JPH01187485A - Ultrasonic distance measuring method - Google Patents

Ultrasonic distance measuring method

Info

Publication number
JPH01187485A
JPH01187485A JP1127988A JP1127988A JPH01187485A JP H01187485 A JPH01187485 A JP H01187485A JP 1127988 A JP1127988 A JP 1127988A JP 1127988 A JP1127988 A JP 1127988A JP H01187485 A JPH01187485 A JP H01187485A
Authority
JP
Japan
Prior art keywords
circuits
distance
ultrasonic waves
level
different frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1127988A
Other languages
Japanese (ja)
Inventor
Satoshi Kimura
聡 木村
Hideaki Iwai
岩井 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1127988A priority Critical patent/JPH01187485A/en
Publication of JPH01187485A publication Critical patent/JPH01187485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To decide a short distance and a long distance effectively within the same range by outputting ultrasonic waves of different frequencies in the same direction at the same time, measuring the amplitude differences of their reflected waves, and calculating a measured distance from whether the level is large or small. CONSTITUTION:Exciting circuits 21, 22...2n are excited by a timing output circuit 100 to output signals of different frequencies F1, F2...Fn. Further, an ultrasonic wave sending means 1 outputs the ultrasonic waves of different frequencies in the same direction successively by being excited by the circuits 21, 22...2n. A changeover switch 1A is provided between this means 1 and circuits 21, 22...2n. A receiving means 3 which receives the reflected waves of the ultrasonic waves outputted by the means 1 is arranged nearby the means 1. This means 3 is provided successively with receiving circuits 41, 42...4n which convert the respective ultrasonic waves received by the means 3 into level signals corresponding to reception levels by the frequencies and a distance arithmetic part 6 which finds the level differences according to the outputs of the circuits 41, 42...4n to calculate the measured distance. The outputs of the circuits 41, 42...4n are supplied to an amplitude difference detector 5 to find the level difference of the respective signals, which are sent to an arithmetic part 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波距離測定方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an ultrasonic distance measuring method.

〔従来の技術〕[Conventional technology]

従来より水中及び空気中の距離測定にあっては超音波が
比較的多く用いられている。とくに水中にあっては、音
響測深機やソナー装置をはじめ、水中通信機器において
も超音波は不可欠のものとなっている。これらの音響機
器における超音波による距離測定にあっては、送信から
受信に至るまでの経過時間に水中の音速とを乗算し、こ
れによって概略の距離を算定するのが一般的となってい
る。
Conventionally, ultrasonic waves have been relatively often used to measure distances underwater and in the air. Particularly underwater, ultrasonic waves are indispensable for acoustic sounders, sonar devices, and underwater communication equipment. When measuring distance using ultrasonic waves in these acoustic devices, it is common to calculate an approximate distance by multiplying the elapsed time from transmission to reception by the speed of sound in water.

第5図は超音波の送信出力(パルス波)の時間間隔を示
す。この図に示すように、通常は送信から最大レンジの
反射音を受信する時間の経過を待って、次の送信を行う
ようになっている。この第5図においてAは反射音を示
す。
FIG. 5 shows the time interval of the ultrasonic transmission output (pulse wave). As shown in this figure, normally the next transmission is performed after waiting for the time elapsed from the transmission until the maximum range of reflected sound is received. In FIG. 5, A indicates reflected sound.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例にあっては、最大レンジの設
定に際し、いくつかの不都合が生じている。例えば最大
レンジの1/4の近距離もしくは中距離の測定情報を多
く得ようとする場合、超音波出力の繰返えし時間も最大
レンジLの約1/4の送信間隔で超音波を出力しなけれ
ばならない。
However, in the conventional example described above, several inconveniences occur when setting the maximum range. For example, when trying to obtain a large amount of measurement information at short or medium distances that are 1/4 of the maximum range, the ultrasonic output repetition time should be set to output ultrasound at a transmission interval that is approximately 1/4 of the maximum range L. Must.

その結果、第6図に示すように、測定中に得られる反射
音A、、A、が送信超音波■、■、■、■のいづれの反
射音であるかが不明となる、という不都合がある。
As a result, as shown in Fig. 6, there is the inconvenience that it is unclear whether the reflected sound A, , A, obtained during measurement is the reflected sound of the transmitted ultrasonic waves ■, ■, ■, or ■. be.

このため、上述した従来の方法では、送波の間隔を、受
信しようとする最大レンジにあわせて設定する必要があ
り、遠距離も合せて対象とする場合は送波の間隔が長く
なり近中距離の目標からの反射音の受信回数が少なくな
り、測定精度が悪いという欠点があった。
For this reason, in the conventional method described above, it is necessary to set the interval between transmitting waves according to the maximum range to be received, and if the target is also a long distance, the interval between transmitting waves becomes longer and it becomes necessary to The drawback was that the number of times the reflected sound was received from a target at a distance was reduced, resulting in poor measurement accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来例の有する不都合を改善し
、とくに、超音波パルスの繰り返えし出力の時間間隔如
何を問わず、近距離及び遠距離を同一レンジで有効に測
定することのできる超音波距離測定方法を提供すること
にある。
The purpose of the present invention is to improve the disadvantages of the conventional example and, in particular, to effectively measure short and long distances in the same range regardless of the time interval of repeated output of ultrasonic pulses. The object of the present invention is to provide an ultrasonic distance measuring method that can perform ultrasonic distance measurement.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、異った周波数の超音波を同時に同方向に出
力し、その反射波の振幅差を測定してそのレベルの大小
により測定距離を算定する等の構成を採っている。これ
によって前述した目的を達成しようとするものである。
The present invention employs a configuration in which ultrasonic waves of different frequencies are simultaneously output in the same direction, the amplitude difference of the reflected waves is measured, and the measured distance is calculated based on the magnitude of the level. This aims to achieve the above-mentioned purpose.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第3図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図の実施例は、タイミング出力回路100に付勢さ
れて異った周波数F I + F 2+ F 3+・・
・Fアの信号をそれぞれ出力する複数の励振回路2I、
2□、23゜・・・、2.lと、この各励振回路2I、
2゜、23.・・・、2.lに付勢されて少なくとも異
った周波数の超音波を順次同方向に出力する超音波送波
手段1とを備えている。超音波送波手段1と励振回路2
0,2□、23゜・・・、27との間には切替えスイッ
チIAが装備されている。
In the embodiment of FIG. 1, the timing output circuit 100 is energized to output different frequencies F I + F 2+ F 3+ .
・A plurality of excitation circuits 2I each outputting a signal of FA,
2□, 23°..., 2. l, and each of these excitation circuits 2I,
2°, 23. ..., 2. The ultrasonic transmitting means 1 is energized by the ultrasonic wave transmitter 1 and sequentially outputs ultrasonic waves having at least different frequencies in the same direction. Ultrasonic wave transmitting means 1 and excitation circuit 2
A changeover switch IA is provided between 0, 2□, 23°, . . . , 27.

超音波送波手段1の近傍には、当該超音波送波手段1か
ら出力される超音波の反射波を受信する受波手段3が配
設されている。この受渡手段3には、該受波手段3で受
信される各反射超音波を周波数ごとに当該受信レベルに
対応したレベル信号に変換する受信回路4..4□、4
3.・・・、4ゎと、この各受信回路41+ 4214
3+・・・l  4fiの出力に基づいてそのレベル差
を求め測定距離を算定する距離演算部6とが併設されて
いる。
In the vicinity of the ultrasonic wave transmitting means 1, a wave receiving means 3 for receiving reflected waves of the ultrasonic waves outputted from the ultrasonic wave transmitting means 1 is arranged. This delivery means 3 includes a receiving circuit 4 which converts each reflected ultrasonic wave received by the wave receiving means 3 into a level signal corresponding to the reception level for each frequency. .. 4□, 4
3. ..., 4ゎ, and each receiving circuit 41+4214
A distance calculating section 6 is provided which calculates the measured distance by determining the level difference based on the output of 3+...l4fi.

受信回路4I、4□、43.・・・、4、の各々は、前
述した励振回路23,2□、28.・・・、2アに対応
して装備され、それぞれ周波数F l+ F 21 F
 31・・・、F7の信号を各別に通過せしめるととも
にこれを一定の増幅率をもって増幅するフィルタ回路部
及び増幅回路部とを備えている。この受信回路41+ 
4 g+ 431・・・、41の各出力は、振幅差検出
器5にて各信号のレベル差が求められる。この振幅差検
出器5の出力は距離演算部6へ送られる。
Receiving circuits 4I, 4□, 43. . . , 4 are the aforementioned excitation circuits 23, 2□, 28. ..., equipped corresponding to 2A, each frequency F l + F 21 F
31, . . . , a filter circuit section and an amplification circuit section that individually pass the signals of F7 and amplify them with a constant amplification factor. This receiving circuit 41+
4g+ 431..., 41, the level difference of each signal is determined by the amplitude difference detector 5. The output of this amplitude difference detector 5 is sent to a distance calculation section 6.

第2図は、F、、F2の周波数における伝播損失例を示
し、第3図はこの各周波数における信号の反射受信波の
レベル差の変化と伝播距離との関係を示す。この第3図
に示すように、異った周波数の超音波による伝播損失の
差は、概略吸収損失の差(距離に比例する関数)に従う
ことから、受波信号が近中距離からの反射音が遠距離(
第1収束帯或は第2収束帯)からの反射音かを判定する
ことにより、近・中距離対象の送信間隔で遠距離までを
充分にカバーして距離測定を行うことができる。距離演
算部6では、振幅差検出器5から送られてくる例えばF
、、F2に係る信号に基づいて第3図に示す演算が行わ
れ、反射超音波の伝播距離が算定されるようになってい
る。この距離演算部6での演算は、その結果が表示部7
にて表示され=4− るようになっている。
FIG. 2 shows an example of propagation loss at frequencies F, . . . F2, and FIG. 3 shows the relationship between the change in the level difference of the reflected reception wave of the signal and the propagation distance at each frequency. As shown in Figure 3, the difference in propagation loss due to ultrasonic waves of different frequencies roughly follows the difference in absorption loss (a function proportional to distance), so the received signal is reflected from near and medium distances. is long distance (
By determining whether the sound is a reflected sound from the first convergence zone or the second convergence zone, it is possible to perform distance measurement by sufficiently covering a long distance at the transmission interval for short and medium-range objects. In the distance calculating section 6, for example, F is sent from the amplitude difference detector 5.
, , F2, the calculation shown in FIG. 3 is performed to calculate the propagation distance of the reflected ultrasound. The calculation performed by the distance calculation section 6 is displayed on the display section 7.
It is now displayed as =4-.

第4図は他の実施例を示す。この第4図の実施例は、2
つの送波手段10.11と2つの受波手段20゜21と
を有している。送波手段10と受波手段2゜とは、共に
周波数F1の超音波を送信し又は受信する機能を備えて
いる。一方、送信波手段11と受波手段21とは、共に
周波数F2の超音波を送信し又は受信する機能を備えて
いる。
FIG. 4 shows another embodiment. The embodiment shown in FIG.
It has one wave transmitting means 10.11 and two wave receiving means 20.21. The wave transmitting means 10 and the wave receiving means 2° both have the function of transmitting or receiving ultrasonic waves of frequency F1. On the other hand, both the transmitting wave means 11 and the wave receiving means 21 have the function of transmitting or receiving ultrasonic waves of frequency F2.

送波手段10.11の各々には異った周波数の励振信号
を出力する励振回路13.14が各々装備されている。
Each of the wave transmitting means 10.11 is equipped with an excitation circuit 13.14 which outputs excitation signals of different frequencies.

この励振回路13.14は同一のタイミングで作動し同
時に異った周波数のFl、F2  (但し、Fl<Fz
)の同レベルの励振信号を出力するようになっている。
These excitation circuits 13 and 14 operate at the same timing and have different frequencies Fl and F2 (however, Fl<Fz
) is designed to output an excitation signal of the same level.

一方、受波手段20.21の各々には、前述した第1図
の受信回路4..4□、43.・・・4.と同一に機能
する受信回路22.23と、同じく同様に機能する振幅
差検出器25及び距離演算部26とが、各々第4図に示
す如(装備されている。この距離演算部26での演算結
果は、表示部27にて表示されるようになっている。
On the other hand, each of the wave receiving means 20.21 includes the receiving circuit 4.2 shown in FIG. .. 4□, 43. ...4. Receiving circuits 22 and 23 that function in the same manner as the above, and an amplitude difference detector 25 and a distance calculation section 26 that also function in the same manner are each equipped as shown in FIG. The calculation results are displayed on the display section 27.

この第4図の実施例では、反射受信波を同時に検知し得
ることから、信号処理を迅速になし得るという利点があ
る。
The embodiment shown in FIG. 4 has the advantage that signal processing can be carried out quickly because reflected received waves can be detected simultaneously.

なお、上記実施例は、空気中での距離測定はもとより、
海中でのアクティブソナー等にもそっくりそのまま適用
し得るものである。
Note that the above embodiment can be used not only for distance measurement in the air, but also for distance measurement in the air.
It can also be applied to underwater active sonar, etc.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成され機能するので、特に測定
レンジ如何にかかわらず近距離及び遠距離を同一レンジ
にて有効に測定することができ、測定レンジの切換え操
作等が全く不要となり、複数の周波数の異った超音波を
所定のタイミングで送受信することから反射波の捕捉が
容易となり、かかる点において測定誤差を少な(するこ
とができるという従来にない優れた超音波距離測定方法
を提供することができる。
Since the present invention is configured and functions as described above, it is possible to effectively measure short and long distances in the same range regardless of the measurement range, and there is no need to switch measurement ranges, and multiple measurement ranges can be measured effectively. By transmitting and receiving ultrasonic waves with different frequencies at a predetermined timing, it is easy to capture reflected waves, and in this respect, it provides an excellent ultrasonic distance measurement method that is unprecedented in that it can reduce measurement errors. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
水中における超音波の伝播損失を示す説明図、第3図は
、同じく水中における周波数の異った超音波の伝播損失
のレベル差を示す説明図、第4図は他の実施例を示すブ
ロック図、第5図ないし第6図は従来例における測定距
離測定の状況を示す説明図である。 1.10.11・・・・・・超音波送波手段、21〜2
ア、13゜14・・・・・・励振回路、3,20.21
・・・・・・受波手段、4゜〜4カ、20.21・・・
・・・受信回路、5,25・・・・・・励幅差検出器、
6,26・・・・・・距離演算部。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the propagation loss of ultrasonic waves in water, and Fig. 3 is a diagram showing the propagation loss of ultrasonic waves with different frequencies in water. FIG. 4 is a block diagram showing another embodiment, and FIGS. 5 and 6 are explanatory diagrams showing the state of distance measurement in the conventional example. 1.10.11... Ultrasonic wave transmitting means, 21-2
A, 13゜14... Excitation circuit, 3, 20.21
・・・・・・Wave receiving means, 4° to 4 degrees, 20.21...
...Receiving circuit, 5,25...Excitation width difference detector,
6, 26... Distance calculation section.

Claims (1)

【特許請求の範囲】[Claims] (1)、異った周波数の超音波を同時に同方向に出力し
、その反射波の振幅差を測定してそのレベルの大小によ
り測定距離を算定することを特徴とした超音波距離測定
方法
(1) An ultrasonic distance measuring method characterized by emitting ultrasonic waves of different frequencies in the same direction at the same time, measuring the amplitude difference of the reflected waves, and calculating the measured distance based on the magnitude of the level.
JP1127988A 1988-01-21 1988-01-21 Ultrasonic distance measuring method Pending JPH01187485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1127988A JPH01187485A (en) 1988-01-21 1988-01-21 Ultrasonic distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127988A JPH01187485A (en) 1988-01-21 1988-01-21 Ultrasonic distance measuring method

Publications (1)

Publication Number Publication Date
JPH01187485A true JPH01187485A (en) 1989-07-26

Family

ID=11773553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127988A Pending JPH01187485A (en) 1988-01-21 1988-01-21 Ultrasonic distance measuring method

Country Status (1)

Country Link
JP (1) JPH01187485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043302A1 (en) * 2004-10-18 2006-04-27 Nikko Co., Ltd. Movable body speed measuring system
WO2023189816A1 (en) * 2022-03-31 2023-10-05 株式会社アイシン Object detection device
WO2023189807A1 (en) * 2022-03-31 2023-10-05 株式会社アイシン Object detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043302A1 (en) * 2004-10-18 2006-04-27 Nikko Co., Ltd. Movable body speed measuring system
WO2023189816A1 (en) * 2022-03-31 2023-10-05 株式会社アイシン Object detection device
WO2023189807A1 (en) * 2022-03-31 2023-10-05 株式会社アイシン Object detection device

Similar Documents

Publication Publication Date Title
EP0146073A2 (en) Ultrasonic diagnosing apparatus
JPS601554A (en) Ultrasonic inspection apparatus
JPH01187485A (en) Ultrasonic distance measuring method
JPS6291876A (en) Mutual intervention preventing device for ultrasonic sensor
JP2957712B2 (en) Ultrasonic ranging device
JPS6367151B2 (en)
JP2529840B2 (en) Ultrasonic distance meter
JP2828259B2 (en) Fish finder
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JPH01170885A (en) Sonar device
JPH02176588A (en) Distance measuring instrument
SU1255913A1 (en) Method of determining coordinates of acoustical emission signal source
JPH02278181A (en) Temperature compensating method for ultrasonic range finder
JP2002071803A (en) Sound ranging device for underwater cruising body
JPH04346092A (en) Measuring apparatus of intensity of ultrasonic wave reflection
SU1104408A1 (en) Method of determination of acoustic emission source coordinates
JPH06118169A (en) Acoustic position measuring device
JP2765317B2 (en) Sonar device
JPH0545456A (en) Ultrasonic detector
JPH0926341A (en) Ultrasonic flowmeter
JPS59218973A (en) On-vehicle obstacle detector
JP2002341028A (en) Submerged object measuring method and device using pulse signal
JPH07218242A (en) Peripheral length measuring apparatus
JPH07239227A (en) Layer thickness measuring method and its device
JPH0384488A (en) Ultrasonic distance measuring instrument