JPH02278181A - Temperature compensating method for ultrasonic range finder - Google Patents

Temperature compensating method for ultrasonic range finder

Info

Publication number
JPH02278181A
JPH02278181A JP9878989A JP9878989A JPH02278181A JP H02278181 A JPH02278181 A JP H02278181A JP 9878989 A JP9878989 A JP 9878989A JP 9878989 A JP9878989 A JP 9878989A JP H02278181 A JPH02278181 A JP H02278181A
Authority
JP
Japan
Prior art keywords
circuit
ultrasonic
distance
ultrasonic wave
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9878989A
Other languages
Japanese (ja)
Inventor
Yutaka Nakai
裕 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP9878989A priority Critical patent/JPH02278181A/en
Publication of JPH02278181A publication Critical patent/JPH02278181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable an accurate distance measurement to be performed without delay even when an external temperature suddenly changes by constructing an ultrasonic range finder such that a temperature compensation is conducted by using a temperature change detected by measuring a unit distance by an ultrasonic wave. CONSTITUTION:The space propagation time To of an ultrasonic wave signal for which the signal transmitted from an ultrasonic wave generator 10 is propagated through a unit distance lo and received by an ultrasonic wave receiver 11 is counted by a counter circuit 13 to be fed to an arithmetic circuit 7. When the circuit 7 is given the time To from the circuit 13, the circuit 7 calculates a temperature correcting compensating value alpha and stores it. On the other hand, a time Tx for which an ultrasonic wave signal P fed from an ultrasonic wave generator 2 is reflected from an object 1 to be measured and received by a receiving circuit 5 via an ultrasonic wave receiver 4 is counted by a counter circuit 6. When given the time Tx from the circuit 6, the arithmetic circuit 7 calculates a distance Xo to the object 1 by using a sonic velocity at a reference temperature to and corrects the value of the distance Xo with the correcting value alpha. As a result, the measured value of the distance to the object to be measured can be corrected without delay.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波測距装置の温度補償方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a temperature compensation method for an ultrasonic distance measuring device.

〔従来の技術〕[Conventional technology]

蓄電池を駆動電源とする無人車には、走行路の両側に設
けた誘導壁までの距離を超音波測距装置を用いて測定し
、この距離情報を処理しつつ走行経路を修正する自立形
無入車がある。
Unmanned vehicles that use storage batteries as a driving power source are self-contained vehicles that use ultrasonic distance measuring devices to measure the distance to guiding walls on both sides of the driving path, and process this distance information to correct the driving route. There is a car coming in.

第2図はこの種の超音波測距装置をブロック図で示した
もので、1は誘導壁の如き対象物、2は超音波発信器で
あって、送信回路3が周期的に送出する電圧信号により
駆動されて、超音波信号Pを対象物1に向けて発信する
。4は超音波受信器であって、上記超音波信号Pの対象
物1による反射波Rを受信し、電気信号に変換して受信
回路5に入力する。6はカウンタ回路であって、送信回
路3が上記電気信号を送出すると同時にタイミング信号
を受けて計数を開始し、受信回路5が受信・検波すると
同時にタイミング信号を受けて」−4計数を停止し、計
数値Txを演算回路7に送出する。8は温度センサであ
って、測温値tはA/D変換回路9でデジタル値に変換
されて、演算回路7に供給される。
FIG. 2 shows a block diagram of this type of ultrasonic distance measuring device, where 1 is an object such as a guiding wall, 2 is an ultrasonic transmitter, and the transmitter circuit 3 periodically sends a voltage. Driven by the signal, it emits an ultrasonic signal P toward the object 1 . Reference numeral 4 denotes an ultrasonic receiver that receives the reflected wave R of the ultrasonic signal P from the object 1, converts it into an electrical signal, and inputs it to the receiving circuit 5. 6 is a counter circuit which receives a timing signal and starts counting at the same time as the transmitting circuit 3 sends out the electrical signal, receives the timing signal at the same time as the receiving circuit 5 receives and detects the signal, and stops counting. , the count value Tx is sent to the arithmetic circuit 7. Reference numeral 8 denotes a temperature sensor, and the measured temperature value t is converted into a digital value by an A/D conversion circuit 9 and supplied to the arithmetic circuit 7.

この構成においては、超音波発信器2が発信した超音波
信号Pが対象物1より反射し、反射波Rが超音波受信器
4で受信されるまで、超音波信号Pの空間伝播時間Tx
(sec)がカウンタ回路6で計測され、演算回路7で
は、音速をv(m/S)とした場合、下記(1)式によ
り、対象物1までの距iX(m)を演算する。
In this configuration, the ultrasonic signal P transmitted by the ultrasonic transmitter 2 is reflected from the object 1, and until the reflected wave R is received by the ultrasonic receiver 4, the spatial propagation time Tx of the ultrasonic signal P is
(sec) is measured by the counter circuit 6, and the calculation circuit 7 calculates the distance iX (m) to the object 1 using the following equation (1), where the speed of sound is v (m/S).

X=     V−T・ ・ ・ ・ ・ ・ ・ ・
 ・ ・ ・ ・ ・(1)なお、音速Vは外界温度の
影響を受けるので、温度センサ8で大気温度L0Cを測
定して、下記(2)式の音速演算を行ったのち、上記(
11式の距離演算を行うようにして、温度補償を行って
いる。
X=V-T・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・(1) Note that the sound speed V is affected by the outside temperature, so after measuring the atmospheric temperature L0C with the temperature sensor 8 and calculating the sound speed using the following equation (2), the above (
Temperature compensation is performed by performing distance calculation according to Equation 11.

V=331+0.6Δt・・・・・・・・・・・(2)
〔発明が解決しようとする課題〕 このように、従来は、外界温度を直接に測定して、その
測定値を用いて、温度変化に起因する距離測定誤差の発
生を無(ずようにしているが、−般に、温度センサ8の
応答性は良くない(数分程度)。このため、外界温度変
化が急激であった場合には、温度センサ8の出力はこの
変化に速やかに追従せず、時間遅れが生じ、誤測定は避
けられず、特に、無人車の場合は、走行しているので、
同一地点での繰り返し測定ができず、誤差修正はできな
いから、重要な問題となっていた。
V=331+0.6Δt・・・・・・・・・・・・(2)
[Problem to be solved by the invention] In this way, conventional methods have been able to directly measure the outside temperature and use the measured value to eliminate distance measurement errors caused by temperature changes. However, in general, the responsiveness of the temperature sensor 8 is not good (about a few minutes).For this reason, if the outside temperature changes rapidly, the output of the temperature sensor 8 does not follow this change quickly. , time delays occur and erroneous measurements are unavoidable, especially in the case of unmanned vehicles, as they are moving.
This was an important problem because repeated measurements at the same point could not be made and errors could not be corrected.

本発明は上記問題を解消するためになされたもので、外
界温度の変化が急激な場合にも、正確で、かつ迅速な距
離測定を可能にする超音波測距装置の温度補償方法を提
供することを目的とする。
The present invention has been made to solve the above problems, and provides a temperature compensation method for an ultrasonic distance measuring device that enables accurate and quick distance measurement even when the external temperature changes rapidly. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、対象物測距を行う本
来の超音波受信器とは別に、それと同時に発信する第2
の超音波発信器、この第2の超音波発信器と単位距離を
隔てて対向し該第2の超音波発信器の出力を受信する第
2の超音波受信器を有し、上記出力の発信から受信まで
の時間と音速に基づき距離測定を行って温度補正値を演
算する温度補償系を設け、上記温度補正値を用いて温度
補償を行う構成としたものである。
In order to achieve the above object, the present invention provides a second ultrasonic receiver that simultaneously transmits signals, in addition to the original ultrasonic receiver that performs object distance measurement.
an ultrasonic transmitter, a second ultrasonic receiver facing the second ultrasonic transmitter at a unit distance and receiving the output of the second ultrasonic transmitter, and transmitting the output. A temperature compensation system is provided to calculate a temperature correction value by measuring distance based on the time from the time to reception and the speed of sound, and the temperature compensation is performed using the temperature correction value.

〔作用〕[Effect]

本発明では、単位距離を超音波測定し、この測定値から
温度変化分を演算して、実測した対象物間距離を補正す
るから、音速変化があった場合、遅滞なく、実測距離の
温度補正が行われる。
In the present invention, the unit distance is measured by ultrasonic waves, and the temperature change is calculated from this measurement value to correct the actually measured distance between objects, so if there is a change in the speed of sound, the temperature correction of the measured distance can be made without delay. will be held.

〔実施例〕〔Example〕

以下、本発明の1実姉例を図面を参照して説明する。 Hereinafter, a practical example of the present invention will be explained with reference to the drawings.

第1図において、10は第2の超音波発信器であって、
送信回路4から電気信号を受けて、超音波発信器2と同
期して超音波信号を発振する。
In FIG. 1, 10 is a second ultrasonic transmitter,
It receives an electric signal from the transmitting circuit 4 and oscillates an ultrasonic signal in synchronization with the ultrasonic transmitter 2.

11は第2の超音波受信器11でって、第2の超音波発
信器10に対して単位距離eo  (<<X)を隔てて
対向しており、受信超音波を電気信号に変換して第2の
受信回路12へ送出する。13は第2のカウンタ回路で
あって、送信回路3が上記電気信号を送出すると同時に
タイミング信号を受けて計数を開始し、受信回路12が
受信すると同時にタイミング信号を受けて上記計数を停
止し、計数値TOを演算回路7に送出する。
Reference numeral 11 denotes a second ultrasonic receiver 11, which faces the second ultrasonic transmitter 10 at a unit distance eo (<<X) and converts the received ultrasonic waves into electrical signals. and sends it to the second receiving circuit 12. Reference numeral 13 denotes a second counter circuit, which receives a timing signal and starts counting at the same time as the transmitting circuit 3 sends out the electrical signal, receives the timing signal and stops the counting at the same time as the receiving circuit 12 receives it, The count value TO is sent to the arithmetic circuit 7.

この構成においては、超音波発信器10が発信した超音
波信号が単位距離eoを伝播して超音波受信器11で受
信されるまでの超音波信号の空間伝播時間TOがカウン
タ回路13で計数され、演算回路7に与えられる。演算
回路7はこのカウンタ回路13からTOを与えられると
、距i6t ffを演算し、温度補正値αを演算して記
憶する。
In this configuration, the spatial propagation time TO of the ultrasonic signal emitted by the ultrasonic transmitter 10 after propagating the unit distance eo until it is received by the ultrasonic receiver 11 is counted by the counter circuit 13. , are given to the arithmetic circuit 7. When the calculation circuit 7 receives TO from the counter circuit 13, it calculates the distance i6t ff, and calculates and stores the temperature correction value α.

1o     2 一方、超音波発信器2から送出された超音波信号Pが対
象物1で反射されて超音波受信器4を通し受信回路5で
受信されるまでの時間Txがカウンタ回路6で計数され
、演算回路7はカウンタ回路6から時間Txを与えられ
ると、基準温度LOにおける音速voを用いて、対象物
1までの距離Xoを演算し、この値を上記補正値αを用
いて補正する。
1o 2 On the other hand, the time Tx from when the ultrasonic signal P sent out from the ultrasonic transmitter 2 is reflected by the object 1 to when it passes through the ultrasonic receiver 4 and is received by the receiving circuit 5 is counted by the counter circuit 6. When the calculation circuit 7 receives the time Tx from the counter circuit 6, it calculates the distance Xo to the object 1 using the sound velocity vo at the reference temperature LO, and corrects this value using the correction value α.

X=αXXO・・・・・・・・・・・・・・(4)この
ように、本実施例では、各測定サイクルにおいて、単位
距離β0を超音波測定して、この単位距離に対する温度
変化分E / f! oを検出し、この値を用い、基準
温度で超音波測定した対象物間距離Xoを補正するから
、音速に変化が発生しても、同時的に、対象物間距離測
定値が補正されることになる。
X = αXXO (4) In this way, in each measurement cycle, in each measurement cycle, the unit distance β0 is ultrasonically measured, and the temperature change with respect to this unit distance is calculated. Min E/f! o is detected and this value is used to correct the object distance Xo measured by ultrasonic waves at the reference temperature, so even if a change occurs in the speed of sound, the measured value of the distance between objects is corrected at the same time. It turns out.

なお、前記した無人車では、複数台の超音波測距装置を
搭載するが、第2の超音波発信器10、第2の超音波受
信器11を含む温度補償系は、各超音波測距装置に対し
て共通に使用してもよい。
The above-mentioned unmanned vehicle is equipped with a plurality of ultrasonic ranging devices, and the temperature compensation system including the second ultrasonic transmitter 10 and the second ultrasonic receiver 11 is equipped with each ultrasonic ranging device. May be used commonly for devices.

また、上記実施例では、超音波発信器2の発信周期毎に
同期して第2の超音波発信器10を発信させているが、
発信周期を大きくしてもよい。
Furthermore, in the above embodiment, the second ultrasonic transmitter 10 is caused to emit in synchronization with each emission period of the ultrasonic transmitter 2;
The transmission period may be increased.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した通り、単位距離を超音波測定して
温度変化分を検出し、この温度変化分を用いて温度補償
を行う構成としたことにより、外界温度が急激に変化し
た場合にも時間遅れなく温度補償が行われるので、正確
な距離測定が可能となり、特に、移動しつつ距離測定を
行う無人車等用の測距離装置には好適である。
As explained above, the present invention has a configuration in which a unit distance is measured by ultrasonic waves to detect a temperature change, and this temperature change is used to perform temperature compensation, so that even when the outside temperature suddenly changes, Since temperature compensation is performed without time delay, accurate distance measurement is possible, and it is particularly suitable for a distance measuring device for an unmanned vehicle or the like that measures distance while moving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は従
来の超音波測距装置を示すブロック図である。 2−超音波発信器、3−送信回路、4−超音波受信器、
5−受信回路、6〜力ウンタ回路、7・・・演算回路、
10−第2の超音波発信器、11−第2の超音波受信器
、12・−・第2の受信回路、13・第2のカウンタ回
路。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional ultrasonic distance measuring device. 2-ultrasonic transmitter, 3-transmission circuit, 4-ultrasonic receiver,
5-receiving circuit, 6-force counter circuit, 7... arithmetic circuit,
10-second ultrasonic transmitter, 11-second ultrasonic receiver, 12--second receiving circuit, 13-second counter circuit.

Claims (1)

【特許請求の範囲】[Claims] 対象物に対して超音波を周期的に発振する超音波発信器
と、この超音波の上記対象物による反射波を受信する超
音波受信器を有し、上記発信から受信までの時間と音速
に基づいて対象物間距離を測定する超音波測距装置にお
いて、上記超音波発信器と同時的に発信する第2の超音
波発信器と、この第2の超音波発信器と単位距離を隔て
て対向し該第2の超音波発信器の出力を受信する第2の
超音波受波器を有し、上記出力の発信から受信までの時
間と音速に基づいて距離測定を行う温度補償系を備え、
この温度補償系により測定した測定値を用いて上記対象
物間距離を補正することを特徴とする超音波測距装置の
温度補償方法。
It has an ultrasonic transmitter that periodically emits ultrasonic waves to a target object, and an ultrasonic receiver that receives reflected waves of the ultrasonic waves from the target object. In an ultrasonic distance measuring device that measures a distance between objects based on It has a second ultrasonic receiver that faces the second ultrasonic transmitter and receives the output of the second ultrasonic transmitter, and includes a temperature compensation system that measures the distance based on the time from transmission to reception of the output and the speed of sound. ,
A temperature compensation method for an ultrasonic distance measuring device, characterized in that the distance between the objects is corrected using the measured value measured by the temperature compensation system.
JP9878989A 1989-04-20 1989-04-20 Temperature compensating method for ultrasonic range finder Pending JPH02278181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9878989A JPH02278181A (en) 1989-04-20 1989-04-20 Temperature compensating method for ultrasonic range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9878989A JPH02278181A (en) 1989-04-20 1989-04-20 Temperature compensating method for ultrasonic range finder

Publications (1)

Publication Number Publication Date
JPH02278181A true JPH02278181A (en) 1990-11-14

Family

ID=14229137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9878989A Pending JPH02278181A (en) 1989-04-20 1989-04-20 Temperature compensating method for ultrasonic range finder

Country Status (1)

Country Link
JP (1) JPH02278181A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062263U (en) * 1992-06-12 1994-01-14 神鋼電機株式会社 Distance measuring device using ultrasonic sensor
JP2000266839A (en) * 1999-03-16 2000-09-29 Kaijo Corp Calibration method by bar of acoustic sounding machine
JP2006179902A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Ultrasonic distance sensor
JP2007500348A (en) * 2003-07-29 2007-01-11 ドン ハル リ Distance measuring method and apparatus using ultrasonic waves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717820A (en) * 1980-07-08 1982-01-29 Fuji Electric Co Ltd Ultrasonic wave level meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717820A (en) * 1980-07-08 1982-01-29 Fuji Electric Co Ltd Ultrasonic wave level meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062263U (en) * 1992-06-12 1994-01-14 神鋼電機株式会社 Distance measuring device using ultrasonic sensor
JP2000266839A (en) * 1999-03-16 2000-09-29 Kaijo Corp Calibration method by bar of acoustic sounding machine
JP2007500348A (en) * 2003-07-29 2007-01-11 ドン ハル リ Distance measuring method and apparatus using ultrasonic waves
JP2006179902A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Ultrasonic distance sensor
JP2010021569A (en) * 2004-12-22 2010-01-28 Asml Netherlands Bv Ultrasonic distance sensor
JP4485463B2 (en) * 2004-12-22 2010-06-23 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and element manufacturing method

Similar Documents

Publication Publication Date Title
JPS5937459A (en) Body detector by ultrasonic wave
GB2170907A (en) Improvements relating to distance measuring devices
JPH1054872A (en) Ultrasonic distance meter
KR20140118242A (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
JPH02278181A (en) Temperature compensating method for ultrasonic range finder
JPH03269388A (en) Multi-purpose ultrasonic measuring instrument for mounting on vehicle
JPH0720223A (en) Device for measuring position of unmanned carrying vehicle
JPH08136321A (en) Ultrasonic distance measuring instrument
RU1801219C (en) Ultrasonic device for measuring speed of airborne and ground objects relative to air
JPH01187485A (en) Ultrasonic distance measuring method
JP3224295B2 (en) Temperature measurement device using ultrasonic waves
JP2520538Y2 (en) Ultrasonic ranging device
JPS60233579A (en) Position measuring method and its device
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method
JPH06118169A (en) Acoustic position measuring device
JP2749908B2 (en) Pulse type ultrasonic distance measuring device
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
RU1795394C (en) Electro-acoustic device for testing coordinates of radiotelescope illuminator
SU802881A1 (en) Acoustic ranger
JPH0926341A (en) Ultrasonic flowmeter
JPS59218973A (en) On-vehicle obstacle detector
SU1317354A1 (en) Ultrasonic method of determining properties of moving medium
JPS59195711A (en) Guiding device of unattended wagon
JPS62886A (en) Obstacle detecting device for vehicle
JPH0431593Y2 (en)