JPS5875056A - Probe - Google Patents

Probe

Info

Publication number
JPS5875056A
JPS5875056A JP56174000A JP17400081A JPS5875056A JP S5875056 A JPS5875056 A JP S5875056A JP 56174000 A JP56174000 A JP 56174000A JP 17400081 A JP17400081 A JP 17400081A JP S5875056 A JPS5875056 A JP S5875056A
Authority
JP
Japan
Prior art keywords
probe
center
aperture
frequency
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56174000A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakayama
中山 淑
Hirohide Miwa
三輪 博秀
Osamu Hayashi
治 林
Nobushiro Shimura
志村 「あ」城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56174000A priority Critical patent/JPS5875056A/en
Publication of JPS5875056A publication Critical patent/JPS5875056A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a probe which makes the effective sound field constant independently of frequency, by making a transmittable or receivable ultrasonic frequency in the side of the aperture end lower than that in the side of the center of the aperture face. CONSTITUTION:A piezoelectric element 2 consists of a disc-shaped element, which is provided in the center, and a torus-shaped element which is provided around this disc-shaped element in a shape like a concentric ring, and the whole of a transducer is formed so as to have a concave in the center for the purpose of forming a focus. A disc-shaped electrode 6 and a ring-shaped electrode 7 are formed on the back of the disc-shaped piezoelectric element in the center, and an earth electrode 5 is formed on all of the surface of this element. Ring-shaped electrodes 8-13 arranged on concentric circles are formed on the back of the ring-shaped piezoelectric element, and the earth electrode 5 is formed on all of the surface of this element. A back absorbing layer 4 is provided on the back of the whole of the transducer. The thickness of the piezoelectric element or a matching layer 3 is adjusted for every element to make the shape of the long- distance transmission sound field constant throughout a desired frequency band.

Description

【発明の詳細な説明】 本発明は超音波を利用して媒体を掬定,検査。[Detailed description of the invention] This invention uses ultrasonic waves to scoop and inspect media.

診断等する超音波利用測定装置に利用される探触子に関
し,特に遠距離雑音場κおける実効音場の形状を改良し
得る探触子に関する。
The present invention relates to a probe used in an ultrasonic measuring device for diagnosis, etc., and particularly to a probe that can improve the shape of the effective sound field in the far-field noise field κ.

従来,超音波の透過や反射塾散乱などを利用した超音波
利用側定値it.例えば超音波カメラ・ホログラム・反
射映像装置・OT!置・開口合成装置など忙おいては%
所定の周波a(ある込は周波数帯域》の遅aR中パルス
波を用iるようκされる。このような装置κ用iる超音
波トランスデー−サとしては単一の超音波トクンスデ^
−サ・エレメントをもつもの,(例えば円板番のもの》
や。
Conventionally, ultrasound user-side constant value IT. using ultrasound transmission, reflection scattering, etc. For example, ultrasound camera, hologram, reflection imaging device, OT! % when busy with installation/aperture synthesis equipment, etc.
It is designed to use a slow aR medium pulse wave of a predetermined frequency a (including frequency band).An ultrasonic transducer for such a device uses a single ultrasonic transducer.
- those with a sa element (e.g. disc number)
or.

4x数個の[1鼓トランスデ諷−サ●エレメントtもつ
もの(伺えばアユ上ツー・アレイ、リニア滝口合成用ア
レイなど)が用いられてiる。そして後者の場合には,
各エレメントを同時あるいは辿択的にあるいは更に送・
受時相を変化させることが行なわれている。
4x several elements (such as the Ayu Ue-to Array, the Linear Takiguchi Synthesis Array, etc.) are used. And in the latter case,
Send each element simultaneously, sequentially, or further.
The reception time phase is being changed.

しかし、上紀超iffトランスデ為一すに対してはgl
図図示の如くなる。  直径Dの円板状の超音波トラン
スデ為一すlのI117j力向の送信音場は,上記周波
数の波兼を人としトランスデエーサ1凌為らの距喘を2
とし九とき。
However, gl
It becomes as shown in the figure. The transmitting sound field of a disk-shaped ultrasonic transducer with diameter D in the direction of force I117j is as follows:
At nine o'clock.

が in中D12) で与えられ%また でbえらnる遠距離において        ゛ビーム
ti径%7か で与えちれる。
is given by D12) in the distance and is given by the beam diameter %7 at a long distance.

従って,上記超音波トランスデ轟−サによってつくられ
る送信音場は周波数か一わ瀧トランスデ墓一すの幾何学
的形状とによって略決定される皮めに.同一}?ンスデ
エーサをポーる場合で4周波数毎に異なったものとなる
。これ#f当当前音場拡散形であって4.tた集束形で
ありてもトランスデ為ー゛サ寸法かデ無限小かある偽は
無限大でない限り同じである。
Therefore, the transmitted sound field created by the ultrasonic transducer is approximately determined by the frequency and the geometry of the transducer. Same}? In the case of using a speed ether, the frequency will be different for every 4 frequencies. This #f is naturally a sound field diffusion type, and 4. Even if it is a convergent form, the size of the transducer is the same unless it is infinitely small or infinitely large.

コノ72め,パルス のように広^周波数帯域幅をもつ
場合などにおいては,中心W49絨κLる送信音場形状
と上記周[fi帝域内の上限や下隈周波数に工る送信音
場形状とが異なる一のとなる。このために、例えば超音
波を用いて[13定値の形状を測定する場合においても
{III定結定結−趙が導入されることとなる.まfc
被副側定休補遺各部の物質時性,例えば生体における各
部の組織特性を測定する几めに,故意に9I数鳩波数(
ま九はグ数周波a#城や超広帯域)のkIi廿波を同一
経路に沿りて拡散的ま次は集束的に&射し,物質や組織
と超音波との相互作用が周波数にエフて異なることを利
用するようなことが行なわれているが.このLウな利用
層様の場合、それぞれの周msのもとての測定値が物質
や組織との相互作用が周波数によって異なるζとκ起因
するものか,あるいは実効音場形状が周波数に1って異
なることに起因するものか判らなくなり.、lilJ定
結果に致命的な組長を導入することとなる。
In the case of a wide frequency bandwidth such as a pulse, the transmitting sound field shape is centered at W49, and the transmitting sound field shape is set at the upper limit or lower frequency within the above-mentioned circumferential range. becomes a different one. For this reason, even when measuring the shape of [13 constant value using ultrasonic waves, for example, {III-fixed-fix-Zhao will be introduced. Mafc
In order to measure the material temporality of each part, for example, the tissue characteristics of each part in a living body, the 9I number wave number (
The interaction of the ultrasonic waves with substances and tissues causes an effect on the frequency. However, there are efforts being made to utilize different things. In the case of this type of usage layer, the original measured value of each circumference ms is either due to ζ and κ, whose interactions with substances and tissues vary depending on the frequency, or because the effective sound field shape is constant with frequency. I don't know if this is due to the difference. , will introduce a fatal boss into the lilJ fixed result.

本発明は,上記の点を解決することを目的としており,
実効音場を周波数によらず一定とできる仲触子を提供す
る.ことを目的としてぃる◎そしてそのため本発明の探
触子は所定の開口面を有し。
The present invention aims to solve the above points,
To provide a middle probe that can keep the effective sound field constant regardless of frequency. ◎And for that purpose, the probe of the present invention has a predetermined opening surface.

超音波を媒体に対し送信もしくは受信する探触子におい
て,該探触子は,該開口面の中心@より開口a−の送置
もし<Fi受1d可能な超音波の周波数が、該開口面の
中心側の周rfc数エリ低いことを特徴とする。
In a probe that transmits or receives ultrasonic waves to or from a medium, if the probe is placed at the aperture a- from the center of the aperture surface, the frequency of the ultrasonic waves that can be received by It is characterized by a low peripheral RFC number on the center side.

なお本発明において「実効音場」なる字句を用いている
炉,該字句は例えば次の如き各1場を総称しているもの
と考えてよい。即ち。
In addition, in the present invention, the phrase "effective sound field" is used in the furnace, and the phrase can be considered to be a general term for each of the following fields, for example. That is.

(A)送画音場(実音場) 超音波トランスデ為−サかも実際に超音波として放射さ
れた超音波出力の場を意味し、■超音波光学カメラやホ
ログラム、開口合成などにおける拡散波、(II平面・
凹面トランスデ龜−サによるビーム状集束波、 (ji
ltアレイ素子の時相制御による集束や一同などによっ
て実際に被測定体内に形成された音場を意味する。
(A) Transmission sound field (actual sound field) Ultrasonic transducer refers to the field of ultrasound output actually emitted as ultrasound, and includes diffused waves in ultrasound optical cameras, holograms, aperture synthesis, etc. (II plane・
Beam-shaped focused wave by concave transducer, (ji
It means a sound field actually formed inside the body to be measured by focusing or coordinating the lt array elements by time-phase control.

(B)受信音場(受信感度の礪) 被測定体内の座標点から透過書屈折Φ反射修散乱などに
1って発生しt超音波を、超音波ト2ンスデ凰−サに工
つて愛情する場合の感度の空間分布の場を意味し、 +
1) トランスデ轟−サの指向性度)集束s 1111
1受II!感度−同などにエリ形成された受信感度の場
を意味する。
(B) Receiving sound field (decreased receiving sensitivity) The ultrasonic waves generated from the coordinate points inside the body to be measured due to transmission, refraction, reflection, scattering, etc. are converted into ultrasonic detectors. means the field of spatial distribution of sensitivity when +
1) Directivity of transducer) Focusing s 1111
1st grade II! Sensitivity - means a field of receiving sensitivity formed in the same manner.

(0)送・受音場(実費mgi号音場′)実際に被測定
体内に形成された送信°音礪に対して上記受信音場が重
畳さルて実際に受11!さnたII!1号となる。従っ
て上述の送信音場と受信音場とか空間的および時間的に
重畳されて実際の受部信号音場が形成される0反射法の
場合には同一の友送受別々のトランスデ凰−サが用いら
れ、開口合成中音響光学的カメラやホログラムなどでは
適IPな送・受トランスデ、−サの配列がとられる。
(0) Transmitting/receiving field (actual mgi sound field') The above receiving sound field is superimposed on the transmitting sound field actually formed inside the body to be measured, resulting in the actual receiving 11! Santa II! Becomes No. 1. Therefore, in the case of the above-mentioned zero-reflection method in which the transmitting sound field and the receiving sound field are spatially and temporally superimposed to form the actual receiving signal sound field, separate transducers for transmitting and receiving are used. During aperture synthesis, an appropriate IP transmitting/receiving transducer arrangement is taken for an acousto-optical camera, hologram, etc.

しかし、いずれの場合においても、上記送信音場と受−
音場とか空間的および時間的に重畳されて送・受を含め
比特性の音場が癖与えられ、送・受音場はこの音場を意
味する。
However, in any case, the above transmission sound field and reception
Sound fields are superimposed spatially and temporally, giving a characteristic sound field including transmission and reception, and the transmission and reception fields refer to this sound field.

(D)fI号処埴音場 受信された酒浸に対して計算処fMt″はどこすことが
ある。例えば集束音場に対して逆拡散関数によるデコン
ボリ凰−シ璽ン計算やlli像処理を行なうことがあり
、ま友拡散音場に対する開口合成において受m債号に対
して計算処理を行なうことがある。そして、これらの処
理を行なうことによって受filf1号についての見掛
は上集束度を尖鋭化し念り、空間解像Kを上昇させて仮
想的に音場を尖鋭化することができる。債号石場音場と
は、このような逃場によって与えられる仮想的な音場あ
るいは処理が行なわれ几結果の音場を意味す養。
(D) fI sound field The calculation process fMt'' may be applied to the received sound field. For example, deconvolution calculation using a despreading function or lli image processing for the focused sound field. In the aperture synthesis for the Mayu diffused sound field, calculation processing may be performed for the filf1 issue.By performing these processes, the apparent convergence level for the filf1 is increased. It is possible to sharpen the spatial resolution K and virtually sharpen the sound field.The sound field is a virtual sound field or processing given by such a relief field. The sound field is the result of the process being carried out.

以下図面を参照しつつ説明する。This will be explained below with reference to the drawings.

第3図は本発明の一実施例の原理を示すものである〇 図中、lはトランスデ凰−サ、δは中心軸、10は開口
中心% 1mは所定の位置、重りは開口中心の厚さ%T
は位fi1mにおけるトランスデユーサの厚さである。
Figure 3 shows the principle of an embodiment of the present invention. In the figure, l is the transducer, δ is the central axis, 10 is the opening center%, 1m is the predetermined position, and the weight is the thickness at the opening center. %T
is the thickness of the transducer at position fi1m.

一般に圧電素子の共振w8波数fは、振動素子内の音速
をV、厚さをtとすると次式で表わされろことが知ら几
ている。
It is generally known that the resonance w8 wave number f of a piezoelectric element can be expressed by the following equation, where V is the sound velocity within the vibrating element and t is the thickness.

Dと波長λとの比を一定にすれば、何れの肩*aにおい
ても遠距−音場における形状は一般する・従って第sw
AK示す中心位置loと位置l―とから発信される超音
波の遠距−音場における形状は各位置の発信周波数をf
o=fm及び各位置の開口直径をDosDaとすれば次
式を満足するよう設定されることに工り一般する。
If the ratio of D and wavelength λ is kept constant, the shape in the far-field sound field is the same for any shoulder*a. Therefore, the shape of the swth
The shape of the ultrasonic wave emitted from center position lo and position l- shown in AK in the far-field sound field is as follows: f
If o=fm and the aperture diameter at each position is DosDa, then it can be generally set to satisfy the following equation.

10xDom/axDa         +6)従っ
て第1)式・第(6)式エリ位置1mにおける厚さを示
す関数として次式が導出できる。
10xDom/axDa +6) Therefore, the following equation can be derived as a function representing the thickness at the 1 m position of Equation 1) and Equation (6).

T。T.

テな□ DI  ’        +7)D。Te na□ DI ’’        +7)D.

にし得る。It can be done.

また、トランスデ鳳−サlから送信される超音波を集束
させるために同図媒体Al4IO所定位置に曲率中心を
有する線表面lbを一曲させる手法は。
Also, in order to focus the ultrasonic waves transmitted from the transducer 1, there is a method in which the line surface lb having the center of curvature is curved at a predetermined position of the medium Al4IO in the figure.

一般的に知ら几ており、従って表面1bを彎曲させ友場
合には第(8)式で示さnる関wtが重畳された関数で
、裏dglct形成す几ばk In 。
It is generally known that when the surface 1b is curved, the curve dglct is formed by a function in which the n function wt shown in equation (8) is superimposed.

このようにトランスジ^−サlの開口の位置厚さを#I
(81式を満足するよう設定することにより。
In this way, the position thickness of the opening of the transformer l is set to #I
(By setting to satisfy formula 81.

ト2ンスデ凰−サ1x′D送信される全ての周tI1.
llLの超音波に対し、遠距離前jiiKおける実音場
形状を一致させることができる。
Every cycle tI1.
It is possible to match the actual sound field shape at the far front jiiK with respect to the ultrasonic waves at llL.

第8図(ム)*(B)J’f本発明の一実施例ト2ンス
デ凰−サ、第4図(ム)−(B)はそれぞれ嬉8図図示
ト2ンスジ、−?の変形例 111図(ム)は本発明の一実施例超音波トランスデ鳳
−サの正面図、mawJ(B)は1181g(A)X 
−X′繍にする断面図を示す@図中8は圧電素子であっ
てPZTなどが用いられるも、の、Sは音響インピーダ
ンス整合層、4は背rIn吸収層、5はアース電極、6
ないし18はそれぞれ環状電極、14はOI4力同緒合
t−減少するtめに必要に応じてもうけられる砿小St
表わしてiる。
Fig. 8 (M) * (B) J'f An embodiment of the present invention, and Fig. 4 (M) - (B) are respectively shown in Fig. 8. Modification Example 111 (M) is a front view of an ultrasonic transducer according to an embodiment of the present invention, and mawJ (B) is 1181g (A)
-X' cross-sectional view is shown. 8 in the figure is a piezoelectric element made of PZT, etc., S is an acoustic impedance matching layer, 4 is a back rIn absorption layer, 5 is a ground electrode, and 6
1 to 18 are annular electrodes, and 14 is a small St that can be provided as necessary to reduce the OI4 force joint t.
Express it.

図示の場合、圧電素子3は中央部にもうけられた円板状
の素子とそのjiIIlll!lK同心円環状にもうけ
られた円環状素子とでm賊さn、トランスデ&−サ全体
は焦点形成のために中央部に凹みをもつように形成され
て偽る。中央部円板状圧電素子の背面側とは円形状の電
極6と環状電極7とが形成され、mall全1にアース
電極5が形成されている。
In the illustrated case, the piezoelectric element 3 is a disk-shaped element provided in the center and its jiIIIllll! The entire transducer is formed with a concave portion in the center to form a focal point. A circular electrode 6 and an annular electrode 7 are formed on the back side of the central disc-shaped piezoelectric element, and a ground electrode 5 is formed on the entire mall 1.

また円環状圧電素子の背面には同心円状に配設された環
状電4Ii8な−L1g#もうけられ、@面側全面にア
ース電極器が形成されてiる。そしてトランスデ纂−サ
全体の背面側#c//i背面吸収層4かもうけられてい
る。
Further, on the back surface of the annular piezoelectric element, there are annular electrodes 4Ii8 and -L1g# arranged concentrically, and a ground electrode device is formed on the entire @ surface side. A #c//i back absorption layer 4 on the back side of the entire transducer is also formed.

本明細書においては、超音波トランスデ為−サエレメン
トなる字句を用いているが、圧電素子Sを挾んで前・背
面に対向してもうけられるアースの上記電極対がもうけ
られている場合には1つの圧電素子SよK11laの超
1fII!トランスデ為−サ・エレメントが存在してい
るものとみるものとする。
In this specification, the phrase "ultrasonic transducer element" is used, but when the above-mentioned pair of ground electrodes are provided opposite to each other on the front and back sides of the piezoelectric element S, 1 Two piezoelectric elements S, K11la's super 1fII! It is assumed that a transducer element exists.

勿論、各エレメント毎に上記圧電子が区分されていて4
Z<Stつの超#成トツンスデ凰−サか1つの超音波ト
ランスデ、−t・エレメントよ−)て構成されていても
工い0 図示実施例の場合、圧電素子の厚さおよび/または整合
層8の厚さが各エレメント毎に調整されている。例えば
電極6と対応するエレメントは所望する上限周波数に対
して高i効率をもち、かつ下限周波数に対してもなお所
定の効率をもつ如く調整され、電極18と対応するエレ
メントは下隈周aaに対して高い効率をもつがより高い
周波数に対しては殆んど効率Effト1いか低い効率と
なるようKFJ4整され、それらの閣の各電極マないし
1sに対応するエレメントは上記両エレメントの間に順
次遷移した周波a時性ンもつように調整されるO g I IIi!I e ’41図を参照して説明しt
如(,1つ数依存性がなく、遠距−においてλ・Z/D
に比例しり拡″SDをもつ。このことから特に上述の遠
距離送信音場の形状について周波数依存性をなくするた
めには上述λ/Dが一玖1mをとるように、波長λか大
になるにつれて第1図図示の直径Dt大にすればよi。
Of course, the piezoelectric elements are divided into four parts for each element.
In the illustrated embodiment, the thickness of the piezoelectric element and/or the matching layer may be 8 thickness is adjusted for each element. For example, the element corresponding to the electrode 6 is adjusted to have high i efficiency for the desired upper limit frequency and still have a predetermined efficiency for the lower limit frequency, and the element corresponding to the electrode 18 is adjusted to have a high i efficiency for the desired upper limit frequency, and the element corresponding to the electrode 18 is adjusted to The KFJ4 is arranged so that it has a high efficiency for higher frequencies, but has an efficiency of almost 1 or a lower efficiency for higher frequencies, and the elements corresponding to each electrode 1s of those cabinets are between the above two elements. O g I IIi! I e '41 Explained with reference to figure t.
As (, there is no dependence on the number of units, and at a long distance, λ・Z/D
Therefore, in order to eliminate the frequency dependence of the shape of the long-distance transmission sound field mentioned above, the wavelength λ should be increased so that the above-mentioned λ/D is 1 meter. As the diameter becomes larger, the diameter Dt shown in FIG. 1 can be increased.

第8図図示の場合、高い周波数に対して高い効率tもつ
エレメントが中央部に存在し周辺に行くにつれて上記高
周波数に対して効率が漸次低Yするエレメントが配置さ
れて−る・この几めに所望開口の大きさが[兼に比例す
るように変化される形となり、上記全域にわ九って遠距
−送慣音場の形状を同一にすることか可能となるO なお、各エレメント間、ある鱒は複数個のニレ小幅の4
14をもうけても1い0 4s図図示−成のエレメント個a1に減少した一成を簡
略化する几めに1編4図(A)dB)e(C)図示の如
く、所定の電−を1つの電極に巣約することができる・
g4図図示の場合、第3図図示のtのと同様に圧電素子
Sおよび/17tは整合層口の厚さが爾次質化する工う
4成されて−る。そして第4図(A)図示の場合には電
極6と7.8なiυ011ないし1mかそれぞ−rL1
′)K集約すnmjl!4図CB)図示の場合には電極
6と7.8なZl、11がそれぞれ1”:)K集約され
、第4図(0)図示の場合には電極6ないし9.10な
いし18がそれヤれ]つに集約されている。
In the case shown in Figure 8, an element with high efficiency t for high frequencies exists in the center, and elements whose efficiency gradually decreases Y for high frequencies are arranged toward the periphery. The size of the desired aperture is changed in proportion to the size of the aperture, and it is possible to make the shape of the long-distance inertia field the same across the above range. , some trout have multiple small elm 4
In order to simplify the Ichisei which has been reduced to the number of elements a1 in the figure, even if 14 are added, the number of elements in the figure is reduced to a1. can be integrated into one electrode.
In the case shown in Fig. g4, the piezoelectric elements S and /17t are constructed in such a way that the thickness of the matching layer opening is gradually reduced, as in the case of t shown in Fig. 3. In the case shown in FIG. 4(A), electrodes 6 and 7.8 iυ011 to 1 m or -rL1
') K aggregate nmjl! In the case shown in Fig. 4 (CB), electrodes 6 and 7.8, Zl and 11 are each 1'':) K aggregated, and in the case shown in Fig. 4 (0), electrodes 6 to 9, and 10 to 18 are It is summarized in one thing.

以上、第1図−4411ii3に示しt様なトランスジ
ーサを動作さザる場合、各々同時的に駆動される。
As described above, when operating the t-type transformers shown in FIG. 1-4411ii3, they are driven simultaneously.

これに工9各位置から各位置の禰造によって一義的に決
定される中心周波数の成分を持ち、所定の周波数帯域を
占める超音波価号が送出される。
In addition, from each position of the workpiece 9, an ultrasonic wave signal having a center frequency component uniquely determined by the meshwork at each position and occupying a predetermined frequency band is transmitted.

而して本発明の如く厚さが調整されてiると、各位置か
らの各局#!数の超音波の実音場形状は遠距離音場Ki
?いて4敦し、f橋形状の相違による娯差を極小にでき
る効果を本発明は有する。
Then, when the thickness is adjusted as in the present invention, each station #! from each position. The actual sound field shape of several ultrasonic waves is the far sound field Ki
? The present invention has the effect of minimizing the difference in entertainment due to the difference in the shape of the f-bridge.

なお、以上説明した実施例にお匹ては、各位置から送信
し得る周波数帯域の各々の関連性については詳述してい
ないが、何れの5Aj1ii例の珂触子でありても所定
の位置で送信し得る超1ttIILの周阪敏帝城が、1
υ圃口趨側に位置する位置で送信し得る超音波の周波数
帯域を含む様m成される41が望ましい。
In addition, in the embodiments described above, the relationship between each of the frequency bands that can be transmitted from each position is not explained in detail, but regardless of the 5Aj1ii example of the antenna, it is possible to The super 1ttIIL Shuhanmin Teijo who can send with 1
41 is preferably configured to include a frequency band of ultrasonic waves that can be transmitted at a position located on the side of the field mouth.

これは開口中心側で送信し得る帯域が、より開口端側で
送信し4AI城で送信し傅る帯域を含ま3い場合、1m
口端側から送信し得る帯域については開口中心部分が存
在しない状崖で送信さnることとなり、その帯域の超f
波の指向時性等に悪影響を及ぼすことが予想されるから
である・以上説明したように本発明にznば、探触子か
ら送信される超音波ビームの形状は、何れの周技aKk
いても同一形状とすることができる。
This is 1m if the band that can be transmitted on the aperture center side includes the band that can be transmitted closer to the aperture end and transmitted at 4 AI castles.
Regarding the band that can be transmitted from the end of the mouth, it will be transmitted at a cliff where the center part of the opening does not exist, and the ultra f of that band will be transmitted.
This is because it is expected to have an adverse effect on the directivity of waves, etc. As explained above, according to the present invention, the shape of the ultrasonic beam transmitted from the probe can be
They can be made into the same shape even if they are different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発−の1提問題を説明する説明図。 繭S図は原理説明図、第8図(A)@(B)は本発明の
一★施例ト2ンスデ凰−サ、縞4図(ム)・(B)I(
0)はそれぞれ講II/−図示トランスデ為−サの変形
例を示す図である。゛ 一−ll11it  ″    、     ″紘図中
1elはそれぞれ圧電素子、Sは音響イングーダンス整
合層% 4は吸収層、Sはアース電a。 6ないし18はそれぞれ電極taわす。 伸11v−出願人 ・rIJNa、冨士過株式会社耳1
1!]     。 埠40
FIG. 1 is an explanatory diagram illustrating the first question from this paper. The cocoon S diagram is an explanatory diagram of the principle, and Figures 8 (A) and (B) are one example of the present invention.
0) are diagrams each showing a modification of the illustrated transducer. In the diagram, 1el is a piezoelectric element, S is an acoustic intensity matching layer, 4 is an absorption layer, and S is a ground voltage a. 6 to 18 are electrodes, respectively. Shin 11v-Applicant ・rIJNa, Fujika Co., Ltd. Mimi 1
1! ]. Bu 40

Claims (1)

【特許請求の範囲】 0) 所定の開口面を有し、超音波を媒体に対し送信も
しくは受信する探触子にお−て、該探触子は%破開口面
の中心−より開口端側の送信もしくは受01可能な超音
波の周波数が、該開口面の中心側の周波数19低いこと
を特徴とする探触子@(2)該探触子は超音波振動孝子
を有するものであり、該振動子は中心側の厚さより、開
口端側の厚さが厚く構成され、該振動子の厚さは、中心
位置では、#探触子が動作し得る周波数帯域の内上限の
周波a帯域に動作中心周波数を有する厚さであり、開口
端側の各位置の動作中心局rll数が各位置に応じた周
波a帯域に動作中心網波数を有する厚さに形成されてな
ることを特徴とする特許請求の範囲第0)項記載のff
l!醜子。 (3ン  該振動子は開口中心から開口4に向う方向に
複aK+割されてなることを検値とする特許請求の範囲
第(1)項または@ (2)項配−の探触子・(4)#
探触子は所定の共fRR波数を有する超音波振動子と、
#超音波振動子と媒体との音響インピーダンスを整合す
る整合層とを有し、#整合層に工って、開口の各位置の
中心局tILaが調整されてなることを特徴とする特許
請求の範囲第(11項または第1匍項會たは纂(8) 
XJ紀−の探触子〇(… 峡探触子は振動子と超音波の
放射側に設けられ友音響整合層と、該振動子を介し、整
合層と反対側にバッキング層とを有すbものであって1
腋音響整合層と、バッキング層とにより、開口缶位置の
中心局*aがv4整されてなることを特徴とする請求 体)項記載の探触子。 《6》  該振動子は,各々対向する面κ駆動もしくは
債号抽出電極と接地電極とを有するものであると共κ、
少なくと%鍍駆動電他は*aに分割されてなることを4
#鰍とする特tf請求の範囲第41)項ま7tFi第1
2》項または縞《3》項ま友は嬉{4)積結−の探触子
。 《7》  該探触子の開口の所定の位置から送信される
超音波の周波数帯域は、該所定の位置より外側の開口の
位置から送信される超音波の周波数帯域を含む奄のであ
ることを特徴とする請求囲第(1)項e Jig 12
)項―縞(3)項.第《4)項s #I(Is)項)第
(6》項配一の探触子●
[Claims] 0) A probe that has a predetermined aperture surface and transmits or receives ultrasonic waves to or from a medium, the probe having a predetermined aperture surface that is located closer to the aperture end than the center of the rupture surface. A probe characterized in that the frequency of ultrasonic waves that can be transmitted or received is lower on the center side of the aperture surface (2) The probe has an ultrasonic vibrating element, The vibrator is configured so that the thickness on the open end side is thicker than the thickness on the center side, and the thickness of the vibrator at the center position is equal to the upper limit frequency band a of the frequency band in which the probe can operate. The thickness is such that the number of operating center stations rll at each position on the opening end side is in the frequency a band corresponding to each position, and the operating center network wave number is formed in such a thickness that the operating center frequency is ff described in claim 0)
l! Ugly child. (3) A probe according to claim (1) or (2), in which the value of the vibrator is divided by aK+ in the direction from the center of the aperture toward the aperture 4. (4)#
The probe includes an ultrasonic transducer having a predetermined common fRR wavenumber;
# A matching layer that matches the acoustic impedance of the ultrasonic transducer and the medium, and # The center station tILa at each position of the aperture is adjusted by the matching layer. Scope No. 11 or No. 1 Section or Collection (8)
XJ era probe B thing and 1
The probe according to claim 1, wherein the axillary acoustic matching layer and the backing layer align the central station *a at the open can position to v4. <<6>> The vibrator has a plane κ drive or a bond extracting electrode and a ground electrode that face each other.
At least % of the driving electric motor etc. should be divided into *a 4
#Characteristic tfClaim 41) or 7tFi 1st
2》 term or striped 《3》 term is good {4) Probe of product. <<7>> The frequency band of the ultrasonic waves transmitted from the predetermined position of the aperture of the probe includes the frequency band of the ultrasonic waves transmitted from the aperture positions outside the predetermined position. Characteristics of claim (1) e Jig 12
) term - stripe (3) term. Section <<4> s #I (Is) Section) Section (6>) Distributed probe ●
JP56174000A 1981-10-30 1981-10-30 Probe Pending JPS5875056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174000A JPS5875056A (en) 1981-10-30 1981-10-30 Probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174000A JPS5875056A (en) 1981-10-30 1981-10-30 Probe

Publications (1)

Publication Number Publication Date
JPS5875056A true JPS5875056A (en) 1983-05-06

Family

ID=15970890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174000A Pending JPS5875056A (en) 1981-10-30 1981-10-30 Probe

Country Status (1)

Country Link
JP (1) JPS5875056A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135032A (en) * 1983-12-26 1985-07-18 株式会社東芝 Ultrasonic probe
JPS61158797U (en) * 1985-03-25 1986-10-01
JPS61176900U (en) * 1985-04-23 1986-11-05
DE4006718A1 (en) * 1989-03-07 1990-09-13 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
DE4008768A1 (en) * 1989-03-27 1990-10-04 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
JPH06154208A (en) * 1992-11-19 1994-06-03 Matsushita Electric Ind Co Ltd Composite piezo-electric body
WO2009083050A1 (en) * 2007-12-21 2009-07-09 Thomas Fritsch Device for investigating the properties of a medium
JPWO2013065310A1 (en) * 2011-11-02 2015-04-02 コニカミノルタ株式会社 Ultrasonic probe
CN106198759A (en) * 2016-07-14 2016-12-07 四川大学 Ultrasound probe device for detecting performance and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135032A (en) * 1983-12-26 1985-07-18 株式会社東芝 Ultrasonic probe
JPS61158797U (en) * 1985-03-25 1986-10-01
JPS61176900U (en) * 1985-04-23 1986-11-05
DE4006718A1 (en) * 1989-03-07 1990-09-13 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
DE4008768A1 (en) * 1989-03-27 1990-10-04 Mitsubishi Mining & Cement Co PIEZOELECTRIC CONVERTER
JPH06154208A (en) * 1992-11-19 1994-06-03 Matsushita Electric Ind Co Ltd Composite piezo-electric body
WO2009083050A1 (en) * 2007-12-21 2009-07-09 Thomas Fritsch Device for investigating the properties of a medium
JPWO2013065310A1 (en) * 2011-11-02 2015-04-02 コニカミノルタ株式会社 Ultrasonic probe
CN106198759A (en) * 2016-07-14 2016-12-07 四川大学 Ultrasound probe device for detecting performance and method

Similar Documents

Publication Publication Date Title
US4058003A (en) Ultrasonic electronic lens with reduced delay range
US4519260A (en) Ultrasonic transducers and applications thereof
US3815409A (en) Focused sonic imaging system
JPH07121158B2 (en) Ultrasonic probe
JPS6310792B2 (en)
US4044273A (en) Ultrasonic transducer
JPH0360491B2 (en)
US4431936A (en) Transducer structure for generating uniform and focused ultrasonic beams and applications thereof
JPS5846712B2 (en) Siderutsu King Sonar Souchi
EP0113594B1 (en) Ultrasonic diagnostic apparatus using an electro-sound transducer
JPH03126443A (en) Ultrasonic probe
JPS5875056A (en) Probe
CA1201197A (en) Variable focus transducer
US2833999A (en) Transducer
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
US4794929A (en) Echography probe and echograph fitted, with a probe of this type
US4069467A (en) Suppression of out-of-focus echoes in ultrasonic scanning
JPS58131559A (en) Ultrasonic probe
JPS6029140A (en) Ultrasonic diagnostic apparatus
JPS6361161A (en) Converging type ultrasonic probe
JPH0419504B2 (en)
JPS6024045Y2 (en) ultrasonic transducer
JP2633576B2 (en) Ultrasound diagnostic equipment
JPH0155411B2 (en)
Sæther et al. Ultrasonic beam transmission in the backward-and forward-wave frequency-wavenumber bands of a fluid-embedded steel plate