JPS59101143A - Ultrasonic measuring apparatus - Google Patents

Ultrasonic measuring apparatus

Info

Publication number
JPS59101143A
JPS59101143A JP57211871A JP21187182A JPS59101143A JP S59101143 A JPS59101143 A JP S59101143A JP 57211871 A JP57211871 A JP 57211871A JP 21187182 A JP21187182 A JP 21187182A JP S59101143 A JPS59101143 A JP S59101143A
Authority
JP
Japan
Prior art keywords
main beam
cross
scanning
ultrasonic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57211871A
Other languages
Japanese (ja)
Inventor
三輪 博秀
治 林
孚城 志村
川辺 憲二
安津夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57211871A priority Critical patent/JPS59101143A/en
Publication of JPS59101143A publication Critical patent/JPS59101143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の分野〕 本発明は超音波ビームを用いて、生体等の媒体内部につ
いてh1測をした多各種作用を加える装置に係り、特に
測定−畑作用を正確な部位に対して実施できる測矩壷別
作用方式に関する。
[Detailed Description of the Invention] (Field of the Invention) The present invention relates to a device that uses an ultrasonic beam to apply various types of effects to the inside of a medium, such as a living body, using h1 measurements, and particularly relates to a device that uses ultrasonic beams to apply various effects based on h1 measurements on the inside of a medium such as a living body. The present invention relates to a method of operation for each measurement pot that can be implemented for.

〔発明の従来技術〕[Prior art to the invention]

従来超音波を用いて生体内の癌部位等を加熱した9、キ
ャビテーションを発生したりして癌細胞を破壊する等の
作用を生体組織に加える装置が知られているが、このた
めに用いられる連続波(CW)又はパルス波よりなる超
音波ビームは、予じめX線や超″「波エコー映像装置で
体表における関心部位相当の位置を測定しておき、その
部位を目標として照射される。この場合、体表の基準と
なる点が設定しに<<、且つ食事後の時間や、体位、呼
吸、拍動等に起因して臓器の体表に対する相対位置はず
れ、臓器自身もその形状が変化する。このため臓器中の
関心部位の体表に苅する相対位lidは絶えず変化する
。このため畑作用位置が不明確となり、例えば鰭破壊の
場合は癌が破壊されずに周辺附近の健當細胞が破壊さh
る様な不都合が生じる。
Conventionally, devices are known that use ultrasonic waves to heat cancerous sites in living organisms, etc. 9, and devices that apply effects to living tissues such as generating cavitation and destroying cancer cells. Ultrasonic beams consisting of continuous waves (CW) or pulsed waves are used to measure the position of the area of interest on the body surface in advance using an X-ray or ultra-wave echo imaging device, and then irradiate the ultrasound beam to that area. In this case, the reference point on the body surface is set <<, and the relative position of the organ relative to the body surface shifts due to the time after meals, body position, breathing, pulse, etc., and the organ itself also shifts. The shape changes.For this reason, the relative position of the organ of interest on the body surface constantly changes.For this reason, the position of field cultivation becomes unclear, and for example, in the case of fin destruction, the cancer is not destroyed and the surrounding area is healthy cells are destroyed
This may cause some inconvenience.

又パルス超音波ビームを用いて心臓各部の動的寸法計測
を行ったシ(所謂Mモード計B’ll ) 、心腔内面
流速度計測(所i1tドツプラー計測)を行ったり、2
つ以上のビームを用いて心腔内関心点での血流速度ベク
トルを動的に求めたりすることが行正錨な関心点で実施
することが困難である。この対策として従来性われてい
る方式とその問題を次にのべる。
In addition, we measured the dynamic dimensions of each part of the heart using a pulsed ultrasound beam (so-called M-mode meter B'll), measured the inner flow velocity of the heart chamber (I1T Doppler measurement), and
It is difficult to dynamically determine the blood flow velocity vector at a point of interest in a cardiac chamber using more than one beam at a fixed point of interest. The conventional methods used to counter this problem and their problems are described below.

まずMモードやドプラー等の計測用主ビームを反射法に
よるBモード・エコー俳の走査面内にある様に設置し、
Bモード断面映像上で計測用主ビームの位置と、関心点
の位tを確認17つつ実施する方法である。この場合第
1図の如くBモード像は機械式又は電子式(リニア、フ
ェースドアレイ。
First, set up the main beam for measurement such as M mode or Doppler so that it is within the scanning plane of the B mode echo beam using the reflection method.
This method is carried out while checking the position of the main beam for measurement and the position t of the point of interest on the B-mode cross-sectional image. In this case, as shown in Fig. 1, the B-mode image is produced using a mechanical or electronic method (linear, face array).

セクタ等)走査の探触子により得られ、主ビームは別の
独立した探触子を用い、機械的に特定の幾何 1711学的姿勢をとるようにBモード探触子に固定さ
れるか、75J動アームのリンクで結合され、結合関節
のポテンショメータ等でその相対位fi1tを検出する
事により、主ビームや関心部位の位置がij算されてB
モード断面像上に表示される場合がある。
(e.g. sector) scanning transducer, and the main beam is mechanically fixed to the B-mode transducer in a specific geometrical position using another independent transducer, or 75J is connected by the link of the moving arm, and by detecting its relative position fi1t with the potentiometer of the joint joint, the position of the main beam and the region of interest is calculated by B.
It may be displayed on the mode cross-sectional image.

第1図(a)はリニア・アレー電子走査探触子1とドプ
ラー(Mモード)探触子2とを一体に形成した例である
。また第1図(b)は機械的回転式セクター走査(Bモ
ード)探触子3にドプラー(Mモード)探触子2を一体
化した例である。いずれもドプラー探触子2の方向は0
工変である。また第1し1(C)はフェーストアレー電
子セクタ走査(Bモード)探;9」電子4を43!> 
m的リンク5によりドプラー(Mモード)探触子2と結
合し、リンクの各関節51゜52.53にあるポテンシ
ョメータによシ両探触子の孔列姿勢を検知するものであ
る。
FIG. 1(a) shows an example in which a linear array electronic scanning probe 1 and a Doppler (M mode) probe 2 are integrally formed. Further, FIG. 1(b) shows an example in which a Doppler (M mode) probe 2 is integrated with a mechanical rotary sector scanning (B mode) probe 3. In both cases, the direction of Doppler probe 2 is 0.
It is a engineering change. Also, the first 1 (C) is a face array electronic sector scanning (B mode) search; 9'' electronic 4 43! >
It is connected to a Doppler (M-mode) probe 2 by an m-type link 5, and the hole array posture of both probes is detected by potentiometers located at each joint 51, 52, and 53 of the link.

又従来、上述の2つの探触子音用いる煩雑さを避けるた
めに、電子式では走食線の走査順序を自由に設定可能で
あることを利用してBモード走査とドプラー(Mモード
)走査とを時間的に父互に行う事が工夫された。第2図
(a)はリニア・アレイ1の一部11をフェースト・ア
レイとして動作させ図のMの方向にドプラー(Mモード
)測定用主ビームを形成している。第2図(b)はフェ
ースドアレイ4の走査線の中の1本を測定用主ビームM
とするものである。
Conventionally, in order to avoid the complication of using the two probe consonants mentioned above, the electronic system uses the fact that the scanning order of the scanning line can be freely set to perform B-mode scanning and Doppler (M-mode) scanning. It was devised that both parents could do this at different times. In FIG. 2(a), a part 11 of the linear array 1 is operated as a face array to form a main beam for Doppler (M mode) measurement in the direction M in the figure. FIG. 2(b) shows one of the scanning lines of the face array 4 as the measurement main beam M.
That is.

第2図の例では、ドプラー、Mモード等の計測では、走
査線シ返し回数が高いことが必要であるので、相瞬るB
モード走査線の走査の間に測定生ビーム走査を毎回挿入
する。即ち走査線番号を1゜2.3 ・・とすると、1
.M、2.M、3.M。
In the example shown in Fig. 2, for Doppler, M mode, etc. measurements, it is necessary to have a high number of scan line repetitions, so
A measurement raw beam scan is inserted between each scan of the mode scan line. That is, if the scanning line number is 1°2.3..., then 1
.. M, 2. M, 3. M.

・・−の如く走査される。又第1図例のグループにおい
ても同様の理由でBモードと主測定ビームとの両探触子
は相互の混信をさけるために夫々の走五線は又互に時間
切もζで走査される。
. . - is scanned. Also, in the group shown in Fig. 1, for the same reason, both the B-mode and main measurement beam probes are scanned at ζ, and the respective scanning staffs are also scanned at a time interval of ζ to avoid mutual interference. .

上記で説明したあ弐は一断面上で2次元的にすアルタイ
ムに連続的にモニターしながら測定できるので有意義で
ある。しかし残念ながら三次元的q に部位を固定することはできない欠点がある。このため
心臓の如き動的で抜雑な116器の計測等では大きな誤
差を生じる0またBモードの併用によって主測定ビーム
の走査繰返し率が半減することは、ドプラー開側では最
大測定可能流速が半減し、Mモード1測では時間分解能
が悪化するとともに、Bモード(8)の方も走査組数が
半減するか、毎秒のフレーム数が半減するという欠点が
める。
The method described above is meaningful because it can be measured two-dimensionally on one cross section while continuously monitoring it in real time. Unfortunately, however, it has the drawback that it is not possible to fix parts in three dimensions. For this reason, the scanning repetition rate of the main measurement beam is halved when using 0 or B mode, which causes large errors in measurements of dynamic and unscrupulous instruments such as the heart. In the M mode 1 measurement, the time resolution deteriorates, and in the B mode (8), the number of scanning sets is halved or the number of frames per second is halved.

一方、3次元的に部位をモニターする方式としては、2
つのBモード探触子を夫々の走査面が直交するように位
置させて用いる方式が九表されている。このための探触
子としては2組のフェーストアレーセクタスキャナをそ
の走査面が直交するようVC隣接して体化したものや、
不発り」百等によるl狩願tGJ 57 45395 
r特願昭57−45394の如く、凹型ヤ凸型や1Il
ll型等のIJ =アアレーを直交したものや、複層に
積層したフェースドアレイ等がある。
On the other hand, there are two ways to monitor the body part three-dimensionally.
Nine methods are listed in which two B-mode probes are positioned so that their respective scanning planes are perpendicular to each other. A probe for this purpose is one in which two sets of face array sector scanners are placed adjacent to the VC so that their scanning planes are perpendicular to each other,
``Misfire'' by Hyakutoshi tGJ 57 45395
r As in Japanese Patent Application No. 57-45394, concave, convex, and 1Il
There are ll-type IJ arrays that are orthogonal to each other, and face arrays that are stacked in multiple layers.

しかし、いずれの場名にも2つのBモード用探触子σ交
互に動作させねばならず、さらにそれに測定・畑作用ビ
ームを加えて玉名を時間切替えで順次動作させることは
困難である。
However, it is necessary to operate the two B-mode probes σ alternately for each field name, and it is difficult to add the measurement and field farming beams to this and operate the field fields sequentially by time switching.

また前述の如くのフレームレートの減少等の欠点をさけ
るため、本発明省苓は、2つ以上の超音波ビームを同時
に動作させ、夫々のビーム全中心周波数を異ならしめる
等の%徴づけ全行い、受信エコーをその特徴で分割する
如き混4M−防止を利用する方式を発明した(特開昭5
5−103837号)。
In addition, in order to avoid the drawbacks such as a decrease in frame rate as described above, the present invention is designed to operate two or more ultrasonic beams at the same time, and to perform a full % characteristic such as making the total center frequency of each beam different. invented a method to prevent confusion by dividing received echoes according to their characteristics (Japanese Unexamined Patent Application Publication No. 1989-1999).
5-103837).

この方式は有効であるが、実際の人体に応用すると、周
仮数依存性減哀と、測定深度、空回分解能等の相反する
要求から、使用し得る周波数は、特定の対象1熾器に対
しては2ヶ程度に限定される。
Although this method is effective, when applied to the actual human body, the frequencies that can be used are limited due to conflicting requirements such as the dependence on the mantissa, measurement depth, and idle resolution. The number is limited to about two.

このため例えば直交2断面と浪1j定王ビームとの3者
に夫々の34」の周波数を割当てることは困難であった
For this reason, it is difficult to allocate a frequency of 34'' to each of the two orthogonal cross sections and the wave 1j constant king beam, for example.

〔発明の目的〕[Purpose of the invention]

本発明の目的はio+」定・別作用用主超音波ビームや
関心部位の位置を、3次元的にリアルタイムに連ん「的
にモニターしながら主ビームの目的とする4Ke能を逐
行しうる訂j音波装にを提供するにある。
The purpose of the present invention is to connect the main ultrasonic beam for constant and different effects and the position of the region of interest three-dimensionally in real time, and to monitor the target 4Ke function of the main beam. We are providing revised sound equipment.

〔発明の要点〕[Key points of the invention]

本発明は少なくとも相互に交叉する2つの反射超音波B
モード断面映像と、少なくともその何れかに対して明確
な位置にある生ビームと′ff:導入し、主ビームと映
像系とに異なる周波数を割当てて同時動作させ映像系の
21tir面は相互に11.1.間切岩で動作させる等
により、主ビームの必−渋注能を劣化させることなく、
これら3ビームをはソ同時に、リアルタイムに連続的に
動作させることを可能とし上記目的k m%成1■能と
したものである。
The present invention provides at least two reflected ultrasonic waves B that intersect with each other.
Introducing the mode cross-sectional image and the raw beam at a clear position relative to at least one of them, and assigning different frequencies to the main beam and the image system and operating them simultaneously, the 21tir plane of the image system is mutually 11 .1. By operating it on a rock between the rocks, etc., the main beam's essential pouring ability is not deteriorated.
These three beams can be operated simultaneously and continuously in real time to achieve the above objective.

〔発り1の実施例〕 以下爽11ル例について説明する。11i3単のために
主ビームは1本、映像走五■1は2白とし、映(〉コ走
査曲の又角は直角であるとするが、これに限定されるも
のでiaない。
[Embodiment 1] Hereinafter, 11 examples will be explained. For the 11i3 unit, there is one main beam, two beams are used for the image scanning, and the angles of the scanning pieces are right angles, but the invention is not limited to this.

主ビームは化体等の媒体中に放射されるもので、迎わI
、波・鵬続波・パルス波を用いて特定の関心部位を加熱
したり、キャビテーション現低金利用したシして癌細胞
の破壊を行う様な特定の作用を加えるものであってもよ
め。又連わ、、沢やパルス汲による反射を利用したドプ
ラー皿流速測定や、温度測定や、組織の特性値を測定す
るものでもよい。
The main beam is emitted into a medium such as a material, and is
It may also be possible to add a specific effect, such as heating a specific area of interest using waves, continuous waves, or pulse waves, or using cavitation to destroy cancer cells. In addition, it may also be used to measure Doppler dish velocity using reflections from streams or pulsed pumps, to measure temperature, or to measure tissue characteristic values.

75T 浦Mモードとして知られているパルスの各fj
:’Iがらの反射を利用して寸法の測定全行うものでも
よい。パルスの透過全利用する超音−波CTに用いるも
のであってもよい。をするに主として目的とする原作用
や、61+1定を行うもので以下王ビームと略称する。
75T Each fj of the pulse known as Ura M mode
:'It may also be possible to carry out all measurements of dimensions by utilizing the reflection of the glass. It may also be used in ultrasound-wave CT that utilizes all pulse transmission. The main purpose of this beam is to perform the original action and the 61+1 constant, and is hereinafter abbreviated as the king beam.

映像用走ゑ面は、Br謂Bモード像として知られている
もので、パルス波を一本の走査糺1方向に放射し、その
放射に同期してCRT上でその方向に輝線を走査しその
各深度からの反射波をその受信時1iJ1に対応して、
該f4編上で発光させ、更にその走査線を特定の面内で
順次偏向し断面像を得るもので、レーダーとして久f1
られていZ)方式と相似である○具体的には前述の如く
、和汁波トランスジーーサーを機械的にに査する方式と
、多数の分割された水子からなるアレーの駆動素子群全
電子的に切り替え平行走査線群で走査向を’hp;成す
るリニア・アレーや、駆動台素子の時間的位相を制御し
て合成ビーム方向を偏向し、その偏向角k l1fr4
次変化して放射状走査線群で走査面を構成するセクター
・アレー等の方式の何れを用いてもよい。第3図(a)
は本発明の第1の実施例であシ、探触子2は主ビームM
を、探触子4,6は映像用走査面BI+B2に形成する
。夫々は機械的なアーム5でリンクされ、アームの接合
部の節は自由に回転でき、その交角は節に設けられたポ
テンシオ・メータ51〜55で検出される。探触子4と
6は相互にその走査向が直交する様にアームに対して取
りつけられる。第3図(b)Fi第2の実施例を示し、
探触子4と6が一体として形成された探触子7を用いた
例である。探触子7の構造は、走査向が90異なるよう
に二つのトランスジューサーを相隣して一体化したもの
で近似的に構成できるが、不発明者の提案した特願昭5
7−45395や%顔昭57−45394によればより
完全なものを得ることができる。第3図(a)+ (b
)における主ビームMはイロ」れも映像用走査面B、内
にある様に全ての探触子はアーム・リンク5に取付けら
れる。第4図(a)+ (b)は主ビームMが映像用走
査面B、、 B2の交叉線上にある第3゜第4の実施例
である0組4区1(a)では探触子8は第2図(b)の
探触子4と同様な手法により主ビームと映像用走査面B
2に形成する。探触子4と8とは第3図で説明した如く
、アーム・リンクによシB1がB22tの位置を通過す
る様に取付けられる。
The image scanning surface is known as a B-mode image, which emits a pulse wave in one scanning line and scans a bright line in that direction on the CRT in synchronization with the emission. The reflected waves from each depth correspond to 1iJ1 at the time of reception,
It emits light on the f4 beam and then sequentially deflects the scanning line within a specific plane to obtain a cross-sectional image.
○Specifically, as mentioned above, there is a method that mechanically scans the Washi-wave transformer, and an all-electronic drive element group of an array consisting of a large number of divided water molecules. The direction of the combined beam is deflected by controlling the temporal phase of a linear array that forms the scanning direction with a group of parallel scanning lines and a drive stage element, and its deflection angle k l1fr4
Any system such as a sector array in which the scan surface is configured by a group of radial scan lines may be used. Figure 3(a)
is the first embodiment of the present invention, the probe 2 has a main beam M
are formed by the probes 4 and 6 on the image scanning plane BI+B2. They are each linked by a mechanical arm 5, and the nodes at the joints of the arms can freely rotate, and the intersection angles are detected by potentiometers 51 to 55 provided at the nodes. The probes 4 and 6 are attached to the arm so that their scanning directions are perpendicular to each other. FIG. 3(b) shows a second embodiment of Fi,
This is an example using a probe 7 in which probes 4 and 6 are integrally formed. The structure of the probe 7 can be approximated by integrating two transducers adjacent to each other so that the scanning direction is 90 different.
According to 7-45395 and %Kao 57-45394, a more complete version can be obtained. Figure 3 (a) + (b)
) is the main beam M at the image scanning plane B, and all the probes are attached to the arm link 5 as shown in FIG. Figure 4 (a) + (b) shows that the main beam M is on the intersection line of the image scanning planes B, B2. 8 is a main beam and an image scanning plane B using the same method as the probe 4 in FIG. 2(b).
Form into 2. As explained in FIG. 3, the probes 4 and 8 are attached to the arm link so that the probe B1 passes through the position B22t.

図示例では交叉線及びMはB2の中央走査線に一致する
様に選はれているが、中央に限ボされるものではない。
In the illustrated example, the intersection line and M are selected to coincide with the center scanning line of B2, but are not limited to the center.

第4図(b)は第3図(b)の探触子7に更に主ビーム
用探触子を加え一体化した例で、具体的なトランスジュ
ーサーの構成例を第5図で説明する。第4図(b)では
B+、Btの又叉線及びMはBI+B2の中央走査線と
一致しているが、必らずしも中火走査線である必要はな
い。第4図(b)の探触子9の具体的栴成例を第5図に
示す0組5図(a)は凹面型、第5図(b)は凸面型の
セクタスキャン用りだ触子をボし、前述の物臭1μ昭5
7−45394と同様に背向吸収体95゜96上に2組
のアレー91.92又は93.94を直交配置し、その
交点では2贋化しである。そして更に本発明の主ビーム
のためのトランスジューサ97又は98を第3層として
積層しである0主ビームが測定用の場合にdトランスデ
ー−サ97.98は小径のものでよいが、畑作用用の場
合には大口径のものが必要である。その場合には第5図
(c)にボす如く、大口径トランスデー−サ99上に2
組のリニア・アレーioo、  iotを&1督した9
、又は第5図(d)にボす如く大口径トランスデ一サ1
02の中央に窓穴を設けてそこに第5図(a)。
FIG. 4(b) shows an example in which a main beam probe is further added to the probe 7 of FIG. 3(b) and integrated, and a specific example of the structure of the transducer will be explained with reference to FIG. 5. In FIG. 4(b), the cross lines of B+ and Bt and M coincide with the central scanning line of BI+B2, but they do not necessarily have to be the middle scanning line. A specific example of the construction of the probe 9 shown in FIG. 4(b) is shown in FIG. 5. FIG. I threw the child away and the smell mentioned above was 1μ Showa 5
Similarly to No. 7-45394, two sets of arrays 91.92 or 93.94 are arranged orthogonally on the back-facing absorber 95°96, and the counterfeits are made at the intersection. Furthermore, transducers 97 or 98 for the main beam of the present invention are laminated as a third layer, and when the main beam is used for measurement, the d transducers 97 and 98 may be of small diameter. For commercial purposes, a large diameter one is required. In that case, as shown in FIG. 5(c), two
Linear array ioo, iot &1 director of pair 9
, or a large-diameter transformer 1 as shown in Figure 5(d).
A window hole is provided in the center of 02 and the window hole is inserted into the hole as shown in Fig. 5(a).

(b)と同様な部拐93,94.96又は91,92゜
95を埋込んでもよい。
Recesses 93, 94, 96 or 91, 92° 95 similar to those in (b) may be embedded.

第5図(a)(b)(d)のアレーはそれ自身の曲率に
よってセクタスキャンしてもよいし、さらにフェースド
アレイの原理を用いて、より走i角を広けてもよい。谷
トランスデユーサはPZTや、有機圧電体等で作ること
ができる。
The array shown in FIGS. 5(a), 5(b), and 5(d) may perform sector scanning using its own curvature, or may use the principle of a faced array to further widen the travel angle. Valley transducers can be made of PZT, organic piezoelectric materials, and the like.

連続波を用いたドプラー血流速測定とか、ノ(ルス波を
用いたドプラ血流速測定とかMモード(11す定とか組
織特性mlり定等の如く主ビームが計j定を主体とした
時は第5図(a)、 (b)の如き4’、Ii触触子構
成力ζ−られ主ビームの目的が加熱とか悪性組織破壊等
の原作用では第5区1((りl (a)の如き構成が用
いらオし、且つ連続波又は間欠波が用いられることか多
い。
Doppler blood flow velocity measurement using continuous waves, Doppler blood flow velocity measurement using Luss waves, M mode (11 mode, tissue characteristic measurement, etc.) where the main beam is mainly measured When the purpose of the main beam is heating or destruction of malignant tissue, etc., the 5th section 1 ((ri l ( A configuration such as a) is often used, and continuous waves or intermittent waves are often used.

主ビームが連続波又は間欠波であると、時間分解能は無
限になるが深さ方向の位置分解能はなくなる。しかしそ
の周波数箱は極めて狭い帯域のものとなシ、映像用周波
数と差をつけて分離し、相互の干渉・混信を防ぐために
フィルター等の混信防止手段を容易に設けることができ
る。
When the main beam is a continuous wave or an intermittent wave, the time resolution becomes infinite, but the positional resolution in the depth direction disappears. However, since the frequency box has an extremely narrow band, it can be separated from the video frequency by a difference, and interference prevention means such as a filter can be easily installed to prevent mutual interference and interference.

主ビームがパルス阪による反射波をオl用する形式であ
る場f3は、主ビームのスペクトルは中心周波数fin
の両側に広がる広帯域のものとなる。又パルスが主ビー
ムの致達最大深度を往復する[ijは次のパルスが放射
できないので、この往復時間を2tとすると、最大時間
分解能1’j2tとなる。その化9深さ方向空間分解能
はノクルス巾rと音速Cを乗じたCrとなる。主ビーム
が最大時間利用効率で動作されたシ、最大開間分角・1
−能でfJIU市に変イヒする血流速やMモード像を得
たシするためには、返し率で動作される必要がある。こ
のことは主ビームMと、画像用のB、、B2走査ビーム
とを中心周波数をかえる如き特徴附を行って区別し、帯
域フィルターの如き混信防止手段を用いて分離すること
によって、実現され主ビームMを最大時間利用効率で動
作塾せることかできる。画像用n、、B2走査線もfm
とは異なシ、且つ互に異なる中心周波数fl+f2で%
似づけ、同様に帯域フィルターで混イaI!/J止を行
えば、夫々最大時間オIJI’l効率で動作できる。し
かし、生ビームが人体組織中の測定に用いられる時は、
fm+fnf2は実用上制限をうける。即ち、空間的深
さ分解能を良くするにはrを小とするため夫々の(+i
城中は広くなければならない。又相互の混信を防止する
ためには夫々の帯域はM’fxってはならない。このた
めにfm>fl〉f2  と仮定するとfmとf、は大
きくはなれねはならない。一方に於て除さ方向と直角な
横方向分解能はJjj礫数に逆比例するので時短の解像
力を必渋とするためにはある最低坂波数fLがある。即
ちf L < fm、 f、、 f2でなけil、 &
:j:ならない。又、生体組織では超音波の減衰は、深
さく通溝距離)と共に指数函数的に変化シ2、その減衰
係数αは周波数に比例(α−βf)することが知られて
いる。このため主ビームの11」用最犬深さが定まると
減衰をさけるために周波数はある最大値fH以下、即ち
fH>fm1fHf2でなけれはなら、ない。このため
実際の応用例からはfLとfHとの間にはせいぜい2周
波数位しかとれない場合がelとんとである。したがっ
て、−散にfrnt f+ + f2の3周波を選ぶこ
とができない。本発明はこの場合、主ビームMにfmを
割当て、ll!11像用BI+B2にVif、を割当て
BITB2はタイムシェア(時IN、切換)で走査され
る様にするものである。さらにもし対象物の動きが鈍い
とか、主ビームの効果を得るのに長筒間を資してもよい
場合には主ビームの時1i4J利用率ヲ100%以下と
し、その残シの時間にiif+i像川走査を用ってもよ
い。この場合でも主ビームの時1’flJ利用率が他の
ii!II像用走査のaThllJ4利用率と等しいか
より大きいことが望ましい。
In the case f3 where the main beam uses the reflected wave by the pulse wave, the spectrum of the main beam is at the center frequency fin.
It will be a wide band that spreads on both sides. Also, the pulse reciprocates to the maximum depth that the main beam can reach [ij cannot emit the next pulse, so if this reciprocating time is 2t, the maximum time resolution is 1'j2t. The spatial resolution in the depth direction is Cr, which is the product of the Noculus width r and the speed of sound C. When the main beam is operated at maximum time efficiency, the maximum opening arc minute is 1
- In order to obtain blood flow velocities and M-mode images that change to fJIU, it is necessary to operate at a return rate. This can be achieved by distinguishing the main beam M from the image scanning beams B, B2, by adding characteristics such as changing the center frequency, and separating them using interference prevention means such as a bandpass filter. It is possible to operate the beam M with maximum time utilization efficiency. Image n, B2 scanning line also fm
% at different center frequencies fl+f2 and different from each other.
Similarity, mixed aI with a bandpass filter as well! If /J is stopped, each can operate at maximum efficiency for the maximum time. However, when the live beam is used for measurements in human tissue,
fm+fnf2 is subject to practical limitations. That is, in order to improve the spatial depth resolution, each (+i
The castle must be spacious. Also, in order to prevent mutual interference, each band must not be M'fx. For this reason, assuming that fm>fl>f2, fm and f should not be significantly different from each other. On the other hand, since the resolution in the lateral direction perpendicular to the direction of removal is inversely proportional to the number of Jjj grains, there is a certain minimum slope wave number fL in order to make time-saving resolution a must. That is, f L < fm, f, il, &
:j: No. It is also known that in living tissue, the attenuation of ultrasonic waves changes exponentially with the depth (channel length), and that the attenuation coefficient α is proportional to the frequency (α−βf). Therefore, once the maximum depth for 11'' of the main beam is determined, the frequency must be less than a certain maximum value fH, that is, fH>fm1fHf2, in order to avoid attenuation. Therefore, in actual applications, there are cases where at most only about two frequencies can be taken between fL and fH. Therefore, it is not possible to randomly select three frequencies frnt f+ + f2. In this case, the present invention assigns fm to the main beam M and ll! Vif is assigned to BI+B2 for 11 images, and BITB2 is scanned by time share (time IN, switching). Furthermore, if the movement of the object is slow or if a long tube can be used to obtain the effect of the main beam, the 1i4J utilization rate for the main beam should be set to 100% or less, and the remaining time should be set to iif+i. Image river scanning may also be used. Even in this case, when the main beam is used, the 1'flJ utilization rate is different from the other ii! It is desirable that it be equal to or greater than the aThllJ4 utilization rate of the II image scan.

さらに画像用走査には1回の走査送信に対しその近傍の
複数の走査線を同時受信する特開昭55−52746号
公報に記載の技術等を利用することにより、時間割当て
率が半減しても走査線数は減少せずに済ませることも可
能となる。
Furthermore, for image scanning, the time allocation rate can be halved by using the technology described in Japanese Patent Application Laid-Open No. 55-52746, which simultaneously receives multiple scanning lines in the vicinity of one scanning transmission. However, it is also possible to avoid reducing the number of scanning lines.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超音波ビームによる媒体への畑作用や
媒体の測定に於て、ビーム及び/又は畑作川魚・測定点
の3次元的な媒体中の位伯を確認しつつ動作を行うこと
が可能となり、正確な位置合わせができ、媒体が[i、
f181的に変動している場合でも目的とする部位に追
随して動作を行うことができる効果がある。
According to the present invention, when performing field farming or measuring a medium using an ultrasonic beam, the operation is performed while confirming the position of the beam and/or field farming river fish/measuring point in the three-dimensional medium. This makes it possible to perform accurate positioning and ensure that the medium is [i,
There is an effect that the movement can be performed following the target part even when the f181 is fluctuating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来方式の説明図、第3図。 第4図は本殆り」の実施例のω己明図、第5図は主ビー
ムと直父2b1面1iiII稼走査用とのトランスジュ
ーサーが一体化でれた構成図である。 (a)             <b)第3図 %4図 (b) 7 (C)、(d) 第 S 図
FIGS. 1 and 2 are explanatory diagrams of the conventional system, and FIG. 3 is an explanatory diagram of the conventional method. FIG. 4 is a schematic diagram of the embodiment of the present invention, and FIG. 5 is a configuration diagram in which the main beam and the transducer for direct scanning of the direct plane 2b1 surface 1iiiI are integrated. (a) <b) Figure 3 %4 Figure (b) 7 (C), (d) Figure S

Claims (7)

【特許請求の範囲】[Claims] (1)  超音波音用いて媒体内部の測定又は媒体内部
への別作用を行なう装置において、該測定用又は別作用
用の超音波ビーム(以下主ビームと称す)を発生する手
段と、零でない父角で交鎖する少くとも2つの反射超音
波による断面像を得る手段と、上記主ビームと上記少く
とも2つの断面との位置関係を−にに保2か、又は該位
置関係を常時検出する手段とを設けたことを特徴とする
超も波にょる測定または別作用装置。
(1) In a device that uses ultrasonic sound to measure the inside of a medium or perform another action on the inside of the medium, a means for generating an ultrasonic beam (hereinafter referred to as the main beam) for the measurement or another action, and a non-zero beam. means for obtaining cross-sectional images by at least two reflected ultrasound waves intersecting at the father angle, and maintaining the positional relationship between the main beam and the at least two cross-sections at -2, or constantly detecting the positional relationship; 1. A device for measuring or acting on ultra-high waves, characterized in that it is provided with a means for measuring.
(2)上記主ビームは連続波又はパルス波で駆動され、
上記少くとも2つの断面像の走査線に夫々互いに時分割
的に駆動されかつ上記主ビーム用とは異なる鼓形又は異
なる周波数を用いることを特徴とする特WFB氷の範囲
第1項記載の超音波にょる側足または別作用装置。
(2) the main beam is driven by a continuous wave or a pulsed wave;
The special WFB ice range according to item 1, wherein the scanning lines of the at least two cross-sectional images are driven in a time-sharing manner with respect to each other and use a different hourglass shape or a different frequency from that for the main beam. Side legs or other acting devices that rely on sound waves.
(3)上記主ビームは上記少くとも2つの−r面像のう
ちの1つの走査線と同−周波数又は同一波形でかつ互い
に時分割的に駆動され、また他の断面像の走査線は上記
1つの走査線とは異なる周波数又は異なる波形で駆動さ
れることを特徴とする特許請求の恥、囲第1項記載の超
音波による測定または別作用装貸。
(3) The main beam is driven at the same frequency or the same waveform as the scanning line of one of the at least two -r-plane images and in a time-sharing manner with respect to the scanning line of the other cross-sectional image, and the scanning line of the other cross-sectional image is Ultrasonic measurement or other functional device according to claim 1, characterized in that it is driven at a different frequency or a different waveform than one scanning line.
(4)上記主ビームの時間オU用率が、上記いずれの断
面像の走査線の時間利用率よシも大きいか又は等゛しい
ことを特徴とする特許請求の範囲第1項ないし第3項の
いずれかに記載の超音波による測定または別作用装置。
(4) Claims 1 to 3, characterized in that the time utilization rate of the main beam is greater than or equal to the time utilization rate of the scanning line of any of the above-mentioned cross-sectional images. Ultrasonic measurement or other action device according to any of the paragraphs.
(5)上記主ビームは上記少くとも2つの断面像のいず
れかの走査面内に設けられたことを特徴とする特許請求
の範囲第1項ないし第4項のいずれかに記載の超音波に
よる測定または別作用装置。
(5) The ultrasonic wave according to any one of claims 1 to 4, wherein the main beam is provided within the scanning plane of any one of the at least two cross-sectional images. Measuring or other acting devices.
(6)上記主ビームは上記少くとも2つの断面像の交線
上に設けられたこと全特徴とする%許F+ti求の範囲
第1項ないし第4項のいずれかに記載の超音波による測
定または別作用装置。
(6) Measurement by ultrasonic waves according to any one of paragraphs 1 to 4, characterized in that the main beam is located on the intersection line of the at least two cross-sectional images; Separate action device.
(7)上記少くとも2つの断面像の走査面は直交するこ
とを特徴とする特許話求の範囲第1項ないし第67Uの
いずれかに記載の超音波による測定または別作用装珈0
(7) Ultrasonic measurement or other action device according to any one of claims 1 to 67U of the patent application, characterized in that the scanning planes of the at least two cross-sectional images are perpendicular to each other.
JP57211871A 1982-12-02 1982-12-02 Ultrasonic measuring apparatus Pending JPS59101143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57211871A JPS59101143A (en) 1982-12-02 1982-12-02 Ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211871A JPS59101143A (en) 1982-12-02 1982-12-02 Ultrasonic measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59101143A true JPS59101143A (en) 1984-06-11

Family

ID=16612991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211871A Pending JPS59101143A (en) 1982-12-02 1982-12-02 Ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59101143A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113955A (en) * 1984-06-30 1986-01-22 株式会社東芝 Ultrasonic heat treating apparatus
JPS6137149A (en) * 1984-07-18 1986-02-22 ドルニエ、ジステム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Apparatus for detecting and determining position of stone
JPS6249843A (en) * 1985-08-29 1987-03-04 株式会社東芝 Ultrasonic stone crushing apparatus
JPS62106758A (en) * 1985-11-01 1987-05-18 戸田 耕司 Ultrasonic solubility promoting system for small matter
DE3713816A1 (en) * 1986-04-24 1987-11-05 Toshiba Kawasaki Kk ULTRASONIC THERAPY DEVICE
DE3743883A1 (en) * 1986-12-26 1988-07-14 Toshiba Kawasaki Kk MEDICAL ULTRASONIC TREATMENT DEVICE
JPS63171544A (en) * 1987-01-12 1988-07-15 株式会社東芝 Ultrasonic diagnostic apparatus
JPH0647051A (en) * 1991-08-26 1994-02-22 Toshiba Corp Lithotresis device
JP2013539715A (en) * 2010-10-13 2013-10-28 マウイ イマギング,インコーポレーテッド Concave ultrasonic transducer and 3D array
US9265484B2 (en) 2011-12-29 2016-02-23 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
US9339256B2 (en) 2007-10-01 2016-05-17 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
US9420994B2 (en) 2006-10-25 2016-08-23 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US9510806B2 (en) 2013-03-13 2016-12-06 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9526475B2 (en) 2006-09-14 2016-12-27 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9572549B2 (en) 2012-08-10 2017-02-21 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US9582876B2 (en) 2006-02-06 2017-02-28 Maui Imaging, Inc. Method and apparatus to visualize the coronary arteries using ultrasound
US9788813B2 (en) 2010-10-13 2017-10-17 Maui Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
US9986969B2 (en) 2012-08-21 2018-06-05 Maui Imaging, Inc. Ultrasound imaging system memory architecture
US10226234B2 (en) 2011-12-01 2019-03-12 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
US10401493B2 (en) 2014-08-18 2019-09-03 Maui Imaging, Inc. Network-based ultrasound imaging system
US10856846B2 (en) 2016-01-27 2020-12-08 Maui Imaging, Inc. Ultrasound imaging with sparse array probes
US11172911B2 (en) 2010-04-14 2021-11-16 Maui Imaging, Inc. Systems and methods for improving ultrasound image quality by applying weighting factors

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113955A (en) * 1984-06-30 1986-01-22 株式会社東芝 Ultrasonic heat treating apparatus
JPH0563177B2 (en) * 1984-06-30 1993-09-10 Tokyo Shibaura Electric Co
JPH0557856B2 (en) * 1984-07-18 1993-08-25 Dornier System Gmbh
JPS6137149A (en) * 1984-07-18 1986-02-22 ドルニエ、ジステム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Apparatus for detecting and determining position of stone
JPS6249843A (en) * 1985-08-29 1987-03-04 株式会社東芝 Ultrasonic stone crushing apparatus
JPS62106758A (en) * 1985-11-01 1987-05-18 戸田 耕司 Ultrasonic solubility promoting system for small matter
US4787394A (en) * 1986-04-24 1988-11-29 Kabushiki Kaisha Toshiba Ultrasound therapy apparatus
DE3713816A1 (en) * 1986-04-24 1987-11-05 Toshiba Kawasaki Kk ULTRASONIC THERAPY DEVICE
DE3743883A1 (en) * 1986-12-26 1988-07-14 Toshiba Kawasaki Kk MEDICAL ULTRASONIC TREATMENT DEVICE
DE3743883C3 (en) * 1986-12-26 1998-08-13 Toshiba Kawasaki Kk Medical ultrasound treatment device
JPS63171544A (en) * 1987-01-12 1988-07-15 株式会社東芝 Ultrasonic diagnostic apparatus
JPH0647051A (en) * 1991-08-26 1994-02-22 Toshiba Corp Lithotresis device
US9582876B2 (en) 2006-02-06 2017-02-28 Maui Imaging, Inc. Method and apparatus to visualize the coronary arteries using ultrasound
US9526475B2 (en) 2006-09-14 2016-12-27 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9986975B2 (en) 2006-09-14 2018-06-05 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9420994B2 (en) 2006-10-25 2016-08-23 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US10130333B2 (en) 2006-10-25 2018-11-20 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US10675000B2 (en) 2007-10-01 2020-06-09 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
US9339256B2 (en) 2007-10-01 2016-05-17 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
US10206662B2 (en) 2009-04-14 2019-02-19 Maui Imaging, Inc. Calibration of ultrasound probes
US11051791B2 (en) * 2009-04-14 2021-07-06 Maui Imaging, Inc. Calibration of ultrasound probes
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
US11998395B2 (en) 2010-02-18 2024-06-04 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9220478B2 (en) 2010-04-14 2015-12-29 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
US11172911B2 (en) 2010-04-14 2021-11-16 Maui Imaging, Inc. Systems and methods for improving ultrasound image quality by applying weighting factors
US10835208B2 (en) 2010-04-14 2020-11-17 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
US9247926B2 (en) 2010-04-14 2016-02-02 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
JP2013539715A (en) * 2010-10-13 2013-10-28 マウイ イマギング,インコーポレーテッド Concave ultrasonic transducer and 3D array
US9788813B2 (en) 2010-10-13 2017-10-17 Maui Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
US10226234B2 (en) 2011-12-01 2019-03-12 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
US9265484B2 (en) 2011-12-29 2016-02-23 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
US10617384B2 (en) 2011-12-29 2020-04-14 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
US10064605B2 (en) 2012-08-10 2018-09-04 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US9572549B2 (en) 2012-08-10 2017-02-21 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US11253233B2 (en) 2012-08-10 2022-02-22 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US9986969B2 (en) 2012-08-21 2018-06-05 Maui Imaging, Inc. Ultrasound imaging system memory architecture
US10267913B2 (en) 2013-03-13 2019-04-23 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9510806B2 (en) 2013-03-13 2016-12-06 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US10653392B2 (en) 2013-09-13 2020-05-19 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
US10401493B2 (en) 2014-08-18 2019-09-03 Maui Imaging, Inc. Network-based ultrasound imaging system
US10856846B2 (en) 2016-01-27 2020-12-08 Maui Imaging, Inc. Ultrasound imaging with sparse array probes

Similar Documents

Publication Publication Date Title
JPS59101143A (en) Ultrasonic measuring apparatus
Chen et al. The measurement of backscatter coefficient from a broadband pulse-echo system: A new formulation
Smith et al. High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering
EP0008517A1 (en) Duplex ultrasonic imaging system with repetitive excitation of common transducer in Doppler modality
Arditi et al. An annular array system for high resolution breast echography
EP0139235B1 (en) Ultrasonic measurement method and apparatus therefor
JPS60163643A (en) Ultrasonic measuring method and apparatus
US5247937A (en) Transaxial compression technique for sound velocity estimation
Zagzebski et al. Quantitative backscatter imaging
Kelsey et al. Applications of ultrasound in speech research
Jain et al. Physics of ultrasound
Sofferman Physics and principles of ultrasound
Foster et al. Breast imaging with a conical transducer/annular array hybrid scanner
Azhari et al. Ultrasound Imaging
Dunmire et al. Brief history of vector Doppler
Wilkinson Principles of real-time two-dimensional B-scan ultrasonic imaging
Leech et al. Physical principles of ultrasound
Schmolke et al. Ultrasound pulse Doppler tomography
Subedi ULTRASOUND AND IT’S APPLICATION ON MEDICINE (ULTRASONOGRAPHY)
Halliwell Ultrasonic imaging in medical diagnosis
Bawazeer et al. Physics behind ultrasound; what should I know as a pediatric surgeon?
Santoro et al. Basic principles of ultrasonography
TISSUE Physics and instrumentation in Doppler and B-mode ultrasonography
Brnjas-Kraljevic et al. Physical Bases of Medical Ultrasound
Noga et al. Ultrasound Basics