JPS581438A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS581438A
JPS581438A JP56100888A JP10088881A JPS581438A JP S581438 A JPS581438 A JP S581438A JP 56100888 A JP56100888 A JP 56100888A JP 10088881 A JP10088881 A JP 10088881A JP S581438 A JPS581438 A JP S581438A
Authority
JP
Japan
Prior art keywords
ultrasonic
transmitter
waves
wave
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56100888A
Other languages
Japanese (ja)
Other versions
JPS6332454B2 (en
Inventor
正義 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP56100888A priority Critical patent/JPS581438A/en
Publication of JPS581438A publication Critical patent/JPS581438A/en
Publication of JPS6332454B2 publication Critical patent/JPS6332454B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は超音波指向性ビームによ〕被診断物を走査す
ると共に超音波パルスを放射し、その反射波をダ信する
超音波診断装置に調する。
DETAILED DESCRIPTION OF THE INVENTION The present invention scans an object to be diagnosed with an ultrasonic directional beam, emits ultrasonic pulses, and transmits the reflected waves to an ultrasonic diagnostic apparatus.

従来の超音波診断装置社超音波パルスを放射し、その反
射波を受信してその送液点から反射点までの距離を検出
するものであった。この従来装置に゛よれば被診断生体
のその媒質の質的状態、例えば減衰率を検出することは
できなかった。XSを利用した診断装置にいわゆるX線
ト令グツフィーと呼ばれる装置、生体内部におけるX線
の減衰状態を知9、これによシ生体の内部の各部におけ
るX線に対する媒質の質的状態を測定表示するものかあ
plこれは大変優れた装置である。しかしXSを用いる
場合線その生体のうちの一部の−)′にしか適用できな
い。−)を夛X線を被爆することができない部分に対す
る診断を行うことができない。
Conventional ultrasonic diagnostic equipment emits ultrasonic pulses, receives the reflected waves, and detects the distance from the liquid sending point to the reflecting point. According to this conventional device, it was not possible to detect the qualitative state of the medium of the living body to be diagnosed, such as the attenuation rate. A diagnostic device using XS is a so-called X-ray tactile system, which measures and displays the attenuation state of X-rays inside a living body. This is a very good device. However, when using XS, the line can only be applied to a part of the living body -)'. -) It is not possible to diagnose areas that cannot be exposed to X-rays.

一方、X線トモグラフィーと同様に超音波トモグラフィ
ーも考えられているが、これは超音波を放射し生体を透
過した超音波を検出することになシ、超音波は生体中の
ガスや骨を透過することができないため、このような超
音波トモグラフィーを利用できる部分は生体中のごく一
部に限られてしまう。
On the other hand, similar to X-ray tomography, ultrasound tomography is also being considered, but this does not involve emitting ultrasound waves and detecting the ultrasound waves that have passed through the living body. Therefore, the areas where such ultrasound tomography can be used are limited to only a small part of the living body.

この発明の目的は超音波の反射特性を利用して生体内の
形状のみならず、質的な特性をも検出することができる
ようにしようとすゐものである。
The purpose of this invention is to make it possible to detect not only the shape inside a living body but also its qualitative characteristics by utilizing the reflection characteristics of ultrasound waves.

この発明によれば、鋭い指向性をもつ送波器によシ超音
波パルスを生体内に放射し、その直II。
According to this invention, ultrasonic pulses are emitted into a living body by a transmitter with sharp directivity, and the ultrasonic pulses are directly emitted into a living body.

放射波を検出するので社なく、超音波が生体の進行中に
その各部において散乱波しながら進行すゐが、その各部
におけゐ散を技を検出し、超音波送波器と受渡器の各位
置、これらO指向方向の交差点よシその受信した散乱波
の反射点を知〉、その超音波パルスの放射よシその反射
点を通って受波する壕での超音波通路を伝搬するに要し
た時間を測定する。このような超音波指向方向の交差点
を二次元的に移動走査することによp1生体の各部と対
応した超音波パルスの経過時間を測定して、例えば生体
の各部における超音波の速度を求めることができ、よっ
て生体内の各部の音速を表示することができ、例えば悪
性腫瘍など杜音速は速いが、そのような個所を容易に発
見することが可能と々る。
Since it detects radiated waves, the ultrasonic waves propagate as scattered waves in each part of the living body as it travels through the body. At each location, the point of reflection of the received scattered wave at the intersection of these directional directions is known, and the ultrasonic pulse is emitted and transmitted through the ultrasonic path in the trench where the wave is received through the reflection point. Measure the time taken. By two-dimensionally moving and scanning such intersections of the ultrasound direction directions, the elapsed time of the ultrasound pulse corresponding to each part of the p1 living body is measured, and, for example, the velocity of the ultrasound at each part of the living body is determined. Therefore, it is possible to display the speed of sound in various parts of a living body.For example, it is possible to easily find places such as malignant tumors, where the speed of sound is fast.

例えば第1図に示すように、容器11の上板に開口12
が開けられ、開口12を塞ぐように被診断物体13が容
器11内の一部及び上部に配される。容器11内には超
音波結合媒体、例えば14が満され、容器・11内にお
いて結合媒質14を介して超音波送波器15よ)超音波
パルスが被診断物体13に入射される。送波器15は鋭
い指向性を持っておシ、この超音波指向性ビーム16に
沿って送波器16よ〕放射された超音波パルスは、結合
媒質14においては反射を生じることなく進行し、物体
13に入射され、物体13内ではその各点において散乱
をしながら進行する。
For example, as shown in FIG.
is opened, and the object to be diagnosed 13 is placed in a portion of and above the container 11 so as to close the opening 12. The container 11 is filled with an ultrasonic coupling medium, e.g. The transmitter 15 has sharp directivity, and the ultrasonic pulses emitted from the transmitter 16 along this directional ultrasonic beam 16 proceed in the coupling medium 14 without reflection. , is incident on the object 13, and travels inside the object 13 while being scattered at each point.

仁の発明においてはその散乱波を鋭い指向性の受渡器で
受信するようkする。即ち送波ビーム16と交差する指
向方向17を持っ受波器18が設けられ、受渡器18紘
その指向方向17よシの超音波を受波し、この方向以外
からの超音波の受信を極力避ける構成とする。例えばこ
の例に示すように超音波を鐘断するホーン19を受波器
18の前1MIC設け、このホーン19は第2図に示す
ように内周薗には超音波吸収乃至減衰層2oを形成する
ことが好オしい。このようKして送波ビーム16と受波
器の指向方向17との交点21で発生した散ttIL中
の指向方向17に向う反射メ・・ルスを受波器18で受
信する。
In Jin's invention, the scattered waves are received by a receiver with sharp directivity. That is, a receiver 18 is provided with a directional direction 17 that intersects with the transmitted beam 16, and the receiver 18 receives ultrasonic waves in a direction other than the directional direction 17, and receives ultrasonic waves from directions other than this direction as much as possible. The configuration should avoid this. For example, as shown in this example, a horn 19 for cutting off ultrasonic waves is provided at one MIC in front of the receiver 18, and as shown in FIG. It's good to do that. In this manner, the receiver 18 receives the reflected light in the direction 17 of the scattered ttIL generated at the intersection 21 of the transmitted beam 16 and the direction 17 of the receiver.

送波器15の位置及びビーム160指向方向の角度と、
受渡器18の位置とそO指向方向17の角度とから両指
向方向の交点21を知ることができる。従って送波器1
5よシ交点21で散乱し、受渡1118に至る通路上を
知るヒとができ、仁の経路を通つ丸角音波の送波されて
から受波されるオでの時間を知シ、更にこれよシその経
路における平均速度を知ることができゐ。
the position of the transmitter 15 and the angle of the beam 160 pointing direction;
The intersection point 21 of both orientation directions can be determined from the position of the delivery device 18 and the angle of the O orientation direction 17. Therefore transmitter 1
5, it is possible to know the path on which the round-angle sound wave is scattered at the intersection 21 and reach the delivery point 1118. This allows us to know the average speed along that route.

送波ビーム16の方向を一定とじ良状態で受波器18の
指向方向170角度又紘位置を順次ずらして送波ビーム
16上の各点にシ妙る散乱波を受信し、その送波パルス
及びその受波までに必要とする時間を測定する。更に送
波ビーム160角度又は位置をずらして同様にその送波
ビーム上の各点の散乱波を受信して以下同様の仁とを行
い、図に示すように物体13を例えば基盤の目のように
した各微小領域22に分割し、その各微小領域22を反
射点とする場合は超音波放射によシ受aSで受信する壕
での時間をそれぞれ測定する。
While the direction of the transmitted beam 16 is kept constant and the direction of the receiver 18 is shifted by 170 degrees or the horizontal position, scattered waves are received at each point on the transmitted beam 16, and the transmitted pulse is and measure the time required to receive the wave. Furthermore, by shifting the angle or position of the transmitting beam 160 and similarly receiving the scattered waves at each point on the transmitting beam, the same process is performed, and as shown in the figure, the object 13 is shaped like an eye on the base, for example. When the ultrasonic waves are divided into micro-regions 22 and each micro-region 22 is used as a reflection point, the time at which the ultrasonic radiation is received by the receiver aS is measured.

例えば送波器15017座標上の位置と、放射ビーム1
6の角度とを、機構部31を制御部32で制御して設定
し、その制御部a2よシの送波器18の位置を示すデー
タxsyusを座標演算部おへ入力する。同様に受渡器
180X7座標上の位置及び指向方向の角度とを、機構
部34を制御部36で制御し、受波1)18の位置を示
すデータXH7fi#fiを制御部35よ多座標演算部
38に人力する。座標演算部33はこれら制御部82,
35よシの送波器、受波器の各位置とその指向方向との
データから受信パルスが得られる物体13の各小領域2
2が何れに属するかの座標位置を演算し、その座標位置
に対応し九アドレスをアドレス発生部36よ〕発生する
。つまり座標演算部33においては指向ビーム16と受
渡器の指向方向17との交点21の各座標位置が演算さ
れる。
For example, the position on the transmitter 15017 coordinates and the radiation beam 1
6 is set by controlling the mechanism section 31 with the control section 32, and data xsyus indicating the position of the transmitter 18 of the control section a2 is inputted to the coordinate calculation section O. Similarly, the position on the X7 coordinates of the delivery device 180 and the angle of the pointing direction are controlled by the control unit 36 of the mechanism unit 34, and data XH7fi#fi indicating the position of the received wave 1) 18 is sent from the control unit 35 to the multi-coordinate calculation unit. 38 manpower. The coordinate calculation unit 33 is controlled by these control units 82,
Each small region 2 of the object 13 where a received pulse can be obtained from data on each position of the transmitter and receiver of 35 and its pointing direction.
The coordinate position to which 2 belongs is calculated, and the address generating section 36 generates a 9 address corresponding to the coordinate position. In other words, the coordinate calculation unit 33 calculates each coordinate position of the intersection 21 between the directional beam 16 and the directional direction 17 of the delivery device.

送信部37よシ送波4815を励振してこれよシ超音波
パルスを放射し、受波器18よシの出力を受信部38で
受信増幅するが、送信部37よシバルスを送信してから
受信部38で受信パルスが得られる壕での時間を時間測
定部39で測定する。
The transmitter 37 excites the transmission wave 4815 to emit an ultrasonic pulse, and the output of the receiver 18 is received and amplified by the receiver 38, but after the transmitter 37 transmits the signal, A time measurement unit 39 measures the time in the trench where the reception pulse is obtained by the reception unit 38 .

仁の測定時間Tはアドレス発生部86のアドレスによシ
指定して記憶部41に記憶される。
The measurement time T for the measurement is specified by the address of the address generation section 86 and stored in the storage section 41.

記憶部41には物体13をその小領域22に分解した時
の各点に対応し九送波器IBよシ受波器18に至る超音
波の通路の平均時間が記憶される。
The storage unit 41 stores the average time of the ultrasonic wave path from the nine transmitters IB to the receiver 18 corresponding to each point when the object 13 is broken down into its small regions 22.

各微小領域の長さく正確には超音波経路方向における長
さ)をStと、その領域における超音波の音速をViと
すると、その微小領域をそれぞれ通過す送波器11sよ
シ交差点21を通〕受渡器18に至る通路上の各微小領
域の長さ81と、その各点におけるXiとの積を加算し
た値Σxlsiがその領域点に対する測定した平均時間
TIとなぁ。従って各微小領域22における時間Xiを
未知数とする一次の連立方程式を解くことによって各微
小領域22における音速マ1を知ることができる。この
ような演算を、記憶部41から取シ出して演算部42で
行って各微小領域22における速度を求める。物体13
の二次元における微小領域22の速度乃至各のような演
算部42における演算中表承部4゛3による表示、更に
は記憶部41の記憶などはこの装置と離れた遠隔部で行
うようにしてもよい。
If the length of each minute area (more precisely, the length in the ultrasonic path direction) is St, and the sound speed of the ultrasonic wave in that area is Vi, then the transmitter 11s passing through each minute area passes through the crossing point 21. ] The value Σxlsi obtained by adding the product of the length 81 of each minute area on the path leading to the delivery device 18 and Xi at each point is the average time TI measured for that area point. Therefore, by solving linear simultaneous equations in which the time Xi in each minute region 22 is an unknown quantity, the sound velocity M1 in each minute region 22 can be determined. Such calculations are retrieved from the storage section 41 and performed by the calculation section 42 to determine the speed in each minute region 22. Object 13
The speed of the minute area 22 in two dimensions, the display by the representation unit 4'3 during calculations in the calculation unit 42, and the storage in the storage unit 41, etc., are performed in a remote part separate from this device. Good too.

以上述べ九ようにこの発明による超音波診断装置によれ
ば、反射法によシ、っまシ超音波の進路における各点で
の散乱した超音波を受波することによって透過法ではな
く反射法によって生体の内部における微小領域における
形状ではなく、その媒質の質的な状態を検出することが
可能である。
As described above, according to the ultrasonic diagnostic apparatus according to the present invention, the ultrasound diagnosis method uses the reflection method instead of the transmission method by receiving the scattered ultrasound waves at each point on the path of the ultrasound waves. This makes it possible to detect the qualitative state of the medium rather than the shape of a minute region inside the living body.

透過法に基づく場合においては骨や7.ガスによって一
定できない部分をこの発明の装置によシ測定することが
でき、また轟然のことであるがX線による被爆のような
問題線虫しない。このようにして従来不可能であった各
種臓器の質的な状態を検知することが可能である。
In the case based on the transmission method, bones and 7. The device of the present invention can measure areas that are not constant due to gas and, surprisingly, does not cause problems such as exposure to X-rays. In this way, it is possible to detect the qualitative states of various organs, which was previously impossible.

宜九第1図について示したように物体13のあゐ断11
における二次元の各微小領域を、送波ビームと受波指向
方向との交点を移動走査するが、これは例えば送波器1
5の移動又は必要に応じて回動と受波器18の移動又唸
必要に応じて回動とKよシ行う。仁のようなことは例え
ば従来の超音波診断装置における送受波器ビームの走査
手段をそのiま利用することができ、そのようなものと
しては例えば特開昭52−484号公報に示すような手
段を使うことができる。また受波器18としては一つの
みならず複数個を同時に動作し、例えば第1図において
受波器18’を設け、その指向方向171と送波ビーム
16との交点11’の叡覧超音波を受波し、つ11)1
回の超音波パルスO送波によってその進行方向における
複数の散乱点からO超音波を受波するようにして交差点
の二次元走査f′高速にすることができる。
As shown in FIG. 1 of FIG.
The intersection point of the transmitting beam and the receiving direction is moved and scanned in each two-dimensional micro region in the transmitter 1, for example.
5 or rotate as necessary, and move or rotate the receiver 18 as necessary. For example, it is possible to utilize the transducer beam scanning means of a conventional ultrasonic diagnostic apparatus, such as the one shown in Japanese Patent Application Laid-Open No. 52-484. can use means. Furthermore, not only one but a plurality of receivers 18 are operated at the same time. For example, in FIG. 11)1
By transmitting the ultrasonic pulse O twice and receiving the O ultrasonic wave from a plurality of scattering points in the traveling direction, the two-dimensional scanning f' of the intersection can be performed at a high speed.

先に述べたように受波a18としては不用の4のを受渡
し危いように非常に鋭い指向性を得る丸め、ホーン状の
纏蔽体19を用いることが好ましい。この第1図に示す
ように物体18と結合媒質14とを用いて超音波を物体
18に入射させる場合は結合媒質14においては殆んど
散乱が行われず、また結合媒質の音速は一定で予め知ら
れている丸め、結合媒質14と物体13との境界面にお
いて線反射が得られ、その境界面を知ることができ、こ
れに応じてこの結合媒質14における演算は省略するよ
うにして構成し、それだけ演算量を少なくL、t&記憶
部41の記憶容量を減らすことができる。
As mentioned above, it is preferable to use a rounded, horn-shaped shielding body 19 that delivers extremely sharp directivity by transferring unnecessary waves a18. As shown in FIG. 1, when an object 18 and a coupling medium 14 are used to make ultrasonic waves incident on the object 18, there is almost no scattering in the coupling medium 14, and the sound velocity of the coupling medium is constant and With known rounding, a line reflection is obtained at the interface between the coupling medium 14 and the object 13, and the interface can be known, and accordingly, the configuration is such that calculations on this coupling medium 14 are omitted. , the amount of calculation can be reduced accordingly, and the storage capacity of the L, t& storage section 41 can be reduced.

更にデータの信頼性を高めるため、送波器と受渡器とを
同一形態として超音波通路においてその一方で超音波パ
ルスの放射をして他方で受波をし、次に他方で超音波パ
ルスを送波し、一方でそれを受渡をし、この両者に対し
て同一データが得られた場合にそのデータを正しいもの
として利用するようにしてもよい。
Furthermore, in order to improve the reliability of the data, the transmitter and the receiver are of the same type, and in the ultrasonic path, one emits ultrasonic pulses, the other receives the waves, and then the other emits the ultrasonic pulses. It is also possible to send a wave and then exchange it on the other hand, and if the same data is obtained for both parties, that data may be used as correct data.

尚、一般に超音波診断装置としては例えば搬送波を8M
Hzのものを利用するが、その3MHzよシも低い周波
数成分も発生してお夛、従って例えばIMlbなどの低
い成分の反射散乱波をの受信に利用することによって、
なるべく減衰を受は嫌い散1LtIILを受波するよう
にすることも可能である。
In general, ultrasonic diagnostic equipment uses a carrier wave of 8M, for example.
Hz, but it also generates frequency components lower than 3 MHz. Therefore, by using low component reflected and scattered waves such as IMlb for reception,
It is also possible to receive 1LtIIL with as little attenuation as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による超音波診断装置の一例を示すブ
四ツク図、第2図は受波器の指向性を鋭くすゐ手段を示
す断面図である。 15:送波器、13:被診断物体、16:超音波送波ビ
ーム、17:受波指向方向、18:受渡器、21:交点
、22:物体の微小領域、31:送波器の駆動機構部、
32:制御部、33:座標演算部、34:受渡器の駆動
機構部、35:制御部、36:アドレス信号発生部、3
7:超音波パルス送信部、3B=超音波パルス受信部、
39:時間計測部、41:記憶部、42:演算部、43
:表示部。 特許出願人  旭メディカル株式金社 代通人 草野 卑
FIG. 1 is a block diagram showing an example of an ultrasonic diagnostic apparatus according to the present invention, and FIG. 2 is a sectional view showing means for sharpening the directivity of a wave receiver. 15: Transmitter, 13: Object to be diagnosed, 16: Ultrasonic transmission beam, 17: Reception direction, 18: Delivery device, 21: Intersection, 22: Microscopic area of object, 31: Drive of transmitter Mechanism department,
32: Control unit, 33: Coordinate calculation unit, 34: Delivery device drive mechanism unit, 35: Control unit, 36: Address signal generation unit, 3
7: Ultrasonic pulse transmitter, 3B = Ultrasonic pulse receiver,
39: Time measurement section, 41: Storage section, 42: Arithmetic section, 43
: Display section. Patent Applicant: Asahi Medical Co., Ltd. Kinshadai Tsuyoshi Kusano

Claims (1)

【特許請求の範囲】[Claims] (1)ビーム状指向性を持り送波器と、その送波器を励
損して超音波パルスを放射させゐ超音波パルス送信部と
、上記送波器の指向方向と交差する鋭い指向性を持つ受
渡器と、そO受波IIO受故出力を受信増幅する超音波
パルス受信部と、上記超音波パルスの送信から、上記送
波器及び受渡器の指向方向の交差点くおけゐ超音波パル
スの散気波を上記超音波パルス受信部で受信する壕で0
時間を測定する時間測定部とを具備する超音波診断装置
(1) A transmitter with beam-like directivity, an ultrasonic pulse transmitter that excites the transmitter and emits ultrasonic pulses, and a sharp directivity that intersects with the directivity direction of the transmitter. an ultrasonic pulse receiving unit that receives and amplifies the output of the received wave IIO; and an ultrasonic pulse receiving section that receives and amplifies the output of the received wave IIO; 0 at the trench where the pulse diffuser wave is received by the ultrasonic pulse receiving section.
An ultrasonic diagnostic device comprising: a time measuring section that measures time.
JP56100888A 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus Granted JPS581438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56100888A JPS581438A (en) 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56100888A JPS581438A (en) 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS581438A true JPS581438A (en) 1983-01-06
JPS6332454B2 JPS6332454B2 (en) 1988-06-30

Family

ID=14285861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56100888A Granted JPS581438A (en) 1981-06-29 1981-06-29 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS581438A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149132A (en) * 1983-02-14 1984-08-27 株式会社日立製作所 Ultrasonic diagnostic apparatus
JPS60249947A (en) * 1984-05-24 1985-12-10 株式会社東芝 Ultrasonic ct apparatus
JPS61115544A (en) * 1984-11-12 1986-06-03 株式会社東芝 Ultrasonic diagnostic apparatus
JPS61279234A (en) * 1985-06-05 1986-12-10 株式会社東芝 Ultrasonic diagnostic apparatus
JPS61290941A (en) * 1985-06-19 1986-12-20 株式会社東芝 Ultrasonic tissue diagnostic apparatus
JPS6262266A (en) * 1985-09-12 1987-03-18 Aloka Co Ltd Measurement of ultrasonic wave propagation velocity
JPH01139397A (en) * 1987-11-17 1989-05-31 Tokyo Tatsuno Co Ltd Indicator for lubricating device
JP2018501940A (en) * 2015-01-15 2018-01-25 ハーリング、ロドニー Diffuse acoustic confocal imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048363U (en) * 1990-05-10 1992-01-24

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149132A (en) * 1983-02-14 1984-08-27 株式会社日立製作所 Ultrasonic diagnostic apparatus
JPS60249947A (en) * 1984-05-24 1985-12-10 株式会社東芝 Ultrasonic ct apparatus
JPS61115544A (en) * 1984-11-12 1986-06-03 株式会社東芝 Ultrasonic diagnostic apparatus
JPS61279234A (en) * 1985-06-05 1986-12-10 株式会社東芝 Ultrasonic diagnostic apparatus
JPS61290941A (en) * 1985-06-19 1986-12-20 株式会社東芝 Ultrasonic tissue diagnostic apparatus
JPS6262266A (en) * 1985-09-12 1987-03-18 Aloka Co Ltd Measurement of ultrasonic wave propagation velocity
JPH01139397A (en) * 1987-11-17 1989-05-31 Tokyo Tatsuno Co Ltd Indicator for lubricating device
JP2018501940A (en) * 2015-01-15 2018-01-25 ハーリング、ロドニー Diffuse acoustic confocal imaging device

Also Published As

Publication number Publication date
JPS6332454B2 (en) 1988-06-30

Similar Documents

Publication Publication Date Title
US6336899B1 (en) Ultrasonic diagnosis apparatus
US3936791A (en) Linear array ultrasonic transducer
US4274421A (en) Echo sound apparatus including an oscillating mirror for use in medical diagnosis
US4391281A (en) Ultrasonic transducer system and method
US4338948A (en) Method and apparatus for detecting and/or imaging clusters of small scattering centers in the body
JPS60163643A (en) Ultrasonic measuring method and apparatus
JP3251682B2 (en) Ultrasound diagnostic equipment
US3939707A (en) Measurement of liquid flow
JP2016537136A (en) System and method for non-contact ultrasound
JP2008136855A (en) Ultrasonic diagnostic apparatus
JPS59101143A (en) Ultrasonic measuring apparatus
JPS581438A (en) Ultrasonic diagnostic apparatus
JPH0898836A (en) Display method and display device of sound wave propagation period
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JP2005532136A (en) Treatment combination
NZ193566A (en) Non invasive blood flow measurement:ultrasonic doppler
CN109414254A (en) Control equipment, control method, control system and program
JPH03136636A (en) Position detecting device of medical capsule
CN110494082B (en) Ultrasound elastography method and system
US5213102A (en) Shock wave generating apparatus capable of setting moving direction of shock wave generating source to ultrasonic tomographic image plane
JP2010088584A (en) Ultrasonic diagnosing system
JPH02295553A (en) Impulse wave treating device
JP2004141447A (en) Reflective transmission type ultrasonic inverse scattering ct device
JPH04285546A (en) Ultrasonic diagnostic device
JP2001190552A (en) Three-dimensional ultrasonograph, and display method and recording medium for three-dimensional ultrasonograph