JPS6245719B2 - - Google Patents

Info

Publication number
JPS6245719B2
JPS6245719B2 JP5809480A JP5809480A JPS6245719B2 JP S6245719 B2 JPS6245719 B2 JP S6245719B2 JP 5809480 A JP5809480 A JP 5809480A JP 5809480 A JP5809480 A JP 5809480A JP S6245719 B2 JPS6245719 B2 JP S6245719B2
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
aluminum plate
conductive circuit
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5809480A
Other languages
Japanese (ja)
Other versions
JPS56155585A (en
Inventor
Jinzo Kosuge
Kyoshi Oosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP5809480A priority Critical patent/JPS56155585A/en
Publication of JPS56155585A publication Critical patent/JPS56155585A/en
Publication of JPS6245719B2 publication Critical patent/JPS6245719B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、陽極酸化法により表面に電気絶縁性
の酸化皮膜を形成したアルミニウム板と合成樹脂
の電気絶縁層により導電回路を挾んで被覆し、該
導電回路の必要部分のみ、アルミニウム板に設け
た貫通孔より表面に露出させた印刷配線板であ
る。 印刷配線板は、合成樹脂の電気絶縁層と電解銅
箔を一体化した銅張り積層板を使用し、常法の印
刷エツチングにより導電回路を形成し、パンチン
グ或はドリリングにより部品取り付け穴等を設け
たものが通常のものである。この通常の印刷配線
板は、最近要求される様になつてきた電子機器部
品の小型化に対応するため、導電回路の高密度
化、部品搭載の高密度化を図つていくと、印刷配
線板自体の温度上昇及び蓄熱による印刷配線板の
劣化、搭載部品の損傷等の障害が発生し、回路設
計上の限界にきている。又、通常の印刷配線板へ
の部品搭載、導通固定は半田付け法により行なわ
れている。これは、印刷配線板の半田付け不要部
分に半田レジストを印刷し、部品取り付け穴に部
品を挿入後200〜300℃の半田浴に数秒間浸漬する
処理をし導通固定するか、或は半田ゴテにて導通
固定する方法である。この半田付けの際、通常の
印刷配線板は、瞬間的な熱シヨツク及びその後の
印刷配線板に残る熱により印刷配線板の導電回路
と電気絶縁層との剥離、導電回路の断線更には搭
載部品の破損等がしばしば見うけられ問題となつ
ている。 一方、アルミニウム板を基板とした印刷配線板
が、上記通常の印刷配線板の弱点を補なう意味で
種々考案されている。このアルミニウム板を基板
とした印刷配線板は、大別すると第1図及び第2
図の2種に集約出来る。即ち、第1図の如きアル
ミニウム板1と電解銅箔とを電気絶縁層2を介し
積層接着したアルミニウム基板の銅張り板を使用
し、常法の印刷エツチングにより導電回路3を形
成することにより得る印刷配線板。第2図の如き
アルミニウム板1を必要な印刷回路板の形状サイ
ズとし、所定部分にパンチング或はドリリングで
貫通孔4をあけた後、この貫通孔4の内壁面も含
めたアルミニウム板表面に陽極酸化法による絶縁
酸化皮膜5を形成し、更に絶縁塗料等を塗布した
絶縁層6を形成した後、メツキ法、蒸着法、導電
塗料の印刷法等で導電回路7を形成することによ
り得る印刷配線板である。 前者は、放熱性と寸法安定性には優れた印刷配
線板であるが、最大の欠点として基板に穴をあけ
部品を搭載することが、アルミニウム板が電気導
通体である為不可能な事である。したがつて、取
り付け部品はチツプ素子等導電回路面で固定可能
な部品に限られる。後者は、前者と同様放熱性と
寸法安定性には優れているが、製造工程が複雑で
高度の技術を要するだけでなく通常のエツチドフ
オイル法による印刷配線板と比較すると半田耐熱
性、耐熱性、耐湿性、導電回路の引き剥がし強
さ、導通信頼性等あらゆる特性面で信頼性に乏し
く劣つており、用途的にも非常に限られる。 本発明の印刷配線板は、放熱性、寸法安定性、
機械強度等物理的な面でアルミニウム板の特性を
充分に生かし、しかも通常の印刷配線板と電気特
性において遜色のない印刷配線板である。 即ち、本発明は、通常の印刷配線板の導電回路
表面を表面に酸化被膜を施したアルミニウム板で
覆い導電回路の必要部分のみアルミニウム板に設
けた貫通孔から露出させた構成である。その為通
常の印刷配線板特性は充分に満足出来、しかも導
電回路及び搭載部品から生じる熱はアルミニウム
板を通じ直ちに放散され、熱による印刷配線板及
び搭載部品の劣化、損傷等の悪影響はなくなり、
更に回路配線、部品搭載の高密度化を図ることが
可能となる。又、半田付けによる印刷配線板への
搭載部品固定時にも、陽極酸化皮膜を形成したア
ルミニウム板が半田と接する事によりアルミニウ
ム板が半田レジストの役目を果すと同時に、半田
付け時の熱も半田付け作業終了とほぼ同時にアル
ミニウム板を通して放散され、印刷配線板及び搭
載部品への熱による悪影響は少なくなるものであ
る。更には、寸法安定性のよいアルミニウム板を
用いている事から、通常の合成樹脂印刷配線板と
は比較にならない程膨張、収縮が少なく寸法安定
性が良好であり、したがつて反り、ネジレ等の問
題も少なくなる。しかも、本発明の印刷配線板
は、通常の印刷配線板を常法で得た後アルミニウ
ム板を貼り合せるものである為、用途的には通常
の印刷配線板と同じ様な使い方で不特定多数の電
気、電子機器に使用出来、部品とアルミニウム板
との導通の必配もなく、又通常の印刷配線板の電
気的及び機械的特性を充分保持すると同時に熱的
性質、寸法安定性においては通常の印刷配線板よ
りすぐれた特性を示すものである。 本発明の印刷配線板を図面にて説明する。 本発明の印刷配線板は、第3図の合成樹脂の電
気絶縁層8を有する片面印刷配線板と、その導電
回路ランド部9′に位置が合う様にパンチング或
はドリルで貫通孔11を設け、表面及び貫通孔1
1内壁面に酸化皮膜を形成した第4図のアルミニ
ウム板10を用意する。導電回路ランド部9′と
貫通孔11がそれぞれ位置が合う様導電回路9を
内側にして片面印刷配線板とアルミニウム板10
を重ね、更に片面印刷配線板の導電回路9のない
側に別に用意した積層材料12を重ね、これらを
加熱、加圧下に一体に接着したものである。この
とき、片面印刷配線板の導電回路ランド部9′
は、アルミニウム板10の貫通孔11に第5図の
如く屈曲、圧入せしめられた状態となる。この印
刷配線板への部品の搭載は、第5図の如く貫通孔
11に屈曲、圧入させ、表面に露出させた導電回
路ランド部9′の位置に、アルミニウム板10の
貫通孔11より直径の小さい部品取り付け穴13
をパンチング或はドリリングにより設け、部品1
4をアルミニウム板10とは反対側の面から挿通
した後、固定を半田デツプ法、半田フロート法、
半田ゴテ法等により行い、最終第6図の如き印刷
配線板である。15は半田である。 第3図の片面印刷配線板の板厚は、導電回路ラ
ンド部9′をアルミニウム板10の貫通孔11に
圧入、屈曲させる必要から最終製品板厚の2分の
1以下が好ましい。又、第三図の片面印刷配線板
の電気絶縁層8は、フエノール、エポキシ、ポリ
エステル等の熱硬化性樹脂を紙、布、ガラス織布
等の基材に含浸硬化せしめたもの、又はポリエス
テル、ポリイミド、ポリアミドイミド等のフイル
ム或はシート等である。導電回路9は、5〜100
μの厚みの銅箔、ニツケル箔、アルミニウム箔、
クロム箔等である。尚、導電回路ランド部9′の
直径は、貫通孔11への圧入屈曲時に導電回路9
の断線が起らない様貫通孔11の直径より5%以
上大きくするのが好ましい。 第4図のアルミニウム板10の板厚は、0.1〜
3mmが好ましい。これは、0.1mm以下であると放
熱性、寸法安定性の効果がなくなり、3mm以上で
あると第5図の如くアルミニウミ板10の貫通孔
11に導電回路ランド部9′を圧入屈曲させるこ
とが不充分となり、搭載部品固定の半田付けが不
可能となる。アルミニウム板10及び貫通孔11
の表面に形成する陽極酸化皮膜16は、酸化アル
ミニウムであり、皮膜形成法はJIS規格H−8601
に定められている方法で、皮膜厚みは電気絶縁
性、破壊電圧等電気特性面を考慮すると、5μ以
上必要である。 尚、アルミニウム板の貫通孔11の直径は、第
3図の導電回路ランド部9′のそれぞれの直径よ
り5%以上小さくし且つ第6図の部品取り付け穴
13より5%以上大きくするのが望ましい。 第5図の如く、片面印刷配線板の導電回路ラン
ド部9′をアルミニウム板10の貫通孔11に屈
曲、圧入せしめる加熱、加圧成形法は、圧力30〜
200Kg/cm2、温度150〜180℃、時間30〜90分程度
である。尚、アルミニウム板と片面印刷回路板の
接着にはポリアセタールとフエノール樹脂を主成
分とする接着剤を用いるとよい。接着剤には、ア
ルミニウム板10の表面に膜厚20〜50μになるよ
う塗布する。 加熱、加圧成形の際使用する積層材料12は、
フエノール、エポキシ、ポリエステル等の熱硬化
性樹脂を紙、布、ガラス織布等の基材に含浸せし
めたもので加熱加圧により硬化し、かならずしも
電気絶縁層8と同一でなくてもよい。又、必要に
応じて電気絶縁層8の積層材料12と当接する面
にポリアセタールとフエノール樹脂を主成分とす
る接着剤を塗布してもよい。 第6図の部品取りつけ穴13はパンチング或は
ドリリングにより設け、その直径はアルミニウム
板10の貫通孔11より5%以上小さくするのが
よい。 本発明の構成にて材質、板厚をかえた、第1表
A〜Eの5種類の印刷配線板を作製し、放熱性、
寸法安定性及び印刷配線板電気特性を通常の紙基
材フエノール樹脂印刷配線板及びガラス布基材エ
ポキシ樹脂印刷配線板と比較した。結果を第2表
に示す。
In the present invention, a conductive circuit is sandwiched and covered with an aluminum plate on which an electrically insulating oxide film is formed on the surface by an anodic oxidation method and an electrically insulating layer made of synthetic resin, and only necessary parts of the conductive circuit are provided on the aluminum plate. This is a printed wiring board whose surface is exposed through a through hole. The printed wiring board uses a copper-clad laminate that integrates an electrically insulating layer of synthetic resin and electrolytic copper foil. Conductive circuits are formed by conventional printing etching, and holes for mounting parts are formed by punching or drilling. This is the normal one. In response to the recent demand for miniaturization of electronic device parts, these ordinary printed wiring boards have become more densely packed with conductive circuits and components. Problems such as deterioration of the printed wiring board and damage to mounted components due to temperature rise and heat accumulation occur, and circuit design is reaching its limits. Further, mounting of components on a printed wiring board and fixing of conductivity are usually carried out by soldering. This can be done either by printing a solder resist on the parts of the printed wiring board that do not require soldering, and after inserting the component into the component mounting hole, it is immersed in a solder bath at 200 to 300°C for a few seconds to ensure continuity, or by using a soldering iron. This is a method of fixing conductivity. During this soldering, a normal printed wiring board is subjected to an instantaneous heat shock and the heat that remains on the printed wiring board, causing the conductive circuit of the printed wiring board to separate from the electrical insulating layer, the conductive circuit to be disconnected, and the mounted components to be separated. Damage is often seen and has become a problem. On the other hand, various printed wiring boards using aluminum plates as substrates have been devised to compensate for the weaknesses of the above-mentioned ordinary printed wiring boards. Printed wiring boards using this aluminum plate as a substrate can be roughly divided into Figures 1 and 2.
It can be summarized into two types as shown in the figure. That is, a conductive circuit 3 is obtained by using a copper-clad aluminum substrate in which an aluminum plate 1 and an electrolytic copper foil are laminated and bonded via an electrical insulating layer 2 as shown in FIG. Printed wiring board. An aluminum plate 1 as shown in Fig. 2 is made into the required shape and size of a printed circuit board, and after punching or drilling a through hole 4 in a predetermined portion, an anode is placed on the surface of the aluminum plate including the inner wall surface of the through hole 4. Printed wiring obtained by forming an insulating oxide film 5 by an oxidation method, further forming an insulating layer 6 coated with an insulating paint, etc., and then forming a conductive circuit 7 by a plating method, a vapor deposition method, a conductive paint printing method, etc. It is a board. The former is a printed wiring board with excellent heat dissipation and dimensional stability, but its biggest drawback is that it is impossible to drill holes in the board and mount components because the aluminum plate is an electrical conductor. be. Therefore, the attachment parts are limited to parts that can be fixed on the conductive circuit surface, such as chip elements. Like the former, the latter has excellent heat dissipation and dimensional stability, but not only is the manufacturing process complicated and requires advanced technology, but it also has poor soldering heat resistance, heat resistance, and It is unreliable and inferior in all characteristics such as moisture resistance, peel strength of conductive circuits, and continuity reliability, and its uses are extremely limited. The printed wiring board of the present invention has heat dissipation properties, dimensional stability,
This printed wiring board takes full advantage of the physical properties of aluminum plates, such as mechanical strength, and is comparable in electrical properties to ordinary printed wiring boards. That is, the present invention has a structure in which the surface of the conductive circuit of a conventional printed wiring board is covered with an aluminum plate coated with an oxide film, and only the necessary portion of the conductive circuit is exposed through a through hole provided in the aluminum plate. Therefore, the characteristics of ordinary printed wiring boards are fully satisfied, and the heat generated from the conductive circuits and mounted components is immediately dissipated through the aluminum plate, eliminating any adverse effects such as deterioration or damage to the printed wiring boards and mounted components due to heat.
Furthermore, it becomes possible to increase the density of circuit wiring and component mounting. Also, when fixing mounted components to a printed wiring board by soldering, the aluminum plate with an anodized film comes into contact with the solder, so the aluminum plate acts as a solder resist, and at the same time, the heat during soldering is absorbed by the solder. The heat is dissipated through the aluminum plate almost immediately after the work is completed, reducing the adverse effects of heat on the printed wiring board and mounted components. Furthermore, since it uses an aluminum plate with good dimensional stability, it has less expansion and contraction than ordinary synthetic resin printed wiring boards, and has good dimensional stability, so it is less prone to warping, twisting, etc. There will be fewer problems. Moreover, since the printed wiring board of the present invention is obtained by obtaining a normal printed wiring board by a conventional method and then bonding an aluminum plate to it, it can be used in the same way as a normal printed wiring board and can be used for an unspecified number of purposes. It can be used in electrical and electronic equipment, there is no need for electrical conduction between parts and aluminum plates, and it maintains the electrical and mechanical properties of ordinary printed wiring boards, while at the same time maintaining normal thermal properties and dimensional stability. It exhibits superior characteristics to other printed wiring boards. The printed wiring board of the present invention will be explained with reference to the drawings. The printed wiring board of the present invention has a single-sided printed wiring board having an electrically insulating layer 8 made of synthetic resin as shown in FIG. , surface and through hole 1
1. An aluminum plate 10 shown in FIG. 4 having an oxide film formed on its inner wall surface is prepared. A single-sided printed wiring board and an aluminum plate 10 with the conductive circuit 9 on the inside so that the conductive circuit land portion 9' and the through hole 11 are aligned with each other.
A laminated material 12 prepared separately is further laminated on the side of the single-sided printed wiring board where the conductive circuit 9 is not provided, and these are bonded together under heat and pressure. At this time, the conductive circuit land portion 9' of the single-sided printed wiring board
is bent and press-fitted into the through hole 11 of the aluminum plate 10 as shown in FIG. The components are mounted on the printed wiring board by bending and press-fitting them into the through-holes 11 as shown in FIG. Small parts mounting hole 13
part 1 by punching or drilling.
4 is inserted from the side opposite to the aluminum plate 10, and then fixed by the solder dip method, solder float method, or
This is done using a soldering iron method, etc., and the final printed wiring board as shown in FIG. 6 is obtained. 15 is solder. The thickness of the single-sided printed wiring board shown in FIG. 3 is preferably one-half or less of the final product board thickness since it is necessary to press-fit the conductive circuit land portion 9' into the through hole 11 of the aluminum plate 10 and bend it. The electrical insulating layer 8 of the single-sided printed wiring board shown in Figure 3 is made by impregnating and curing a thermosetting resin such as phenol, epoxy, or polyester into a base material such as paper, cloth, or woven glass fabric, or by curing polyester, Films or sheets made of polyimide, polyamideimide, etc. The conductive circuit 9 is 5 to 100
μ thick copper foil, nickel foil, aluminum foil,
Chrome foil, etc. The diameter of the conductive circuit land portion 9' is such that the conductive circuit land portion 9' has a diameter such that the conductive circuit land portion 9' has a diameter such that the conductive circuit land portion 9' is
It is preferable that the diameter of the through hole 11 be at least 5% larger than the diameter of the through hole 11 to prevent wire breakage. The thickness of the aluminum plate 10 in FIG. 4 is 0.1~
3 mm is preferred. If it is less than 0.1 mm, the effects of heat dissipation and dimensional stability will be lost, and if it is more than 3 mm, it will be difficult to press and bend the conductive circuit land portion 9' into the through hole 11 of the aluminum plate 10 as shown in FIG. As a result, it becomes impossible to solder the mounted components. Aluminum plate 10 and through hole 11
The anodic oxide film 16 formed on the surface of is aluminum oxide, and the film formation method is JIS standard H-8601.
In this method, the film thickness must be 5μ or more, considering electrical properties such as electrical insulation and breakdown voltage. It is desirable that the diameter of the through holes 11 in the aluminum plate be at least 5% smaller than the diameters of the conductive circuit lands 9' shown in FIG. 3, and at least 5% larger than the component mounting holes 13 shown in FIG. . As shown in FIG. 5, the heating and pressure forming method of bending and press-fitting the conductive circuit land portion 9' of the single-sided printed wiring board into the through hole 11 of the aluminum plate 10 is performed under pressure of 30 to
The weight is 200Kg/cm 2 , the temperature is 150 to 180°C, and the time is about 30 to 90 minutes. It is preferable to use an adhesive containing polyacetal and phenolic resin as main components to bond the aluminum plate and the single-sided printed circuit board. The adhesive is applied to the surface of the aluminum plate 10 to a thickness of 20 to 50 μm. The laminated material 12 used during heating and pressure molding is
It is made by impregnating a thermosetting resin such as phenol, epoxy, polyester, etc. into a base material such as paper, cloth, glass woven cloth, etc., and is cured by heating and pressing, and does not necessarily have to be the same as the electrical insulating layer 8. Further, if necessary, an adhesive containing polyacetal and phenolic resin as main components may be applied to the surface of the electrical insulating layer 8 that comes into contact with the laminated material 12. The component mounting hole 13 shown in FIG. 6 is formed by punching or drilling, and its diameter is preferably 5% or more smaller than the through hole 11 of the aluminum plate 10. Five types of printed wiring boards shown in Table 1 A to E were manufactured with different materials and board thicknesses according to the structure of the present invention, and the heat dissipation and
The dimensional stability and electrical properties of the printed wiring board were compared with a conventional paper-based phenolic resin printed wiring board and a glass cloth-based epoxy resin printed wiring board. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】 上述のように、本発明の印刷配線板は、通常の
印刷配線板の導電回路表面をアルミニウム板で覆
う構成である為、通常の印刷配線板の電気特性を
充分保持したうえ機械強度が向上し、アルミニウ
ム板の特性である放熱性、寸法安定性に優れたも
のであり、その工業的価値は極めて大なるもので
ある。
[Table] As mentioned above, the printed wiring board of the present invention has a structure in which the conductive circuit surface of a normal printed wiring board is covered with an aluminum plate, so it maintains sufficient electrical properties of a normal printed wiring board and has high mechanical strength. It has improved heat dissipation and dimensional stability, which are the characteristics of aluminum plates, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はアルミニウム板を基板とする
従来の印刷配線板の断面図、第3図は本発明に使
用する片面印刷配線板の平面図、第4図は本発明
に使用するアルミニウム板の平面図、第5図は本
発明の印刷配線板の断面図、第6図は第5図にお
ける印刷配線板に部品を搭載した状態を示す断面
図である。 8は電気絶縁層、9は導電回路、9′は導電回
路ランド部、10はアルミニウム板、11は貫通
孔、12は積層材料、16は陽極酸化皮膜。
Figures 1 and 2 are cross-sectional views of a conventional printed wiring board using an aluminum plate as a substrate, Figure 3 is a plan view of a single-sided printed wiring board used in the present invention, and Figure 4 is an aluminum plate used in the present invention. FIG. 5 is a plan view of the board, FIG. 5 is a cross-sectional view of the printed wiring board of the present invention, and FIG. 6 is a cross-sectional view showing a state in which components are mounted on the printed wiring board in FIG. 8 is an electrical insulating layer, 9 is a conductive circuit, 9' is a conductive circuit land, 10 is an aluminum plate, 11 is a through hole, 12 is a laminated material, and 16 is an anodized film.

Claims (1)

【特許請求の範囲】[Claims] 1 合成樹脂の電気絶縁層上に導電回路を形成し
た片面印刷配線板と前記導電回路のランド部と一
致する位置に貫通孔を有し表面および貫通孔壁に
酸化皮膜を形成したアルミニウム板と前記片面印
刷配線板の導電回路のない側に当接した積層材料
とを導電回路を内側にして加熱加圧一体成形して
なり、導電回路のランド部をアルミニウム板の貫
通孔に屈曲圧入せしめた印刷配線板。
1. A single-sided printed wiring board with a conductive circuit formed on an electrically insulating layer made of synthetic resin, an aluminum plate having a through hole at a position corresponding to the land of the conductive circuit and an oxide film formed on the surface and the wall of the through hole, and the above. Printing in which the laminated material in contact with the side without conductive circuits of a single-sided printed wiring board is integrally molded by heating and pressing with the conductive circuits inside, and the land portions of the conductive circuits are bent and press-fitted into the through holes of the aluminum plate. wiring board.
JP5809480A 1980-04-30 1980-04-30 Printed circuit board Granted JPS56155585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5809480A JPS56155585A (en) 1980-04-30 1980-04-30 Printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5809480A JPS56155585A (en) 1980-04-30 1980-04-30 Printed circuit board

Publications (2)

Publication Number Publication Date
JPS56155585A JPS56155585A (en) 1981-12-01
JPS6245719B2 true JPS6245719B2 (en) 1987-09-28

Family

ID=13074356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5809480A Granted JPS56155585A (en) 1980-04-30 1980-04-30 Printed circuit board

Country Status (1)

Country Link
JP (1) JPS56155585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045407A1 (en) 2018-08-28 2020-03-05 国立大学法人 奈良先端科学技術大学院大学 Water repellent oil repellent agent for fibers and fiber product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124985U (en) * 1982-02-16 1983-08-25 住友電気工業株式会社 Printed board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045407A1 (en) 2018-08-28 2020-03-05 国立大学法人 奈良先端科学技術大学院大学 Water repellent oil repellent agent for fibers and fiber product
KR20210032448A (en) 2018-08-28 2021-03-24 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 Textile water and oil repellent and textile products

Also Published As

Publication number Publication date
JPS56155585A (en) 1981-12-01

Similar Documents

Publication Publication Date Title
US6518514B2 (en) Circuit board and production of the same
US20070010086A1 (en) Circuit board with a through hole wire and manufacturing method thereof
US5079065A (en) Printed-circuit substrate and method of making thereof
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
US4243474A (en) Process of producing a printed wiring board
JP3167840B2 (en) Printed wiring board and method for manufacturing printed wiring board
JPS6245719B2 (en)
JPH1070363A (en) Method for manufacturing printed wiring board
JPH08264939A (en) Manufacture of printed wiring board
JP3780535B2 (en) Method for manufacturing printed wiring board
JP3329699B2 (en) Multilayer wiring board and method of manufacturing the same
JPS5910770Y2 (en) printed wiring board
JPH0446479B2 (en)
JPS60236280A (en) Plate for circuit
JPS62114247A (en) Manufacture of chip carrier for electronic element
JPS60236279A (en) Plate for circuit
JPS60236278A (en) Plate for circuit
JPS63246897A (en) Manufacture of metal base double-layer interconnection board
JP4019717B2 (en) Component built-in multilayer wiring module substrate and manufacturing method thereof
JPH1146056A (en) Electronic component device
JP4126753B2 (en) Multilayer board
JP4285215B2 (en) Double-sided copper-clad laminate, method for producing the same, and multilayer laminate
JP2514384Y2 (en) Metal base wiring board
JPS63226996A (en) Manufacture of multilayer interconnection board
JPH06291434A (en) Metallic laminated substrate and manufacture thereof