JPS6332454B2 - - Google Patents

Info

Publication number
JPS6332454B2
JPS6332454B2 JP56100888A JP10088881A JPS6332454B2 JP S6332454 B2 JPS6332454 B2 JP S6332454B2 JP 56100888 A JP56100888 A JP 56100888A JP 10088881 A JP10088881 A JP 10088881A JP S6332454 B2 JPS6332454 B2 JP S6332454B2
Authority
JP
Japan
Prior art keywords
ultrasonic
receiver
transmitter
waves
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56100888A
Other languages
Japanese (ja)
Other versions
JPS581438A (en
Inventor
Masayoshi Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP56100888A priority Critical patent/JPS581438A/en
Publication of JPS581438A publication Critical patent/JPS581438A/en
Publication of JPS6332454B2 publication Critical patent/JPS6332454B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は超音波指向性ビームにより被診断物
を走査すると共に超音波パルスを放射し、その反
射波を受信する超音波診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic diagnostic apparatus that scans an object to be diagnosed with a directional ultrasonic beam, emits ultrasonic pulses, and receives reflected waves thereof.

従来の超音波診断装置は超音波パルスを放射
し、その反射波を受信してその送波点から反射点
までの距離を検出するものであつた。この従来装
置によれば被診断生体のその媒質の質的状態、例
えば減衰率を検出することはできなかつた。X線
を利用した診断装置にいわゆるX線トモグラフイ
ーと呼ばれる装置、生体内部におけるX線の減衰
状態を知り、これにより生体の内部の各部におけ
るX線に対する媒質の質的状態を測定表示するも
のがあり、これは大変優れた装置である。しかし
X線を用いる場合はその生体のうちの一部のみに
しか適用できない。つまりX線を被爆することが
できない部分に対する診断を行うことができな
い。
Conventional ultrasonic diagnostic equipment emits ultrasonic pulses, receives the reflected waves, and detects the distance from the transmitting point to the reflecting point. According to this conventional device, it was not possible to detect the qualitative state of the medium of the living body to be diagnosed, such as the attenuation rate. A diagnostic device that uses X-rays is a so-called X-ray tomography, which measures and displays the attenuation state of X-rays inside a living body, and thereby measures and displays the qualitative state of the medium with respect to X-rays in each part of the inside of the living body. Yes, this is a very good device. However, when using X-rays, it can only be applied to a part of the living body. In other words, it is not possible to diagnose parts that cannot be exposed to X-rays.

一方、X線トモグラフイーと同様に超音波トモ
グラフイーも考えられているが、これは超音波を
放射し、生体を透過した超音波を検出することに
なり、超音波は生体中のガスや骨を透過すること
ができないため、このような超音波トモグラフイ
ーを利用できる部分は生体中のごく一部に限られ
てしまう。
On the other hand, similar to X-ray tomography, ultrasound tomography is also being considered, but this involves emitting ultrasound waves and detecting the ultrasound waves that have passed through the living body. Because ultrasonic tomography cannot be transmitted through the body, only a small portion of the body can be used for this type of ultrasound tomography.

この発明の目的は超音波の反射特性を利用して
生体内の形状のみならず、質的な特性をも検出す
ることができるようにしようとするものである。
An object of the present invention is to make it possible to detect not only the shape inside a living body but also its qualitative characteristics by utilizing the reflection characteristics of ultrasound waves.

この発明によれば、鋭い指向性をもつ送波器に
より超音波パルスを生体内に放射し、その直接の
放射波を検出するのではなく、超音波が生体の進
行中にその各部において散乱波しながら進行する
が、その各部における散乱波を検出し、超音波送
波器と受波器の各位置、これらの指向方向の交差
点よりその受信した散乱波の反射点を知り、その
超音波パルスの放射よりその反射点を通つて受波
するまでの超音波通路を伝搬するに要した時間を
測定する。このような超音波指向方向の交差点を
二次元的に移動走行することにより、生体の各部
と対応した超音波パルスの経過時間を測定して、
例えば生体の各部における超音波の速度を求める
ことができ、よつて生体内の各部の音速を表示す
ることができ、例えば悪性腫瘍などは音速は速い
が、そのような個所を容易に発見することが可能
となる。
According to this invention, ultrasonic pulses are emitted into the living body by a transmitter with sharp directivity, and instead of detecting the direct radiated waves, the ultrasound pulses are scattered in various parts of the living body as they travel through the living body. However, the scattered waves at each part are detected, and the reflected points of the received scattered waves are determined from each position of the ultrasonic transmitter and receiver, and the intersection of these directional directions, and the ultrasonic pulse is detected. The time required for the ultrasonic wave to propagate through the ultrasonic path from the emission of the wave to its reflection point and reception is measured. By moving two-dimensionally through such intersections of ultrasound direction directions, we can measure the elapsed time of ultrasound pulses corresponding to each part of the living body.
For example, it is possible to determine the speed of ultrasonic waves in each part of the living body, and thus display the speed of sound in each part of the living body.For example, the speed of sound is high in malignant tumors, etc., and such places can be easily discovered. becomes possible.

例えば第1図に示すように、容器11の上板に
開口12が開けられ、開口12を塞ぐように被診
断物体13が容器11内の一部及び上部に配され
る。容器11内には超音波結合媒体、例えば水1
4が満され、容器11内において結合媒質14を
介して超音波送波器15より超音波パルスが被診
断物体13に入射される。送波器15は鋭い指向
性を持つており、この超音波指向性ビーム16に
沿つて送波器15より放射された超音波パルス
は、結合媒質14においては反射を生じることな
く進行し、物体13に入射され、物体13内では
その各点において散乱しながら進行する。
For example, as shown in FIG. 1, an opening 12 is formed in the upper plate of a container 11, and an object to be diagnosed 13 is placed in a portion of and above the container 11 so as to close the opening 12. Inside the container 11 is an ultrasonic coupling medium, for example water 1.
4 is filled, and ultrasonic pulses are incident on the object to be diagnosed 13 from the ultrasonic transmitter 15 via the coupling medium 14 in the container 11 . The transmitter 15 has sharp directivity, and the ultrasonic pulses emitted from the transmitter 15 along this ultrasonic directional beam 16 travel without reflection in the coupling medium 14 and reach the object. 13, and propagates inside the object 13 while being scattered at each point.

この発明においてはその散乱波を鋭い指向性の
受波器で受信するようにする。即ち送波ビーム1
6と交差する指向方向17を持つ受波器18が設
けられ、受波器18はその指向方向17よりの超
音波を受波し、この方向以外からの超音波の受信
を極力避ける構成とする。例えばこの例に示すよ
うに超音波を遮断するホーン19を受波器18の
前面に設け、このホーン19は第2図に示すよう
に内周面には超音波吸収乃至減衰層20を形成す
ることが好ましい。このようにして送波ビーム1
6と受波器の指向方向17との交点21で発生し
た散乱波中の指向方向17に向う反射パルスを受
波器18で受信する。
In this invention, the scattered waves are received by a receiver with sharp directivity. That is, transmission beam 1
A receiver 18 having a directivity direction 17 that intersects with the directivity direction 17 is provided, and the receiver 18 is configured to receive ultrasonic waves from the directivity direction 17 and avoid receiving ultrasonic waves from directions other than this direction as much as possible. . For example, as shown in this example, a horn 19 for blocking ultrasonic waves is provided in front of the receiver 18, and this horn 19 has an ultrasonic absorbing or attenuating layer 20 formed on its inner peripheral surface as shown in FIG. It is preferable. In this way, the transmitting beam 1
6 and the directional direction 17 of the receiver, the reflected pulse toward the directional direction 17 in the scattered waves is received by the receiver 18.

送波器15の位置及びビーム16の指向方向の
角度と、受波器18の位置とその指向方向17の
角度とから両指向方向の交点21を知ることがで
きる。従つて送波器15より交点21で散乱し、
受波器18に至る通路上を知ることができ、この
経路を通つた超音波の送波されてから受波される
までの時間を知り、更にこれよりその経路におけ
る平均速度を知ることができる。
The intersection point 21 of the two directivity directions can be determined from the position of the transmitter 15 and the angle of the directivity direction of the beam 16, and the position of the receiver 18 and the angle of the directivity direction 17 thereof. Therefore, it is scattered from the transmitter 15 at the intersection 21,
It is possible to know the path leading to the receiver 18, to know the time it takes for the ultrasonic wave to be transmitted through this path until it is received, and from this, to know the average speed along that path. .

送波ビーム16の方向を一定とした状態で受波
器18の指向方向17の角度又は位置を順次ずら
して送波ビーム16上の各点における散乱波を受
信し、その送波パルス及びその受波までに必要と
する時間を測定する。更に送波ビーム16の角度
又は位置をずらして同様にその送波ビーム上の各
点の散乱波を受信して以下同様のことを行い、図
に示すように物体13を例えば碁盤の目のように
した各微小領域22に分割し、その各微小領域2
2を反射点とする場合は超音波放射により受波器
で受信するまでの時間をそれぞれ測定する。
While the direction of the transmitted beam 16 is kept constant, the angle or position of the pointing direction 17 of the receiver 18 is sequentially shifted to receive the scattered waves at each point on the transmitted beam 16, and the transmitted pulse and its reception are Measure the time required to reach the wave. Furthermore, the angle or position of the transmitted beam 16 is shifted and the scattered waves at each point on the transmitted beam are received in the same manner, and the same process is performed thereafter, so that the object 13 is shaped like a checkerboard, for example, as shown in the figure. divided into each microregion 22, and each microregion 2
When point 2 is used as a reflection point, the time required for the ultrasonic wave to be received by the receiver is measured.

例えば送波器15のxy座標上の位置と、放射
ビーム16の角度とを、機構部31を制御部32
で制御して設定し、その制御部32よりの送波器
15の位置を示すデータx1y1θ1を座標演算部33
へ入力する。同様に受波器18のxy座標上の位
置及び指向方向の角度とを、機構部34を制御部
35で制御し、受波器18の位置を示すデータ
x2y2θ2を制御部35より座標演算部33に入力す
る。座標演算部33はこれら制御部32,35よ
りの送波器、受波器の各位置とその指向方向との
データから受信パルスが得られる物体13の各小
領域22が何れに属するかの座標位置を演算し、
その座標位置に対応したアドレスをアドレス発生
部36より発生する。つまり座標演算部33にお
いては指向ビーム16と受波器の指向方向17と
の交点21の各座標位置が演算される。
For example, the position on the xy coordinates of the transmitter 15 and the angle of the radiation beam 16 can be controlled by the mechanism section 31 and the control section 32.
The data x 1 y 1 θ 1 indicating the position of the transmitter 15 from the control unit 32 is controlled and set by the coordinate calculation unit 33 .
Enter. Similarly, the position on the xy coordinates and the angle of the pointing direction of the wave receiver 18 are controlled by the control unit 35 of the mechanism unit 34, and the data indicating the position of the wave receiver 18 is controlled by the control unit 35.
x 2 y 2 θ 2 is input from the control unit 35 to the coordinate calculation unit 33 . The coordinate calculation unit 33 calculates the coordinates to which each small region 22 of the object 13 from which the received pulse is obtained belongs from the data on the positions of the transmitter and receiver and their pointing directions from the control units 32 and 35. Calculate the position,
The address generator 36 generates an address corresponding to the coordinate position. In other words, the coordinate calculation section 33 calculates each coordinate position of the intersection 21 between the directional beam 16 and the directional direction 17 of the receiver.

送信部37より送波器15を励振してこれより
超音波パルスを放射し、受波器18よりの出力を
受信部38で受信増幅するが、送信部37よりパ
ルスを送信してから受信部38で受信パルスが得
られるまでの時間を時間測定部39で測定する。
この測定時間Tはアドレス発生部36のアドレス
により指定して記憶部41に記憶される。
The transmitter 15 is excited by the transmitter 37 to emit ultrasonic pulses, and the output from the receiver 18 is received and amplified by the receiver 38. At step 38, the time measuring section 39 measures the time until the received pulse is obtained.
This measurement time T is designated by the address of the address generation section 36 and stored in the storage section 41.

記憶部41には物体13をその小領域22に分
解した時の各点に対応した送波器15より受波器
18に至る超音波の通路の平均時間が記憶され
る。各微小領域の長さ(正確には超音波経路方向
における長さ)をSiと、その領域における超音波
の音速をViとすると、その微小領域をそれぞれ
通過する時間はSi/Vi=τiとなる。1/vi=xiとす ると、送波器15より交差点21を通り受波器1
8に至る通路上の各微小領域の長さSiと、その各
点におけるxiとの積を加算した値Σxisiがその領
域点に対する測定した平均時間Tiとなる。従つ
て各微小領域2における時間xiを未知数とする一
次の連立方程式を解くことによつて各微小領域2
2における音速viを知ることができる。このよう
な演算を、記憶部41から取り出して演算部42
で行つて各微小領域22における速度を求める。
物体13の二次元における微小領域22の速度乃
至各点における通過時間を表示部43に表示す
る。このような演算部42における演算や表示部
43による表示、更には記憶部41の記憶などは
この装置と離れた遠隔部で行うようにしてもよ
い。
The storage unit 41 stores the average time of the path of the ultrasonic waves from the transmitter 15 to the receiver 18 corresponding to each point when the object 13 is broken down into its small regions 22. If the length of each micro region (more precisely, the length in the ultrasound path direction) is Si, and the sound speed of the ultrasound in that region is Vi, then the time it takes to pass through each micro region is Si/Vi = τi. . If 1/vi=xi, the waveform passes from the transmitter 15 through the intersection 21 to the receiver 1.
The value Σxisi obtained by adding the product of the length Si of each minute region on the path leading to point 8 and xi at each point becomes the average time Ti measured for that region point. Therefore, by solving linear simultaneous equations in which the time xi in each microregion 2 is an unknown, each microregion 2
We can know the speed of sound vi at 2. Such calculations are taken out from the storage unit 41 and stored in the calculation unit 42.
Then, the velocity in each minute region 22 is determined.
The velocity of the two-dimensional minute region 22 of the object 13 and the transit time at each point are displayed on the display section 43. Such calculations in the calculation section 42, display on the display section 43, and storage in the storage section 41 may be performed in a remote section separate from this device.

以上述べたようにこの発明による超音波診断装
置によれば、反射法により、つまり超音波の進路
における各点での散乱した超音波を受波すること
によつて透過法ではなく反射法によつて生体の内
部における微小領域における形状ではなく、その
媒質の質的な状態を検出することが可能である。
透過法に基づく場合においては骨やガスによつて
測定できない部分をこの発明の装置により測定す
ることができ、また当然のことであるがX線によ
る被爆のような問題は生じない。このようにして
従来不可能であつた各種臓器の質的な状態を検知
することが可能である。
As described above, the ultrasonic diagnostic apparatus according to the present invention uses the reflection method, that is, by receiving the scattered ultrasound waves at each point on the path of the ultrasound waves, by using the reflection method instead of the transmission method. Therefore, it is possible to detect the qualitative state of the medium rather than the shape of a minute region inside the living body.
In the case based on the transmission method, parts that cannot be measured due to bone or gas can be measured by the apparatus of the present invention, and, of course, problems such as exposure to X-rays do not occur. In this way, it is possible to detect the qualitative states of various organs, which was previously impossible.

また第1図について示したように物体13のあ
る断面における二次元の各微小領域を、送波ビー
ムと受波指向方向との交点を移動走査するが、こ
れは例えば送波器15の移動又は必要に応じて回
動と受波器18の移動又は必要に応じて回動とに
より行う。このようなことは例えば従来の超音波
診断装置における送受波器ビームの走査手段をそ
のまま利用することができ、そのようなものとし
ては例えば特開昭52−484号公報に示すような手
段を使うことができる。また受波器18としては
一つのみならず複数個を同時に動作し、例えば第
1図において受波器18′を設け、その指向方向
17′と送波ビーム16との交点11′の散乱超音
波を電波し、つまり1回の超音波パルスの送波に
よつてその進行方向における複数の散乱点からの
超音波を受波するようにして交差点の二次元走査
を高速にすることができる。
In addition, as shown in FIG. 1, each two-dimensional minute area in a certain cross section of the object 13 is scanned by moving the intersection of the transmitting beam and the receiving direction. This is performed by rotating and moving the receiver 18 as necessary, or by rotating as necessary. For this purpose, for example, the transducer beam scanning means in conventional ultrasonic diagnostic equipment can be used as is, such as the one shown in Japanese Patent Application Laid-Open No. 52-484. be able to. In addition, not only one but a plurality of receivers 18 are operated at the same time. For example, in FIG. Two-dimensional scanning of an intersection can be performed at high speed by transmitting sound waves as radio waves, that is, by transmitting one ultrasound pulse and receiving ultrasound waves from a plurality of scattering points in the direction of travel.

先に述べたように受波器18としては不用のも
のを受波しないように非常に鋭い指向性を得るた
め、ホーン状の遮蔽体19を用いることが好まし
い。この第1図に示すように物体18と結合媒質
14とを用いて超音波を物体13に入射させる場
合は結合媒質14においては殆んど散乱が行われ
ず、また結合媒質の音速は一定で予め知られてい
るため、結合媒質14と物体13との境界面にお
いては反射が得られ、その境界面を知ることがで
き、これに応じてこの結合媒質14における演算
は省略するようにして構成し、それだけ演算量を
少なくし、また記憶部41の記憶容量を減らすこ
とができる。
As mentioned above, it is preferable to use a horn-shaped shield 19 in order to obtain very sharp directivity so that the receiver 18 does not receive unnecessary waves. As shown in FIG. 1, when an object 18 and a coupling medium 14 are used to make ultrasonic waves incident on the object 13, there is almost no scattering in the coupling medium 14, and the sound velocity of the coupling medium is constant and Since this is known, reflection can be obtained at the interface between the coupling medium 14 and the object 13, and the interface can be known. Accordingly, the configuration is such that calculations on this coupling medium 14 are omitted. , the amount of calculation can be reduced accordingly, and the storage capacity of the storage section 41 can be reduced accordingly.

更にデータの信頼性を高めるため、送波器と受
波器とを同一形態として超音波通路においてその
一方で超音波パルスの放射をして他方で受波を
し、次に他方で超音波パルスを送波し、一方でそ
れを受波をし、この両者に対して同一データが得
られた場合にそのデータを正しいものとして利用
するようにしてもよい。
Furthermore, in order to improve the reliability of the data, the transmitter and receiver are of the same type, and in the ultrasonic path, one emits ultrasonic pulses, the other receives them, and then the other emits ultrasonic pulses. It is also possible to transmit the same data and receive it on the other hand, and if the same data is obtained for both, that data may be used as correct data.

尚、一般に超音波診断装置としては例えば搬送
波を3MHzのものを利用するが、その3MHzよりも
低い周波数成分も発生しており、従つて例えば
1MHzなどの低い成分の反射散乱波をの受信に利
用することによつて、なるべく減衰を受けない散
乱波を受波するようにすることも可能である。
Generally, ultrasonic diagnostic equipment uses carrier waves of 3 MHz, for example, but frequency components lower than 3 MHz are also generated, so for example,
By using reflected and scattered waves with low components such as 1 MHz for reception, it is also possible to receive scattered waves that are not attenuated as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による超音波診断装置の一例
をすむブロツク図、第2図は受波器の指向性を鋭
くする手段を示す断面図である。 15:送波器、13:被診断物体、16:超音
波送波ビーム、17:受波指向方向、18:受波
器、21:交点、22:物体の微小領域、31:
送波器の駆動機構部、32:制御部、33:座標
演算部、34:受波器の駆動機構部、35:制御
部、36:アドレス信号発生部、37:超音波パ
ルス送信部、38:超音波パルス受信部、39:
時間計測部、41:記憶部、42:演算部、4
3:表示部。
FIG. 1 is a block diagram of an example of an ultrasonic diagnostic apparatus according to the present invention, and FIG. 2 is a sectional view showing means for sharpening the directivity of a wave receiver. 15: Transmitter, 13: Object to be diagnosed, 16: Ultrasonic transmission beam, 17: Receiving direction, 18: Receiver, 21: Intersection, 22: Microscopic region of object, 31:
Transmitter drive mechanism section, 32: Control section, 33: Coordinate calculation section, 34: Receiver drive mechanism section, 35: Control section, 36: Address signal generation section, 37: Ultrasonic pulse transmission section, 38 :Ultrasonic pulse receiving section, 39:
Time measurement section, 41: Storage section, 42: Arithmetic section, 4
3: Display section.

Claims (1)

【特許請求の範囲】[Claims] 1 ビーム状指向性を持つ送波器と、その送波器
を励振して超音波パルスを放射させる超音波パル
ス送信部と、上記送波器の指向方向と交差する鋭
い指向性を持つ受波器と、その受波器の受波出力
を受信増幅する超音波パルス受信部と、上記超音
波パルスの送信から、上記送波器及び受波器の指
向方向の交差点における超音波パルスの散乱波を
上記超音波パルス受信部で受信するまでの時間を
測定する時間測定部とを具備する超音波診断装
置。
1. A transmitter with beam-like directivity, an ultrasonic pulse transmitter that excites the transmitter to emit ultrasonic pulses, and a receiver with sharp directivity that intersects with the directivity direction of the transmitter. an ultrasonic pulse receiver that receives and amplifies the received output of the receiver, and a scattered wave of the ultrasonic pulse at the intersection of the pointing directions of the transmitter and receiver from the transmission of the ultrasonic pulse. an ultrasonic diagnostic apparatus, comprising: a time measuring section that measures the time until the ultrasonic pulse receiving section receives the ultrasonic pulse.
JP56100888A 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus Granted JPS581438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56100888A JPS581438A (en) 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56100888A JPS581438A (en) 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS581438A JPS581438A (en) 1983-01-06
JPS6332454B2 true JPS6332454B2 (en) 1988-06-30

Family

ID=14285861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56100888A Granted JPS581438A (en) 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS581438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048363U (en) * 1990-05-10 1992-01-24

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064074B2 (en) * 1983-02-14 1994-01-19 株式会社日立製作所 Ultrasonic diagnostic device and sound velocity measuring method using the same
JPS60249947A (en) * 1984-05-24 1985-12-10 株式会社東芝 Ultrasonic ct apparatus
JPS61115544A (en) * 1984-11-12 1986-06-03 株式会社東芝 Ultrasonic diagnostic apparatus
JPS61279234A (en) * 1985-06-05 1986-12-10 株式会社東芝 Ultrasonic diagnostic apparatus
JPS61290941A (en) * 1985-06-19 1986-12-20 株式会社東芝 Ultrasonic tissue diagnostic apparatus
JPS6262266A (en) * 1985-09-12 1987-03-18 Aloka Co Ltd Measurement of ultrasonic wave propagation velocity
JPH07115717B2 (en) * 1987-11-17 1995-12-13 株式会社タツノ・メカトロニクス Refueling device indicator
JP6553210B2 (en) * 2015-01-15 2019-07-31 ハーリング、ロドニー Diffuse acoustic confocal imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048363U (en) * 1990-05-10 1992-01-24

Also Published As

Publication number Publication date
JPS581438A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
US4338948A (en) Method and apparatus for detecting and/or imaging clusters of small scattering centers in the body
US4669482A (en) Pulse echo method and apparatus for sound velocity estimation in vivo
JP5283888B2 (en) Ultrasonic diagnostic equipment
JPH0254094B2 (en)
JP2016537136A (en) System and method for non-contact ultrasound
WO1984001432A1 (en) Measurement of ultrasound velocity in tissue
EP0139235A2 (en) Ultrasonic measurement method and apparatus therefor
EP0256686A1 (en) Method and apparatus for measuring ultrasonic velocity in a medium by crossed beams
US5546945A (en) Method and apparatus for displaying acoustic signal transit times
US4313444A (en) Method and apparatus for ultrasonic Doppler detection
JPS61100237A (en) Ultrasonic diagnostic apparatus
JPS6332454B2 (en)
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JP2003230560A (en) Ultrasonograph
JPH03136636A (en) Position detecting device of medical capsule
JPH021273B2 (en)
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JPS6053133A (en) Ultrasonic diagnostic apparatus
JPS6053130A (en) Ultrasonic diagnostic apparatus
JPH0646495A (en) Ultrasonic probe
JPS6341580B2 (en)
JPS60246740A (en) Ultrasonic diagnostic apparatus
JPS604857A (en) Ultrasonic transmitter-receiver
JPS6262266A (en) Measurement of ultrasonic wave propagation velocity
JPS6251624B2 (en)