
film
polycrystalline silicon
impurity
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18614285A
Other languages
Japanese (ja)
Inventor
Toru Ueda
徹 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18614285A priority Critical patent/JPS6246575A/en
Publication of JPS6246575A publication Critical patent/JPS6246575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To inhibit a lateral diffusion on the activation of an impurity implanted to a semiconductor substrate,and to form a thin-film transistor having short gate length by designing the thickness of a semiconductor film in an extent that the standard deviation of the range of implanting ions is added to the flight range of the ions. CONSTITUTION:A polycrystalline silicon film 11 is formed onto insulating substrate 10 through a thin-film manufacture technique such as CVD. The polycrystalline silicon film 11 is formed so that film thickness thereof is brought to an extent that the standard deviation DELTARP of the range RP of implanting ions is added to the range of the ions. The range RP changes by the kinds of impurities and implantation energy, and is determined so as to be positioned at approximately the center of the thickness of the polycrystalline silicon film. Accordingly, a space in which the impurity can be diffused in the depth direction is shortened, thus cutting down the heat treatment time for implanting ions, then inhibiting the lateral diffusion of the impurity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄膜半導体装置に関し、特にはトランジスタの
ためのソース及びドレイン領域を形成するために最適の
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thin film semiconductor device, and particularly to a semiconductor device suitable for forming source and drain regions for a transistor.

〈従来の技術〉 近年、多結晶シリコン薄膜トランジスタ(PolySi
TFT)をLSIメモリに応用するための開発が活発に
試みられている。このような開発は、DRAM或いはS
RAMのメモリセル内に多結晶シリコン薄膜トランジス
タを用いて、SOI構造がもつ種々の利点を活かすこと
を目的としている。
<Conventional technology> In recent years, polycrystalline silicon thin film transistors (PolySi
Active efforts are being made to develop the application of TFTs to LSI memories. Such development is based on DRAM or S
The purpose is to utilize the various advantages of the SOI structure by using polycrystalline silicon thin film transistors in RAM memory cells.

〈発明が解決しようとする問題点〉 処で例えば記憶容量の増大を図るためにはメモリセルの
縮少が必要になるが、そのためには上記多結晶シリコン
トランジスタの縮少が図られねばならない。この縮少化
を妨げるものとして、トランジスタのソース及びドレイ
ン領域に注入された不純物の著しい横方向拡散がある。
<Problems to be Solved by the Invention> For example, in order to increase the storage capacity, it is necessary to reduce the number of memory cells, and for this purpose, the size of the polycrystalline silicon transistor must be reduced. An impediment to this shrinkage is the significant lateral diffusion of impurities implanted into the source and drain regions of transistors.

即ち多結晶シリコン基板では、単結晶のときとは異なっ
て薄膜内に粒界が分布し、そのために注入された不純物
は粒界を通って速やかに拡散する特性があり、実効チャ
ネル長の減少が著しくなってトランジスタのゲート長の
縮小を妨げている。
In other words, in a polycrystalline silicon substrate, grain boundaries are distributed within the thin film, unlike in the case of a single crystal, and as a result, the implanted impurity has the characteristic of quickly diffusing through the grain boundaries, resulting in a decrease in the effective channel length. This has become significant, impeding reduction in the gate length of transistors.

特にイオン注入によって打込まれた不純物は、シリコン
基板内でその目的を達成するためには電気的に活性化す
るために何らかの熱処理が施こされねばならない。この
ような熱処理の過程は不純物を活性化できれば目的を達
成するが、実際の多結晶シリコン基板を用いた工程では
、粒内及び粒界における不純物の拡散係数の違いが著し
いため、粒界での拡散が進んで不純物がゲート長を縮小
させる結果になっている。
In particular, impurities implanted by ion implantation must be subjected to some heat treatment in order to become electrically activated in order to achieve their purpose within the silicon substrate. Such a heat treatment process achieves its purpose if impurities can be activated, but in actual processes using polycrystalline silicon substrates, there is a significant difference in the diffusion coefficient of impurities within grains and at grain boundaries. As diffusion progresses, the impurities result in a reduction in gate length.

半導体膜厚が十分厚い(膜厚〉注入イオンの飛程Rp 
 )場合は、たとえ短時間アニールであっても、第2図
(a)の如く多結晶半導体基板1の表面近傍に打込まれ
た不純物2は、第2図(b)のように結晶の粒界を通っ
て速やかに拡散し、深さ方向と共にチャネル方向にも拡
散する。
Semiconductor film thickness is sufficiently thick (film thickness> implanted ion range Rp
), even if annealing is performed for a short time, the impurity 2 implanted near the surface of the polycrystalline semiconductor substrate 1 as shown in FIG. 2(a) will form crystal grains as shown in FIG. 2(b). It diffuses rapidly through the field, and also diffuses in the channel direction as well as in the depth direction.

上記のように結晶粒界に分布する不純物は通常電気的に
は不活性と考えられ、この程度のアニールによってもは
吉んど活性化が進まない。更にアニールを継続すると、
不純物拡散は粒界に沿って続き、深さ方向でみると、第
2図(C)の如く半導体薄膜lの下面にまで一旦達し、
その後粒界に分布している不純物2が結晶粒内3に拡散
して活性化が図られる。
Impurities distributed at grain boundaries as described above are generally considered to be electrically inactive, and even with this degree of annealing, activation does not progress. If you continue annealing further,
The impurity diffusion continues along the grain boundaries, and when viewed in the depth direction, it once reaches the bottom surface of the semiconductor thin film l, as shown in Figure 2 (C).
Thereafter, the impurities 2 distributed at the grain boundaries are diffused into the crystal grains 3 and activated.

しかしこのように深さ方向の拡散に続いて粒内への拡散
によシ活性化された不純物が生じる時点では、粒界を通
じて横方向にも既に十分拡散してし壕っているため第2
図(d)の如くチャネル長はマスク寸法より著しく短か
くならざるを得ない。
However, at the time when activated impurities are generated by diffusion into the grains following diffusion in the depth direction, they have already diffused sufficiently in the lateral direction through the grain boundaries, so the second
As shown in Figure (d), the channel length must be significantly shorter than the mask dimension.

〈問題点を解決するだめの手段〉 上記従来の問題点を解決し、半導体基板に注入した不純
物の活性化時における横方向拡散を抑えて、ゲート長の
短かい薄膜トランジスタを構成する0 即ちトランジスタを構成するだめの多結晶半導体薄膜の
膜厚を、不純物イオン注入の飛程Rpとその標準偏差Δ
Rpとを加えた程度の膜厚とし、短時間熱処理による不
純物活性化時の横方向を防止する〇 く作 用〉 半導体層の膜厚は、イオン注入時のエネルギー及び不純
物に対応した不純物の飛程Rp十標準偏差値ΔRp程度
に設計されるため、深さ方向に不純物が拡散できる空間
は短かくなシ、打込みイオンのだめの熱処理時間を短縮
し、不純物の横方向拡散を抑えることができる。
<Means to Solve the Problems> By solving the above-mentioned conventional problems and suppressing the lateral diffusion of impurities implanted into a semiconductor substrate during activation, a thin film transistor with a short gate length is constructed. The thickness of the polycrystalline semiconductor thin film is determined by the impurity ion implantation range Rp and its standard deviation Δ.
The thickness of the semiconductor layer should be approximately the same as that of Rp, which prevents lateral movement during impurity activation due to short-time heat treatment. Since the distance Rp is designed to be approximately equal to the standard deviation value ΔRp, the space in which impurities can be diffused in the depth direction is not short, and the heat treatment time for the implanted ions can be shortened and the lateral diffusion of impurities can be suppressed.

〈実施例〉 第1図は本発明による薄膜トランジスタを製造する工程
を説明する図で、絶縁基板!θ上にCVD等の薄膜作製
技術で多結晶シリコン膜11が形成される。該多結晶シ
リコン膜11は、膜厚が打込みイオンの飛程Rpにその
標準偏差ΔRpを加えた程度になるように成膜される。
<Example> Figure 1 is a diagram illustrating the process of manufacturing a thin film transistor according to the present invention. A polycrystalline silicon film 11 is formed on θ using a thin film manufacturing technique such as CVD. The polycrystalline silicon film 11 is formed to have a thickness equal to the range Rp of implanted ions plus its standard deviation ΔRp.

上記飛程Rpは不純物の種類及び注入エネルギによって
変わり、本実施例では飛程Rpは多結晶シリコン膜厚の
ほぼ中央に位置するように決められる。
The range Rp varies depending on the type of impurity and the implantation energy, and in this embodiment, the range Rp is determined to be located approximately at the center of the thickness of the polycrystalline silicon film.

多結晶シリコン中への飛程がほぼ結晶シリコン中への飛
程と同程度と考えると、多結晶シリコン膜上の酸化膜厚
を300X程度としたとき、ヒ素及びホウ素を不純物と
したときの夫々の飛程Rp及び標準偏差ΔRpは次のよ
うな値になる。
Considering that the range into polycrystalline silicon is approximately the same as the range into crystalline silicon, when the oxide film thickness on the polycrystalline silicon film is about 300X, and when arsenic and boron are used as impurities, The range Rp and standard deviation ΔRp are as follows.

以下余白 上記値を参照して膜厚が決められる。Below margin The film thickness is determined with reference to the above values.

絶縁基板10上に形成された多結晶シリコン膜11ば、
表面にゲート酸化膜13が形成された後、チャネル領域
上をマスク14で被ってp層成いはn型不純物夏2をイ
オン注入により打込み、ソース領域及びドレイン領域の
ための不純物領域を作成する。
A polycrystalline silicon film 11 formed on an insulating substrate 10,
After the gate oxide film 13 is formed on the surface, the channel region is covered with a mask 14 and p-layer or n-type impurity 2 is implanted by ion implantation to create impurity regions for the source and drain regions. .

このとき多結晶シリコン膜11は膜厚が予め上述のよう
KRp+ΔRp程度に設計されているため、次に活性化
のためのアニール処理を施こすことにより、粒界に分散
している不純物は、第1図(b)の如く深さ方向の拡散
が抑制されて速やかに粒内に拡散され、電気的に活性な
不純物となる(図中白丸は不活性な不純物、黒丸は活性
な不純物を示す)。
At this time, since the thickness of the polycrystalline silicon film 11 is designed in advance to be about KRp + ΔRp as described above, the impurities dispersed in the grain boundaries are removed by annealing treatment for activation. As shown in Figure 1 (b), the diffusion in the depth direction is suppressed and it is quickly diffused into the grains, becoming an electrically active impurity (in the figure, white circles indicate inactive impurities and black circles indicate active impurities). .

注入されたイオンは直ちに活性化されるため、チャネル
幅を短縮させる作用は著しく減じる。
Since the implanted ions are immediately activated, the effect of shortening the channel width is significantly reduced.

活性化された不純物領域をソース或いはドレイン領域と
して薄膜トランジスタが作製される。
A thin film transistor is manufactured using the activated impurity region as a source or drain region.

く効 果〉 以上本発明によれば、多結晶半導体薄膜を用いた半導体
装置において、半導体膜厚を打込みイオンの飛程にその
標準偏差を加えた程度に設計することにより、薄膜を薄
くすることができるだけでなく、不純物を電気的に活性
化する熱処理時にトランジスタの実効チャネル長を減少
させることがほとんどなく、トランジスタ形状の縮少を
図り得ると共に、製造工程管理が容易な半導体装置を得
ることができる。
Effects> According to the present invention, in a semiconductor device using a polycrystalline semiconductor thin film, the thin film can be made thinner by designing the semiconductor film thickness to be equal to the range of implanted ions plus its standard deviation. In addition, the effective channel length of the transistor is hardly reduced during heat treatment for electrically activating impurities, making it possible to reduce the transistor shape and to obtain a semiconductor device with easy manufacturing process control. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は本発明による一実施例の工程
を説明するための断面図、第2図(a)乃至(d)は従
来の製造工程を説明するための断面図である。 lO:絶縁基板  11:多結晶シリコン膜12:不純
物  13:ゲート酸化膜  14:マスク 代理人 弁理士 福 士 愛 彦(他2名)X−10砂
嵯悪 第1図 第2図
FIGS. 1(a) and (b) are cross-sectional views for explaining the process of an embodiment according to the present invention, and FIGS. 2(a) to (d) are cross-sectional views for explaining the conventional manufacturing process. be. lO: Insulating substrate 11: Polycrystalline silicon film 12: Impurity 13: Gate oxide film 14: Mask agent Patent attorney Yoshihiko Fukushi (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] (1)多結晶半導体基板にイオン注入した不純物を、活
性化してトランジスタを形成した半導体装置において、 多結晶半導体の膜厚を、注入イオンの飛程をRp及びそ
の標準偏差をΔRpとすると、多結晶半導体の膜厚をほ
ぼ上記Rp+ΔRpに形成したことを特徴とする薄膜半
導体装置。
(1) In a semiconductor device in which a transistor is formed by activating impurity ions implanted into a polycrystalline semiconductor substrate, the film thickness of the polycrystalline semiconductor is expressed as polycrystalline semiconductor, where the range of the implanted ions is Rp and its standard deviation is ΔRp. A thin film semiconductor device characterized in that the thickness of the crystalline semiconductor is approximately equal to Rp+ΔRp.
JP18614285A 1985-08-23 1985-08-23 Thin-film semiconductor device Pending JPS6246575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18614285A JPS6246575A (en) 1985-08-23 1985-08-23 Thin-film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18614285A JPS6246575A (en) 1985-08-23 1985-08-23 Thin-film semiconductor device

Publications (1)

Publication Number Publication Date
JPS6246575A true JPS6246575A (en) 1987-02-28

Family

ID=16183112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18614285A Pending JPS6246575A (en) 1985-08-23 1985-08-23 Thin-film semiconductor device

Country Status (1)

Country Link
JP (1) JPS6246575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906591A (en) * 1987-12-14 1990-03-06 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having an electric contact portion
JP2002353462A (en) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd Semiconductor device and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906591A (en) * 1987-12-14 1990-03-06 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having an electric contact portion
JP2002353462A (en) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd Semiconductor device and production method therefor

Similar Documents

Publication Publication Date Title
US5541137A (en) Method of forming improved contacts from polysilicon to silicon or other polysilicon layers
KR960005769A (en) Method of manufacturing semiconductor wafer, Method of manufacturing semiconductor wafer, semiconductor integrated circuit device and Semiconductor integrated circuit device
JPS6246575A (en) Thin-film semiconductor device
JPH0194667A (en) Manufacture of semiconductor device
US3979765A (en) Silicon gate MOS device and method
US5436177A (en) Process for forming implanted regions with lowered channeling risk on semiconductors
JPH07118509B2 (en) Method for programming read-only memory using ion implantation method and NMOS read-only memory obtained thereby
JPS6038879A (en) Manufacture of semiconductor device
JPH02122570A (en) Nonvolatile memory and manufacture thereof
JPH02111062A (en) Manufacture of semiconductor memory
JPS62198162A (en) Mos transistor and manufacture thereof
JP2900717B2 (en) Semiconductor device
JPH0479336A (en) Production of semiconductor device
JPH022686A (en) Semiconductor nonvolatile memory
JPS63271972A (en) Manufacture of thin film transistor
JPS6348865A (en) Semiconductor device
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JP2532392B2 (en) Method for manufacturing semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JPS61119075A (en) Manufacture of semiconductor device
GB1432309A (en) Semiconductor structures
JPS6340378A (en) Manufacture of eprom
JPS6415916A (en) Manufacture of semiconductor device
JPH01179455A (en) Manufacture of semiconductor device
JPS63261879A (en) Manufacture of semiconductor device