JPS6246282A - Ultrasonic wave measuring instrument - Google Patents
Ultrasonic wave measuring instrumentInfo
- Publication number
- JPS6246282A JPS6246282A JP18611285A JP18611285A JPS6246282A JP S6246282 A JPS6246282 A JP S6246282A JP 18611285 A JP18611285 A JP 18611285A JP 18611285 A JP18611285 A JP 18611285A JP S6246282 A JPS6246282 A JP S6246282A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- circuit
- ultrasonic
- cylindrical body
- ultrasonic transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、被測定物との距離測定や被測定物の形状測定
等に用いる超音波計測装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic measuring device used for measuring the distance to an object to be measured, the shape of the object, and the like.
従来の技術
従来、ポリエチレン製の袋である円筒体を成形する際、
第4図に示すように成型装置lより排出される円筒体X
の内周部X、と外周面X2に送T虱機2によっで風3と
・1を吹き込み、風景、あるいは巻取器5の巻取り速度
を調整することによって、円筒体Xの直径を微少にコン
トロールl〜でいる。Conventional technology Conventionally, when molding a cylindrical body, which is a polyethylene bag,
As shown in Fig. 4, the cylindrical body X is discharged from the molding device l.
The diameter of the cylindrical body It is slightly controlled.
発明が解決しようとする問題点
しかし、円筒体Xの直径は上記成型装置lによる成型工
程中に計測することはできず、成型完了後に円周長の測
定を行なっていた。このため、風景、枠取速度のバラツ
キ等によって円筒体Xの円周長も不揃いとなり、またこ
の円周長のバラツキは円筒体Xの材厚のバラツキの原因
になる。従って均一な円周長および材厚を有する袋を生
産することは困難であった。Problems to be Solved by the Invention However, the diameter of the cylindrical body X cannot be measured during the molding process using the molding apparatus 1 described above, and the circumference length has been measured after the molding is completed. For this reason, the circumferential length of the cylindrical body X becomes uneven due to variations in scenery, frame cutting speed, etc., and this variation in the circumferential length causes variation in the material thickness of the cylindrical body X. Therefore, it has been difficult to produce bags with uniform circumferential length and material thickness.
そこで、本発明は、超音波を用いて被測定物との距離測
定や被測定物の形状測定を行なうことができ、特に上記
のようなポリエチレン製の袋である円筒体の成型の際に
用いることにより、円筒体の成型工程中にその円周長を
計測し、測定値を送風機や巻取器にフィードバックして
風量や巻取り速度をコントロールし、均一な円周および
材厚のポリエチレン製の袋を生産するに有用である超音
波計測装Fytヲ提供しようとするものでちる。Therefore, the present invention is capable of measuring the distance to an object to be measured and the shape of the object using ultrasonic waves, and is particularly useful when molding a cylindrical body that is a polyethylene bag as described above. By measuring the circumference of the cylindrical body during the forming process, the measured value is fed back to the blower and winder to control the air volume and winding speed. The present invention aims to provide an ultrasonic measuring device useful for producing bags.
問題点を解決するだめの手段
そして上記問題点を解決するだめの本発明の技術的な手
段は、被測定物の外周において同心円上の等間隔の複数
個所で、中心方向に対し超音波の送受波を行なう超音波
送受波器と、この超音波送受波器に送信パルスを印加す
る送信回路と、超音波送受波器からの受信信号を信号処
理する受信回路と、この受信回路の信号に基き演算を行
なう演算手段を備えたものである。A means for solving the problem and a technical means of the present invention for solving the above-mentioned problem is to transmit and receive ultrasonic waves in the central direction at a plurality of equally spaced points on a concentric circle around the outer periphery of the object to be measured. An ultrasonic transducer that transmits waves, a transmitting circuit that applies transmission pulses to this ultrasonic transducer, a receiving circuit that processes the received signal from the ultrasonic transducer, and a It is equipped with arithmetic means for performing arithmetic operations.
作用 上記技術的手段による作用は次のようになる。action The effects of the above technical means are as follows.
即ち、送信回路により超音波送受波器に送信パルスを印
加して同−円周上の等間隔の複数個所で、超音波送受波
器より被測定物に1lfi次超音波を送信し、被測定物
より反射する超音波を受信回路により受波し、この受信
回路の受信信号に基いて超音波送受波器から被測定物ま
での距離を演算手段により測定することができ、またこ
れによって被測定物の外径寸法を測定することができる
。That is, a transmission circuit applies a transmission pulse to the ultrasonic transducer, and the ultrasonic transducer transmits 1lfi-order ultrasonic waves to the object to be measured at multiple equally spaced locations on the same circumference. Ultrasonic waves reflected from an object are received by a receiving circuit, and based on the received signal of this receiving circuit, the distance from the ultrasonic transducer to the object to be measured can be measured by a calculation means. Can measure the outer diameter of objects.
実施例
以下、図面を参照しながら本発明の実施例について説明
する。先ず、本発明の第1実施例における超音波計測装
置を第1図に基いて説明する。第1図において、11a
〜11fはそれぞれ超音波送受波器で、ポリエチレン製
の袋である円筒体Xの外周において、中心をOとする半
径Rの同上・円12αの円周上に複数個(図示例では6
個)、等角度(60度)毎に放射状に設けられ、各中心
軸が円12の中心Oを通る方向に配置されている。14
は各超音波送受波511a−111に印加する送信パル
スを発生する送信回路、15は各超音波送受波器112
〜11fより送信された超音波パルスが円筒体Xで反射
され、超音波送受波器lia〜11fにより受波される
受信信号の増幅、検波、平滑等の信号処理を行なう受信
回路で、これら送信回路14と受信回路15!″i切換
回路13により各超音波送受波器11α〜11fに対し
順次切換えられるようになっている。16は受信回路1
5の出力電圧が基準11i圧VT以上のときに出力パル
スを発生ずる振幅比較回路、17はゲート回路で、送信
回路141Vでおいて発生された送信パルスと、送信パ
ルスを印加した超音波送受波器の受信信号による振幅比
較回路、16の出力パルスによってゲートパルスを発生
する。18は基準パルスを発生する基準周波数発生回路
、1つはゲート回路17のゲートパルスが加えられるこ
とによって動作が制鍔されるカウンタ19で、基準周波
数発生回路1.8において発生された基準パルスの数を
カウンタ19により上記ゲートパルスによって定められ
る期間だけカウントする。20は演算回路で、上記基準
パルスのカウントaを超音波送受波器11 CL −1
]fと円筒体Xとの間の距@d1〜d6 の結果に基い
て円筒体Xの円周長き全演算する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an ultrasonic measuring device according to a first embodiment of the present invention will be explained based on FIG. In FIG. 1, 11a
-11f are ultrasonic transducers, respectively, on the outer periphery of the cylindrical body
), are provided radially at equal angles (60 degrees), and each central axis is arranged in a direction passing through the center O of the circle 12. 14
15 is a transmission circuit that generates a transmission pulse to be applied to each ultrasonic transducer 511a-111, and 15 is each ultrasonic transducer 112.
The ultrasonic pulse transmitted from ~11f is reflected by the cylinder X, and is received by the ultrasonic transducer lia~11f.The receiving circuit performs signal processing such as amplification, detection, and smoothing of the received signal. Circuit 14 and receiving circuit 15! The i switching circuit 13 sequentially switches the ultrasonic transducers 11α to 11f. 16 is the receiving circuit 1.
5 is an amplitude comparison circuit that generates an output pulse when the output voltage is equal to or higher than the reference 11i pressure VT; 17 is a gate circuit that receives the transmission pulse generated in the transmission circuit 141V and the ultrasonic wave transmission/reception to which the transmission pulse is applied. The gate pulse is generated by the amplitude comparison circuit based on the received signal of the device, and the 16 output pulses. 18 is a reference frequency generation circuit that generates a reference pulse; one is a counter 19 whose operation is controlled by applying the gate pulse of the gate circuit 17; The number is counted by the counter 19 for a period determined by the gate pulse. 20 is an arithmetic circuit that calculates the count a of the reference pulses to the ultrasonic transducer 11 CL -1
] Based on the results of the distances @d1 to d6 between f and the cylindrical body X, the entire circumference of the cylindrical body X is calculated.
以上のような構成において、以°下、その動作を説明す
る。先ず、送信回路14において発生された送信パルス
は切換回路13によって第1番目の超音波パルスが放射
される。放射された超音波パルスは超音波送受波器11
4の中上・軸と円筒体Xとの交点Aの近傍において円筒
体Xの表面から反射され、その超音波送受波器11fZ
で受波される。The operation of the above configuration will be described below. First, a first ultrasonic pulse is emitted from the transmission pulse generated by the transmission circuit 14 by the switching circuit 13 . The emitted ultrasonic pulse is sent to the ultrasonic transducer 11
4 is reflected from the surface of the cylindrical body X in the vicinity of the intersection A between the axis and the cylindrical body X, and the ultrasonic wave transducer 11fZ
The wave is received by
この受信信号は切換回路13を通して受信回路15へ入
力され、上記のように演算回路20により超音波送受波
器11αと円筒体Xの表面との距離d1が測定される。This received signal is input to the receiving circuit 15 through the switching circuit 13, and the distance d1 between the ultrasonic transducer 11α and the surface of the cylindrical body X is measured by the arithmetic circuit 20 as described above.
距離d、の値は演算回路20に一時、ストアされる。こ
のようにして、順次、切換回路13によって各超音波送
受波器11h〜11fの送受信の切換えが行なわれ、演
算回路20により距離d2〜d6が測定されると共にそ
の値が演算回路20にストアされる。The value of distance d is temporarily stored in the arithmetic circuit 20. In this way, the switching circuit 13 sequentially switches between transmitting and receiving the ultrasonic transducers 11h to 11f, and the arithmetic circuit 20 measures the distances d2 to d6, and the values are stored in the arithmetic circuit 20. Ru.
各超音波送受波器11α〜11fの中心軸と円筒体Xの
表面との交点をA−4とすると、第2図に示すように’
i (OA+OB )を半径として点Oを中心とする円
とOA、OBの交点をNX Rとしたとき、円筒体Xの
外縁部ABの長さは、はぼ円弧NB′の長さに等しいの
で、下記の計算式(1)で近似的に求めることができる
。Assuming that the intersection point between the central axis of each ultrasonic transducer 11α to 11f and the surface of the cylindrical body X is A-4, as shown in FIG.
When i (OA+OB) is the radius and the intersection of OA and OB with a circle centered on point O is NX R, the length of the outer edge AB of the cylindrical body X is approximately equal to the length of the circular arc NB', so , can be approximately determined using the following calculation formula (1).
1 □π−1
Σq■+0BXi−丁(R−d、 +R−d2)x−・
・・(1)同様にして、円筒体Xの外縁部BCXCD・
・・FAの長さはそれぞれ2 < R’ 2 + R−
d3) ×a 1−CR−d3+R−d4)XT・・・
、丁(R−d、+R−d、)×iと近似することができ
る。従って円筒体Xの全円周長eはこれらの和で与えら
れ、下記の計算式(2)として近似できる。1 □π−1 Σq■+0BXi−d(R−d, +R−d2)x−・
...(1) Similarly, the outer edge part BCXCD of the cylindrical body
・The length of FA is 2 <R' 2 + R-
d3) ×a 1-CR-d3+R-d4)XT...
, d(R-d, +R-d,)×i. Therefore, the total circumferential length e of the cylindrical body X is given by the sum of these, and can be approximated by the following calculation formula (2).
g二2πR−y(d、+d2+・・−・・d、)・・・
・・・(2)従って各超音波送受波器11α〜11fに
よる距離測定データd、〜d6及び超音波送受波器11
12〜11fの配置される円の半径Rの値を用い、演算
回路20において上記(2)式を計算することにより、
円筒体Xの全円周長を近似的に求めることができる。g22πR-y (d, +d2+...-d,)...
(2) Therefore, distance measurement data d, ~d6 by each ultrasonic transducer 11α to 11f and ultrasonic transducer 11
By calculating the above equation (2) in the arithmetic circuit 20 using the value of the radius R of the circle in which 12 to 11f are arranged,
The total circumference length of the cylindrical body X can be approximately determined.
而してこれにより求められた全円周長のデータに基いて
、上記第4図に示す送風機2の送風量や巻取器5の巻取
速度を、円筒体Xの成型工程中にコントロールすること
ができるので、円周長や材厚の均一な円筒体Xを連続的
に製造することができる。Based on the data of the total circumference obtained from this, the amount of air blown by the blower 2 and the winding speed of the winder 5 shown in FIG. 4 are controlled during the molding process of the cylindrical body X. Therefore, the cylindrical body X having a uniform circumferential length and material thickness can be continuously manufactured.
なお、上記第1実施例では、円筒体Xの外周部において
、6個の超音波送受波器11α〜llfを同一円周上に
配置したが、円筒体Xの測定精度を高めるためには、よ
り多くのN個の超音波送受波器を配置すればよい。また
各超音波送受波器11α〜11fの送受信は切換回路1
3によって切換を行なっているが、各超音波送受波器毎
に個別に送信回路、受信回路を備えてもよい。In the first embodiment, the six ultrasonic transducers 11α to llf are arranged on the same circumference on the outer circumference of the cylinder X, but in order to improve the measurement accuracy of the cylinder X, It is sufficient to arrange more N ultrasonic transducers. In addition, the transmission and reception of each ultrasonic transducer 11α to 11f is performed by a switching circuit 1.
Although the switching is carried out by 3, each ultrasonic transducer may be individually provided with a transmitting circuit and a receiving circuit.
次に本発明の第2実施例における超音波計測装置を第3
図に基いて説明する。本実施例にあっては、円筒体Xの
外周において半径Rのリング状軌道31と駆動装置32
を設け、1個の超音波送受波器11を、駆動装置32に
よってリング状軌道31上を走査するようにしている。Next, the ultrasonic measuring device according to the second embodiment of the present invention is
This will be explained based on the diagram. In this embodiment, a ring-shaped track 31 with a radius R and a drive device 32 are arranged on the outer periphery of the cylindrical body X.
is provided, and one ultrasonic transducer 11 is scanned on a ring-shaped track 31 by a drive device 32.
従って本実施例は、この他、切換回路が不要となる点を
除き、上記第1実施例の構成と同様である。Therefore, this embodiment has the same structure as the first embodiment, except that the switching circuit is not required.
上記構成において、以下、その動作を説明する。The operation of the above configuration will be described below.
超音波送受波器11は軌道31を一周走査する間に一定
のタイミング、即ち軌道31の一定間隔位置で、超音波
の送受波を行ない、それらの各位置において円筒体Xと
の間の距離を測定する。例えば軌道31上において、6
0度ずつ間隔を存して超音波の送受波を行なうとすると
、上記第1実施例と同様にして(2)式より円筒体Xの
円周長を近似的に求めることができる。従って本実施例
によれば、1個の超音波送受波器11によって第1実施
例と同様の効果を得ることができる。The ultrasonic transducer 11 transmits and receives ultrasonic waves at fixed timings, that is, at fixed interval positions on the orbit 31 while scanning the orbit 31 once, and calculates the distance between it and the cylindrical body X at each position. Measure. For example, on orbit 31, 6
Assuming that ultrasonic waves are transmitted and received at intervals of 0 degrees, the circumferential length of the cylindrical body X can be approximately determined from equation (2) in the same way as in the first embodiment. Therefore, according to this embodiment, the same effects as in the first embodiment can be obtained with one ultrasonic transducer 11.
発明の効果
以上のように本発明によれば、送信回路により超音波送
受波器に送信パルスを印加して被測定物の外周部におい
て同一円周上の等間隔の複数個所で、超音波送受波器よ
り被測定物に順次超音波を送信し、被測定物より反射す
る超音波を受信回路より受波し、この信号に基き超音波
送受波器より被測定物までの距離を演算手段により測定
することができ、またこれにより被測定物の外径寸法を
測定することができる。従って特にポリエチレン製の袋
である円筒体の成型の際に用いることにより、円筒体の
成型工程中にその円周長の近似値を求め、この測定値を
送風機や巻取器にフィードバックし、送風量や巻取速度
をコントロールすることができ、円周長や材厚の均一な
円筒体を得るのに有用である。Effects of the Invention As described above, according to the present invention, a transmission circuit applies a transmission pulse to an ultrasonic transducer to transmit and receive ultrasonic waves at a plurality of equally spaced locations on the same circumference on the outer periphery of an object to be measured. The ultrasonic transducer sequentially transmits ultrasonic waves to the object to be measured, the receiving circuit receives the ultrasonic waves reflected from the object to be measured, and based on this signal, the distance from the ultrasonic transducer to the object to be measured is calculated by a calculation means. It is also possible to measure the outer diameter of the object to be measured. Therefore, by using it especially when molding a cylindrical body, which is a polyethylene bag, an approximate value of the circumference of the cylindrical body is determined during the molding process, and this measured value is fed back to the blower or winder, and the It is possible to control the air volume and winding speed, and is useful for obtaining a cylindrical body with uniform circumference and thickness.
第1図及び第2図は本発明の第1実施例における超音波
計測装置を示し、第1図は全体図、第2図は円周長の測
定原理説明図、第3図は本発明の第2実施例における超
音波計測装置を示す全体説明図、第4図はポリエチレン
製の袋である円筒体の成型装置の断面図である。
11.11α〜11f・・・超音波送受波器、13・・
・切換回路、14・・・送信回路、15・・・受信回路
、20・・・演算回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
1 図
1112図
第3図1 and 2 show an ultrasonic measuring device according to a first embodiment of the present invention. FIG. 4 is a general explanatory diagram showing the ultrasonic measuring device in the second embodiment, and a sectional view of a molding device for a cylindrical body which is a bag made of polyethylene. 11.11α~11f...Ultrasonic transducer, 13...
- Switching circuit, 14... Transmitting circuit, 15... Receiving circuit, 20... Arithmetic circuit. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 1112 Figure 3
Claims (5)
個所で、中心方向に対し超音波の送受波を行なう超音波
送受波器と、この超音波送受波器に送信パルスを印加す
る送信回路と、超音波送受波器からの受信信号を信号処
理する受信回路と、この受信回路の信号に基き演算を行
なう演算手段を備えたことを特徴とする超音波計測装置
。(1) An ultrasonic transducer that transmits and receives ultrasonic waves toward the center at multiple equally spaced locations on a concentric circle around the outer periphery of the object to be measured, and a transmitter that applies transmission pulses to the ultrasonic transducer. An ultrasonic measuring device comprising: a circuit, a receiving circuit that processes a received signal from an ultrasonic transducer, and a calculation means that performs calculations based on the signal of the receiving circuit.
る特許請求の範囲第1項記載の超音波計測装置。(2) The ultrasonic measuring device according to claim 1, wherein a plurality of ultrasonic transducers are arranged concentrically.
器と被測定物の間の距離データをd_1、d_2・・・
d_Nとし、超音波送受波器が配置された円の半径をR
としたとき、被測定物の円周長lを次式l=2πR−(
π/N)(d_1+d_2+・・・+d_N)によって
求める特許請求の範囲第2項記載の超音波計測装置。(3) Distance data between each ultrasonic transducer and the object to be measured sequentially measured by the calculation stage d_1, d_2...
d_N, and the radius of the circle where the ultrasonic transducer is placed is R
Then, the circumference length l of the object to be measured is expressed by the following formula l=2πR-(
π/N) (d_1+d_2+...+d_N) The ultrasonic measuring device according to claim 2.
請求の範囲第1項記載の超音波計測装置。(4) The ultrasonic measuring device according to claim 1, wherein one ultrasonic transducer moves on a concentric circle.
間に、一定間隔で超音波の送受信を行ない、各々の場所
において演算手段により被測定物との距離を測定し、そ
れらの測定データをd_1、d_2・・・d_Nとした
とき、被測定物の円周長lを次式l=2πR−(π/N
)(d_1+d_2・・・d_N)によって求める特許
請求の範囲第4項記載の超音波計測装置。(5) While the ultrasonic transducer scans the circumference of the radius R once, it transmits and receives ultrasonic waves at regular intervals, and at each location, the distance to the object to be measured is measured by the calculation means, When these measurement data are d_1, d_2...d_N, the circumference length l of the object to be measured is calculated by the following formula l=2πR-(π/N
)(d_1+d_2...d_N).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18611285A JPS6246282A (en) | 1985-08-24 | 1985-08-24 | Ultrasonic wave measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18611285A JPS6246282A (en) | 1985-08-24 | 1985-08-24 | Ultrasonic wave measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6246282A true JPS6246282A (en) | 1987-02-28 |
Family
ID=16182568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18611285A Pending JPS6246282A (en) | 1985-08-24 | 1985-08-24 | Ultrasonic wave measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6246282A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS643419A (en) * | 1987-06-24 | 1989-01-09 | Matsushita Electric Ind Co Ltd | High-frequency heating appliance |
JPS6467534A (en) * | 1987-09-07 | 1989-03-14 | Matsushita Electric Ind Co Ltd | High frequency heating device |
JPH01131825A (en) * | 1987-11-17 | 1989-05-24 | Matsushita Electric Ind Co Ltd | Microwave heating device |
WO2012094298A1 (en) * | 2011-01-06 | 2012-07-12 | The Lubrizol Corporation | Ultrasonic measurement |
WO2021198910A1 (en) * | 2020-04-01 | 2021-10-07 | Stona Daniel | Kit and method for keeping a distance between persons or animals |
-
1985
- 1985-08-24 JP JP18611285A patent/JPS6246282A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS643419A (en) * | 1987-06-24 | 1989-01-09 | Matsushita Electric Ind Co Ltd | High-frequency heating appliance |
JPS6467534A (en) * | 1987-09-07 | 1989-03-14 | Matsushita Electric Ind Co Ltd | High frequency heating device |
JPH01131825A (en) * | 1987-11-17 | 1989-05-24 | Matsushita Electric Ind Co Ltd | Microwave heating device |
WO2012094298A1 (en) * | 2011-01-06 | 2012-07-12 | The Lubrizol Corporation | Ultrasonic measurement |
CN103380386A (en) * | 2011-01-06 | 2013-10-30 | 路博润公司 | Ultrasonic measurement |
US9335305B2 (en) | 2011-01-06 | 2016-05-10 | The Lubrizol Corporation | Ultrasonic measurement |
WO2021198910A1 (en) * | 2020-04-01 | 2021-10-07 | Stona Daniel | Kit and method for keeping a distance between persons or animals |
FR3108972A1 (en) * | 2020-04-01 | 2021-10-08 | Daniel Stona | Device, kit and method for maintaining a distance between elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5515341A (en) | Proximity sensor utilizing polymer piezoelectric film | |
WO1996031753A3 (en) | Three-dimensional digital ultrasound tracking system | |
JPS60249076A (en) | Detection of obstruction | |
US2407644A (en) | Ranging system | |
US3585579A (en) | Side looking sonar transducer | |
US4688423A (en) | System and process for measuring ultrasonic velocity | |
JPS6246282A (en) | Ultrasonic wave measuring instrument | |
US4487073A (en) | Ultrasonic system | |
JPH01196589A (en) | Non-contact type distance measuring apparatus | |
JPH03136636A (en) | Position detecting device of medical capsule | |
JPH0595946A (en) | Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means | |
JPS5875056A (en) | Probe | |
SU983531A1 (en) | Ultrasonic tomography method | |
US4069467A (en) | Suppression of out-of-focus echoes in ultrasonic scanning | |
JPH0434307A (en) | Pulse type ultrasonic distance measuring apparatus | |
SU1067431A1 (en) | Large-structure material ultrasonic flaw detection method | |
JPS6484190A (en) | Method and apparatus for monitoring in-pile condition | |
JPS56125661A (en) | Ultrasonic probe | |
JPH04233487A (en) | Ultrasonic distance measuring apparatus | |
JPH02274235A (en) | Ultrasonic diagnosis device | |
JPH01187485A (en) | Ultrasonic distance measuring method | |
JPH0384488A (en) | Ultrasonic distance measuring instrument | |
JP2969875B2 (en) | Direction measurement device | |
JPH01244737A (en) | Annular array ultrasonic diagnostic device | |
JPH0321229A (en) | Ultrasonic diagnosing apparatus |