JPH03138590A - Measuring instrument using ultrasonic wave - Google Patents

Measuring instrument using ultrasonic wave

Info

Publication number
JPH03138590A
JPH03138590A JP27751289A JP27751289A JPH03138590A JP H03138590 A JPH03138590 A JP H03138590A JP 27751289 A JP27751289 A JP 27751289A JP 27751289 A JP27751289 A JP 27751289A JP H03138590 A JPH03138590 A JP H03138590A
Authority
JP
Japan
Prior art keywords
measured
point
shape
ultrasonic
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27751289A
Other languages
Japanese (ja)
Inventor
Ikuo Yamamoto
郁夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27751289A priority Critical patent/JPH03138590A/en
Publication of JPH03138590A publication Critical patent/JPH03138590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To seerely measure the shape of the entire periphery of even an object which is uneven by providing a moving mechanism and an oscillating mechanism and arranging an ultrasonic wave transmitter receiver at an optional position and at an optional angle to the body to be measured. CONSTITUTION:The ultrasonic wave transmitter receiver 2 is moved by the moving mechanism 2 and oscillating mechanism 3 to a position at right angles to the surface of a projection part 1a of the body 1 to be measured and the distance to a point A is measured by a signal processor 6. Then when the transmitter receiver 11 is moved similarly to measure the distance to a point B on a recessed part 1b, the transmitter receiver 11 arranged at a position at right angles to the surface of the point B is shielded by the projection part 1a and the point B can not be measured. For the purpose, an ultrasonic wave is reflected at the point A whose shape is measured and known previously and the transmitter receiver 11 is moved to a position where the ultrasonic waves strikes at right angles to measure the distance to the point B and the shape. Thus, even if the body 1 to be measured has unevenness, the transmitter receiver 11 can be arranged by the mechanisms 2 and 3 on the outer periphery of the body 1 to be measured at various positions and at various angles, so the shape of the entire circumference can accurately be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、歯車のように凹凸を有する被測定物の形状
測定等に用いて好適の超音波による計測装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic measuring device suitable for use in measuring the shape of an object to be measured having irregularities such as a gear.

[従来の技術] 第5図は例えば特開昭62−46282号公報に示され
た従来の超音波による計測装置を示すブロック図であり
、図において、1」は超音波送受波器、14はこの超音
波送受波器11に印加する送信パルスを発生する送信回
路、15は超音波送受波器11により送信された超音波
パルスが被測定物(円筒体)1で反射され超音波送受波
器1−1により受波される受信信号の増幅、検波、平滑
等の信号処理を行なう受信回路、16は受信回路15の
出力電圧が基準電圧VT以上のときに出力パルスを発生
する振幅比較回路、17はゲート回路で、送信回路14
において発生された送信パルスと、この送信パルスを印
加した超音波送受波器11の受信信号による振幅比較回
路16の出力パルスとによってゲートパルスを発生する
ものである。
[Prior Art] FIG. 5 is a block diagram showing a conventional ultrasonic measuring device disclosed in, for example, Japanese Patent Application Laid-Open No. 62-46282. In the figure, 1" is an ultrasonic transducer, and 14 is A transmitting circuit 15 generates a transmission pulse to be applied to the ultrasonic transducer 11, and a transmitting circuit 15 is an ultrasonic transducer in which the ultrasonic pulse transmitted by the ultrasonic transducer 11 is reflected by the object to be measured (cylindrical body) 1. 1-1, a receiving circuit that performs signal processing such as amplification, detection, and smoothing of the received signal; 16, an amplitude comparison circuit that generates an output pulse when the output voltage of the receiving circuit 15 is equal to or higher than the reference voltage VT; 17 is a gate circuit, and transmitting circuit 14
A gate pulse is generated by the transmission pulse generated in the transmission pulse and the output pulse of the amplitude comparison circuit 16 based on the received signal of the ultrasonic transducer 11 to which the transmission pulse is applied.

18は基準パルスを発生する基準周波数発生回路、19
はグー1−回路17のゲートパルスが加えられることに
よって動作が制御されるカウンタで、基準周波数発生回
路18において発生された基準バルスの数をカウンタ1
9により上記ゲートパルスによって定められる期間だけ
カウントするものである。20は演算回路で、上記基準
パルスのカウント数を超音波送受波器11と被測定物1
との間の距離の測定結果に基づいて被測定物1の円周長
さを演算するものである。さらに、31は被測定物1の
外周において半径Rのリング状の軌道、32は超音波送
受波器11を軌道31上に沿って移動させて被測定物1
の外周に沿い走査させる駆動装置である。
18 is a reference frequency generation circuit that generates a reference pulse; 19
1 is a counter whose operation is controlled by applying the gate pulse of the circuit 17, and the number of reference pulses generated in the reference frequency generating circuit 18 is counted by the counter 1.
9, the period determined by the gate pulse is counted. 20 is an arithmetic circuit that calculates the count number of the reference pulse by the ultrasonic transducer 11 and the object to be measured 1.
The circumferential length of the object to be measured 1 is calculated based on the result of measuring the distance between the two. Furthermore, 31 is a ring-shaped trajectory with a radius R on the outer periphery of the object to be measured 1, and 32 is a ring-shaped trajectory of the object to be measured 1 by moving the ultrasonic transducer 11 along the trajectory 31.
This is a drive device that scans along the outer periphery of the.

欣に動作について説明する。被測定物1の外周に設けら
れた軌道31上を駆動装置32によって駆動される超音
波送受波器11がら、被測定物1に向けて超音波を発信
し、被測定物1がら反射されてくる超音波の反射波を受
信し、その受信信号に基づいて、超音波送受波器11が
ら被測定物1までの距離を演算により求める。また、超
音波送受波器11を駆動装置32により軌道31上に沿
って移動させることにより、被測定物1の全周について
超音波送受波器11と被測定物1との間の距離が測定さ
れることになる。
Let me briefly explain the operation. The ultrasonic transducer 11 driven by a drive device 32 on a track 31 provided around the outer circumference of the object to be measured 1 emits ultrasonic waves toward the object to be measured 1, and the ultrasonic waves are reflected from the object to be measured 1. The reflected wave of the incoming ultrasonic wave is received, and the distance from the ultrasonic transducer 11 to the object to be measured 1 is calculated based on the received signal. In addition, by moving the ultrasonic transducer 11 along the track 31 by the driving device 32, the distance between the ultrasonic transducer 11 and the object to be measured 1 is measured around the entire circumference of the object to be measured 1. will be done.

[発明が解決しようとする課題] 従来の超音波による計測装置は以上のように構成されて
いるので、被測定物1の形状に凹凸があると、凹部に隣
接する凸部により超音波送受波器11からの超音波が到
達できない死角が生じる場合があり、このような場合、
正確な被測定物1の形状計測を行なえなくなるなどの課
題があった。
[Problems to be Solved by the Invention] Since the conventional ultrasonic measuring device is configured as described above, when the shape of the object to be measured 1 has irregularities, the ultrasonic wave is transmitted and received by the convex portion adjacent to the concave portion. There may be a blind spot where the ultrasonic waves from the device 11 cannot reach, and in such a case,
There were problems such as the inability to accurately measure the shape of the object 1 to be measured.

この発明は上記のような課題を解消するためになされた
もので、凹凸の被測定物でも確実に形状を測定できるよ
うにした超音波による計測装置を得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ultrasonic measuring device that can reliably measure the shape of an object to be measured even if it is uneven.

[課題を解決するための手段] この発明に係る超音波による計測装置は、超音波送受波
器を被測定物の半径方向および円周方向に沿って移動さ
せる移動機構と、上記超音波送受波器の上記被測定物に
対する角度を変化させる首振り機構とをそなえたもので
ある。
[Means for Solving the Problems] An ultrasonic measuring device according to the present invention includes a moving mechanism that moves an ultrasonic transducer along the radial direction and circumferential direction of an object to be measured; The device is equipped with a swing mechanism that changes the angle of the device with respect to the object to be measured.

[作   用] この発明における超音波による計測装置では、− 被測定物に凹凸がある場合には、この被測定物の外周に
おいて、移動機構および首振り機構により、超音波送受
波器を種々の位置、角度に配置し、被測定物の凸部の形
状を計測し、凹部については計測済みの凸部に超音波を
反射させ、超音波が凹部に進行するように設定し、凹部
の形状を測定するものである。つまり、凹部については
、凸部に反射させた超音波によって得る距離と、予め計
測された凸部の形状情報とを総合的に演算して凹部の形
状が求められるのである。
[Function] In the ultrasonic measuring device according to the present invention, - When the object to be measured has unevenness, the ultrasonic transducer can be moved in various ways by the moving mechanism and the swinging mechanism around the outer periphery of the object to be measured. position and angle, measure the shape of the convex part of the object to be measured, and for the concave part, reflect the ultrasonic wave on the measured convex part, set the ultrasonic wave to proceed to the concave part, and measure the shape of the concave part. It is something to be measured. In other words, the shape of the concave portion is determined by comprehensively calculating the distance obtained by the ultrasound reflected by the convex portion and the shape information of the convex portion measured in advance.

[発明の実施例コ 以下、この発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は凹凸を有する歯車等の被測定物、
2は超音波送受波器11を先端に有しこの超音波送受波
器11を被測定物1の半径方向および円周方向に沿いこ
の被測定物1に対して任意の位置に移動させる移動機構
、3は移動機構2の先端部と超音波送受波器11との間
に設けられこの超音波送受波器11の被測定物1に対す
る角度4− を任意に設定する首振り機構、4は被測定物1を回転さ
せることにより超音波送受波器11に対する角度を変化
させる回転機構、5は移動機構2および首振り機構3を
制御するためのコントローラ、6は超音波送受波器11
から送信される送信信号やこの超音波送受波器11で受
信された受信信号の処理を行ない超音波送受波器11と
被測定物1との間の距離を計測データとして演算出力す
る信号処理装置、7はコントローラ5からの超音波送受
波器11の位置情報と信号処理装置6からの計測データ
とに基づいて演算処理を行ない被測定物1の形状を求め
る計算処理装置、8はこの計算処理装置7により算出さ
れた被測定物1の形状の情報を表示する表示装置である
In Fig. 1, 1 is an object to be measured such as a gear having irregularities;
Reference numeral 2 denotes a moving mechanism having an ultrasonic transducer 11 at its tip and moving the ultrasonic transducer 11 to an arbitrary position with respect to the object to be measured 1 along the radial direction and circumferential direction of the object to be measured 1. , 3 is an oscillating mechanism provided between the tip of the moving mechanism 2 and the ultrasonic transducer 11, and arbitrarily sets the angle 4- of the ultrasonic transducer 11 with respect to the object to be measured 1; A rotation mechanism that changes the angle with respect to the ultrasonic transducer 11 by rotating the object 1 to be measured, 5 a controller for controlling the moving mechanism 2 and the swinging mechanism 3, 6 the ultrasonic transducer 11
A signal processing device that processes the transmission signal transmitted from the ultrasonic transducer 11 and the received signal received by the ultrasonic transducer 11, and calculates and outputs the distance between the ultrasonic transducer 11 and the object to be measured 1 as measurement data. , 7 is a calculation processing device that calculates the shape of the object to be measured 1 by performing calculation processing based on the position information of the ultrasonic transducer 11 from the controller 5 and the measurement data from the signal processing device 6, and 8 is this calculation processing device. This is a display device that displays information on the shape of the object to be measured 1 calculated by the device 7.

次に本実施例の装置の動作について説明する。Next, the operation of the apparatus of this embodiment will be explained.

例えば、第1〜4図に示すように、凹凸のある形状をも
つ歯車状の被測定物1の形状を、本実施例の装置により
測定する際には、まず、第2図に示すように、被測定物
1の凸部1aの面に対し直角になるような位置に超音波
送受波器11を移動させ、この凸部F、 a lの点A
と超音波送受波器11との距離を、信号処理装置6によ
り演算し測定する。なお、信号処理装置6における処理
は従来と同様であるので、その詳細な説明は省略する。
For example, as shown in FIGS. 1 to 4, when measuring the shape of a gear-shaped object 1 having an uneven shape using the apparatus of this embodiment, first, as shown in FIG. , the ultrasonic transducer 11 is moved to a position perpendicular to the surface of the convex portion 1a of the object to be measured 1, and the point A of this convex portion F, a
The signal processing device 6 calculates and measures the distance between the ultrasonic transducer 11 and the ultrasonic transducer 11 . Note that since the processing in the signal processing device 6 is the same as the conventional one, detailed explanation thereof will be omitted.

同様にして、順次、移動機構2および首振り機構3によ
り超音波送受波器11を移動させながら、第3図に示す
被測定物1の凹部1b上の点Bと超音波送受波器1]と
の距離を測定する場合、点Bと直角になる位置に超音波
送受波器1]を配置すると、点Bのある四部1bに隣接
する凸部1aのために超音波は点Cで反射され、点Bの
計測を行なえない。この場合、第4図に示ずように、予
め計測したことにより、形状が既知のものとなった点A
において超音波を反射させ、点Bに直角な方向から超音
波が当たるような位置に超音波送受波器11を移動させ
、点Bの形状を測定する。
Similarly, while sequentially moving the ultrasonic transducer 11 using the moving mechanism 2 and the swinging mechanism 3, the point B on the recess 1b of the object to be measured 1 shown in FIG. 3 and the ultrasonic transducer 1] When measuring the distance to point B, if the ultrasonic transducer 1 is placed at a position perpendicular to point B, the ultrasonic wave will be reflected at point C due to the convex portion 1a adjacent to the four portions 1b where point B is located. , point B cannot be measured. In this case, as shown in FIG. 4, point A whose shape is known due to prior measurement.
The ultrasonic wave transducer 11 is moved to a position where the ultrasonic wave is reflected from the direction perpendicular to point B, and the shape of point B is measured.

このように、本実施例の装置によhば、被測定物1に凹
凸がある場合でも、この被測定物1の外周において、移
動機構2および首振り機構3により、超音波送受波器]
−1を種々の位置、角度に配置して、まず被測定物1の
凸部」aの形状を計測しておけば、このようにして既知
になった形状の凸部]aを利用して超音波を反射させ、
超音波が四部1bに進行するように超音波送受波器11
の位置を設定することにより、四部】bの形状が確実に
測定されることになる。即ち、四部1bについては、凸
部1aに反射させた超音波によって得る距離と、予め計
測された凸部1aの形状情報とを総合的に演算して凹部
]bの形状が求められる。
In this way, according to the apparatus of this embodiment, even when the object to be measured 1 has unevenness, the moving mechanism 2 and the swinging mechanism 3 can operate the ultrasonic transducer on the outer periphery of the object to be measured 1.
-1 at various positions and angles, and first measure the shape of the convex part ``a'' of the object to be measured 1, then by using the convex part ``a'' of the known shape reflect ultrasound,
The ultrasonic transducer 11 so that the ultrasonic wave propagates to the fourth part 1b.
By setting the position of , the shape of part 4] b can be reliably measured. That is, for the four portions 1b, the shape of the concave portion b is calculated by comprehensively calculating the distance obtained by the ultrasound reflected by the convex portion 1a and the shape information of the convex portion 1a measured in advance.

また、本実施例では、回転機構4により被測定物1を回
転させることにより、被測定物1の全周の凹凸を測定す
ることができる。
Furthermore, in this embodiment, by rotating the object 1 to be measured by the rotation mechanism 4, it is possible to measure the irregularities around the entire circumference of the object 1 to be measured.

なお、上記実施例では、被測定物1を回転駆動するため
に回転機構4を設けたが、これは移動機構2および首振
り機構3に大きな自由度をもたせることにより廃止して
もよい。また、1二記実施例では、凸部1 aに1回だ
け超音波を反射させて四部1bを計測しているが、2回
以−L反射させても同等の計測データが得られるのはd
うまでもない。
In the above embodiment, the rotating mechanism 4 is provided to rotate the object 1 to be measured, but this may be omitted by providing the moving mechanism 2 and the swinging mechanism 3 with a large degree of freedom. In addition, in Example 12, the fourth part 1b is measured by reflecting the ultrasonic wave on the convex part 1a only once, but the same measurement data can be obtained even if the ultrasonic wave is reflected twice or more. d
It's no good.

[発明の効果コ アー 以上のように、この発明によれば、移動機構および首振
り機構により、超音波送受波器を被測定物に対して任意
の位置、角度に配置できるように構成したので、被測定
物に凹凸がある場合には、被測定物の凸部の形状を予め
計測し、凹部については計測済みの凸部に超音波を反射
させ、超音波が凹部に進行するように設定し、凸部に反
射させた超音波によって得る距離と、予め計測さfiz
だ凸部の形状情報とを総合的に演算して凹部の形状が測
定されるようになり、凹凸の被測定物でも確実に全周の
形状を測定できる効果がある。
[Core Effects of the Invention As described above, according to the present invention, the ultrasonic transducer can be placed at any position and angle relative to the object to be measured using the moving mechanism and the swinging mechanism. If the object to be measured has unevenness, measure the shape of the convex part of the object in advance, and set the ultrasonic wave to reflect on the measured convex part and proceed to the concave part. , the distance obtained by the ultrasound reflected from the convex part and the previously measured fiz
The shape of the concave portion is measured by comprehensively calculating the shape information of the concave and convex portions, and there is an effect that the shape of the entire circumference can be reliably measured even in the case of an uneven measured object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例としての超音波にょ6計測
装置示すブ。ッ□、第、p−%[ff14よよ記実施例
の装置による計測動作を説明するための図、第5図は従
来の超音波による計測装置を示すブロック図である。 図において、1−被測定物、2−移動機構、3−首振り
機構、6−信号処理装置、7−計算処理装置、11−超
音波送受波器。 − なお、図中、同一の符号は同一、又は相当部分を示して
いる。
FIG. 1 shows an ultrasonic measuring device as an embodiment of the present invention. Fig. 5 is a block diagram showing a conventional ultrasonic measuring device. In the figure, 1-object to be measured, 2-moving mechanism, 3-oscillating mechanism, 6-signal processing device, 7-computation processing device, 11-ultrasonic transducer. - In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 被測定物の中心方向へ向けて超音波を送信するとともに
上記被測定物から反射されてきた超音波を受信する超音
波送受波器と、該超音波送受波器による受信結果に基づ
いて上記の超音波送受波器と被測定物との距離を求める
演算手段とをそなえてなる超音波による計測装置におい
て、上記超音波送受波器を上記被測定物の半径方向およ
び円周方向に沿って移動させる移動機構と、上記超音波
送受波器の上記被測定物に対する角度を変化させる首振
り機構とがそなえられたことを特徴とする超音波による
計測装置。
An ultrasonic transducer that transmits ultrasonic waves toward the center of the object to be measured and receives the ultrasonic waves reflected from the object to be measured; In an ultrasonic measuring device comprising an ultrasonic transducer and a calculation means for determining the distance between the object to be measured, the ultrasonic transducer is moved along the radial direction and the circumferential direction of the object to be measured. An ultrasonic measuring device comprising: a moving mechanism for changing the angle of the ultrasonic transducer with respect to the object to be measured;
JP27751289A 1989-10-24 1989-10-24 Measuring instrument using ultrasonic wave Pending JPH03138590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751289A JPH03138590A (en) 1989-10-24 1989-10-24 Measuring instrument using ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27751289A JPH03138590A (en) 1989-10-24 1989-10-24 Measuring instrument using ultrasonic wave

Publications (1)

Publication Number Publication Date
JPH03138590A true JPH03138590A (en) 1991-06-12

Family

ID=17584633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751289A Pending JPH03138590A (en) 1989-10-24 1989-10-24 Measuring instrument using ultrasonic wave

Country Status (1)

Country Link
JP (1) JPH03138590A (en)

Similar Documents

Publication Publication Date Title
US5230340A (en) Ultrasound imaging system with improved dynamic focusing
JPH03136636A (en) Position detecting device of medical capsule
JPS6330017B2 (en)
JPH03138590A (en) Measuring instrument using ultrasonic wave
JPS6332454B2 (en)
SU983531A1 (en) Ultrasonic tomography method
JPH0854926A (en) Guidance device for autonomous mobile robot
JPH1114608A (en) Electromagnetic ultrasonic probe
JPS62282284A (en) Method and apparatus for measuring distance by ultrasonic wave
JPS6246282A (en) Ultrasonic wave measuring instrument
JPS6133523A (en) Position orienting device utilizing elastic wave
JP2535050B2 (en) Ultrasonic therapy equipment
JP2861295B2 (en) Surface wave velocity distribution measuring method and apparatus
JPS62152436A (en) Ultrasonic doppler diagnostic apparatus
US9675316B2 (en) Focused ultrasonic diffraction-grating transducer
JPS60178373A (en) Detection of obstacle in moving body
JP2861230B2 (en) Surface wave velocity distribution measuring method and apparatus
JPH01204653A (en) Ultrasonic doppler device
JPH08128994A (en) Array probe in array type flaw detector, and incident angle control device therefor
JPH0922326A (en) Coordinates input device
JPH07218242A (en) Peripheral length measuring apparatus
JPH0990038A (en) Distance measuring instrument
JPH0257278B2 (en)
JP2013246046A (en) Electromagnetic ultrasonic inspection device and electromagnetic ultrasonic inspection method of steel material
JPH0567287B2 (en)