JPS6244986A - Manufacture of thin film el element - Google Patents

Manufacture of thin film el element

Info

Publication number
JPS6244986A
JPS6244986A JP60184744A JP18474485A JPS6244986A JP S6244986 A JPS6244986 A JP S6244986A JP 60184744 A JP60184744 A JP 60184744A JP 18474485 A JP18474485 A JP 18474485A JP S6244986 A JPS6244986 A JP S6244986A
Authority
JP
Japan
Prior art keywords
thin film
film
thin
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60184744A
Other languages
Japanese (ja)
Inventor
布村 惠史
和明 内海
彰 有泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Soda Co Ltd
Original Assignee
NEC Corp
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Soda Co Ltd filed Critical NEC Corp
Priority to JP60184744A priority Critical patent/JPS6244986A/en
Publication of JPS6244986A publication Critical patent/JPS6244986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は発光表示装置や面光源として利用される交流駆
動型の薄膜EL素子に係り、特に新規な絶縁体層薄膜を
採用した低電圧駆動、且つ高信頼な薄膜EL素子の製造
方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an AC-driven thin film EL device used as a light emitting display device or a surface light source, and particularly relates to a low voltage drive device using a novel insulating layer thin film. , and a highly reliable method of manufacturing a thin film EL device.

(従来技術) 第2図に代表的な交流駆動の薄膜EL素子の断面構造を
示す(ニス・アイ・ディ・74・ダイジェスト・オブ・
テクニカル・ペーパー184頁、(STD 74 di
gest oftechnical papers))
。図において前記薄膜EL素子は透明ガラス基板21上
にITO膜やネサ膜からなる透明電極22、薄膜第一絶
縁体層23、ZnS:MnやZnS:TbF3薄膜等の
発光層24、更にその上に薄膜第二絶縁体層25、Al
薄膜等の背面電極26からなる多層薄膜構造を有してい
る。この素子の両電極間に交流電圧を印加することによ
り発光が得られる。この発光は2MV/cm程度の高電
場により伝導帯に上げられ、且つ高速に加速された発光
層内の電子がMn等の発光中心を衝突励起することによ
り生ずるものである。発光色は発光中心の励起状態と基
底状態のエネルギー準位差で決定される、例えばMnで
は黄橙色でありTbでは緑色の発光が得られる。
(Prior art) Figure 2 shows the cross-sectional structure of a typical AC-driven thin film EL element (Nis.I.D.74 Digest of
Technical paper 184 pages, (STD 74 di
gest oftechnical papers))
. In the figure, the thin film EL element has a transparent electrode 22 made of an ITO film or a NESA film on a transparent glass substrate 21, a thin film first insulator layer 23, a light emitting layer 24 such as a ZnS:Mn or ZnS:TbF3 thin film, and further on top of that a transparent electrode 22 made of an ITO film or a NESA film. Thin film second insulator layer 25, Al
It has a multilayer thin film structure consisting of a back electrode 26 such as a thin film. Light emission can be obtained by applying an alternating current voltage between both electrodes of this element. This light emission occurs when electrons in the light emitting layer, which are raised to the conduction band by a high electric field of about 2 MV/cm and accelerated at high speed, collide and excite light emitting centers such as Mn. The emission color is determined by the energy level difference between the excited state and the ground state of the emission center. For example, Mn emits yellow-orange light, while Tb emits green light.

また、第2図中の絶縁体層は直流的に発光層に過大な電
流が流れ素子が破壊することを防ぐと共に、分極による
電場が外部駆動の交流電場に重畳される効果により発光
効率の向上、電圧輝度特性の非線型性の増大等の発行特
性の改善をももたらしており、この絶縁体層の採用によ
り、薄膜EL素子が始めて実用的なものとなった。絶縁
体層としては従来からY2O5,Al2O3,5iaN
4.Ta205.Sm20a、TiO2゜BaTi0a
、5rTiOa、PbTi0a等の薄膜が真空蒸着やス
パッタ法により形成され使用されている。
In addition, the insulator layer in Figure 2 prevents excessive current from flowing to the light-emitting layer and destroying the device, and also improves light-emitting efficiency by superimposing the electric field due to polarization on the externally driven AC electric field. This also brought about improvements in light emission characteristics, such as increased nonlinearity of voltage-luminance characteristics, and the adoption of this insulator layer made thin-film EL devices practical for the first time. Traditionally, Y2O5, Al2O3, 5iaN have been used as insulator layers.
4. Ta205. Sm20a, TiO2゜BaTi0a
, 5rTiOa, PbTiOa, etc. are formed and used by vacuum evaporation or sputtering.

(発明が解決しようとする問題点) 交流駆動型の薄膜EL素子にとって絶縁体層は非常に重
要である。EL素子の動作特性上は絶縁体層はコンデン
サーとして等価回路的に理解される。
(Problems to be Solved by the Invention) The insulator layer is very important for AC driven thin film EL elements. In terms of the operating characteristics of the EL element, the insulator layer can be understood as a capacitor in terms of an equivalent circuit.

即ち、両電極間に印加された外部電圧は絶縁体層と発光
層の各容量に反比例して各々の層に分割印加される。従
って絶縁体層の容量が小さい素子構成の場合は外部電圧
が有効に発光層に印加されないために非常に高い外部電
圧が必要となる。また、交流的に発光層内を流れ発光に
寄与する電流は絶縁体層の容量に比例するために、絶縁
体層の容量が小さい場合は高輝度発光を得ることができ
ない。従って絶縁体層の容量を大きくすることはEL素
子の低電圧駆動化、高輝度化にとって重要である。絶縁
体層の大容量化の実現のために通常使用されテイルY2
o3.Al2O3,Si3N4等を極メチ薄イ膜厚とす
る方策はEL素子の絶縁破壊が著しく発生するために不
適当であり、誘電率の高い材料で絶縁体層を構成するこ
とが好ましい。例えばスパッタ法により形成された約2
00の比誘電率を有するP))Tioa薄膜を絶縁体層
として採用することにより低電圧駆動EL素子が実現さ
れることが報告されている(アイ・イー・イー・イー件
うンザクションズ・オン・エレクトロン・デバイスズ、
(IEEE Tran、s、 ElectronDev
ices ED−28,p69g (1981)))、
(特開昭56−45595)。しかし、EL素子用とし
て誘電率の高いPbTi0a薄をスパッタ法により形成
するためには前記の文献で報告されているようにスパッ
タ成膜に伴なう組成ずれがあり再現性にとぼしくまた、
高誘電率の結晶相を得るためには600°C程度の非常
に高い基板温度が要求される。表示パネルとして必要な
大面積基板への成膜にとっては」二連した問題は非常に
厳しいものであり、十分な生産性を実現することは困難
である。更に、PbTi0aのスパッタ成膜により基板
ガラスの腐食やITO透明電極の黒化等の問題があり薄
膜EL素子の絶縁体層として採用しにくいものであった
That is, the external voltage applied between both electrodes is divided and applied to each layer in inverse proportion to the respective capacitance of the insulating layer and the light emitting layer. Therefore, in the case of an element configuration in which the capacitance of the insulator layer is small, an extremely high external voltage is required because the external voltage is not effectively applied to the light emitting layer. Furthermore, since the current that flows in the light emitting layer in an alternating current manner and contributes to light emission is proportional to the capacitance of the insulator layer, high brightness light emission cannot be obtained if the capacitance of the insulator layer is small. Therefore, increasing the capacitance of the insulator layer is important for lower voltage driving and higher brightness of the EL element. Tail Y2 is usually used to increase the capacitance of the insulator layer.
o3. The use of extremely thin films of Al2O3, Si3N4, etc. is inappropriate because it causes significant dielectric breakdown of the EL element, and it is preferable to construct the insulating layer with a material having a high dielectric constant. For example, about 2
It has been reported that a low-voltage driven EL device can be realized by employing a P)) Tioa thin film with a dielectric constant of 0.00 as an insulating layer (IEE Transactions on・Electron Devices,
(IEEE Tran,s, ElectronDev
ices ED-28, p69g (1981)),
(Japanese Patent Application Laid-Open No. 56-45595). However, in order to form a PbTi0a thin film with a high dielectric constant for EL devices by sputtering, as reported in the above-mentioned literature, there is a compositional deviation due to sputtering film formation, which impedes reproducibility.
In order to obtain a crystalline phase with a high dielectric constant, a very high substrate temperature of about 600°C is required. These two problems are extremely severe for film formation on large-area substrates required for display panels, and it is difficult to achieve sufficient productivity. Furthermore, the sputtering of PbTiOa causes problems such as corrosion of the substrate glass and blackening of the ITO transparent electrode, making it difficult to use as an insulator layer for thin-film EL devices.

また、高誘電率であるために比較的厚い薄膜のPbTi
0a薄を採用したとしてもスパッタ等の成膜法で作成し
た膜ではピンホール等の微小な欠陥を皆無にすることは
困難であり、この欠陥部を核として通電による素子破壊
が生じやすい傾向があった。従ってPbTi0a等を代
表とする高誘電率の薄膜を絶縁体層として採用すること
はEL素子特性上魅力のあるものであるが、工業的に採
用することは困難であった。
In addition, due to its high dielectric constant, a relatively thick thin film of PbTi
Even if a 0A thin layer is adopted, it is difficult to completely eliminate minute defects such as pinholes in films created by sputtering or other film formation methods, and these defects tend to be the core of the device's destruction due to energization. there were. Therefore, although it is attractive to employ a high dielectric constant thin film such as PbTiOa as an insulating layer in view of the characteristics of an EL element, it has been difficult to employ it industrially.

本発明は上述したような種々の問題を解決した高誘電率
薄膜を絶縁体層とした薄膜EL素子を実現し、低電圧駆
動、高輝度発光で且つ低コストで信頼性の高いEL表示
装置の製造方法を提供することを目的としている。
The present invention realizes a thin-film EL device using a high dielectric constant thin film as an insulating layer, which solves the various problems described above, and provides a low-voltage drive, high-luminance, low-cost, and highly reliable EL display device. The purpose is to provide a manufacturing method.

(問題を解決するための手段) 本発明の薄膜EL素子の製造方法は少なくとも一方が透
光性を有している2枚の電極間にZnS:Mn薄膜等の
発光層と該発光層の片側あるいは両側に薄膜の絶縁体層
とが形成されてなる薄膜EL素子の製造方法において、
少なくとも一方の前記絶縁体層を形成するため少なくと
もTiを含む有機金属が溶媒中に溶解されてなる前駆体
溶液を塗布し、加熱焼成してTiを含む酸化物を形成す
る処理を複数回繰り返す工程を含むことを特徴とする薄
膜EL素子の製造方法。
(Means for Solving the Problem) The method for manufacturing a thin film EL device of the present invention includes a light emitting layer such as a ZnS:Mn thin film and one side of the light emitting layer between two electrodes, at least one of which is translucent. Alternatively, in a method for manufacturing a thin film EL element in which thin film insulator layers are formed on both sides,
A step of repeating multiple times a process of applying a precursor solution in which an organic metal containing at least Ti is dissolved in a solvent and heating and baking to form an oxide containing Ti in order to form at least one of the insulating layers. A method for manufacturing a thin film EL device, the method comprising:

(作用) 本発明のEL素子の絶縁体層を形成するための前駆体溶
液は高誘電率であるTiを含む酸化物、例えばTiO2
,PbTi0a、BaTiO3,5rTiOaやこれら
の固溶体及びPZT、PLZT等を加熱焼成により形成
するものであり、p−ジケトン類を溶媒として、その中
にチタンアルコキシド類等の有機チタン化合物、あるい
はこれらの化合物とり、ジケトン類に可溶なPb、Ba
、Sr。
(Function) The precursor solution for forming the insulator layer of the EL element of the present invention is an oxide containing Ti having a high dielectric constant, such as TiO2.
, PbTiOa, BaTiO3, 5rTiOa, solid solutions thereof, PZT, PLZT, etc. are formed by heating and firing, and organic titanium compounds such as titanium alkoxides, or these compounds are mixed in p-diketones as a solvent. , Pb, Ba soluble in diketones
, Sr.

Zr等の化合物やTiとPb、Ba、Sr、Zr等を含
む有機金属化合物を生成する酸化物に換算して5〜20
重量%程度含有するものである。この前駆体溶液をIT
O膜等の下部電極が形成されてなるガラス等の基板に浸
漬法やスピンコード法、ローラーコー[1、スフレ−法
等で薄く塗布した後、450°C〜700°C加熱焼成
することによりTiを含む酸化物薄膜を得るものである
。この処理を少なくとも2回以」二繰り返し所定の膜厚
を得るものである。この後、通常の薄膜EL素子を作成
する方法と同様の工程で発光層等を形成し、本発明の薄
膜EL素子を得るものである。
5 to 20 in terms of oxides that produce compounds such as Zr and organometallic compounds containing Ti and Pb, Ba, Sr, Zr, etc.
It contains about % by weight. This precursor solution is IT
By applying a thin layer to a substrate such as glass on which a lower electrode such as an O film is formed by a dipping method, a spin code method, a roller coat method, etc., and then heating and baking at 450°C to 700°C. A thin oxide film containing Ti is obtained. This process is repeated at least twice to obtain a predetermined film thickness. Thereafter, a light-emitting layer and the like are formed in the same steps as those for producing a normal thin-film EL device, thereby obtaining the thin-film EL device of the present invention.

絶縁体層成膜に前駆体溶液塗布による有機金属の熱分解
法を採用することにより、高誘電率を実現するために必
要な化学量論比や組成比の調整がスパッタ等の成膜法に
比較して容易に行なうことができ、数10から3膜0程
度の比誘電率を有する薄膜を得ることができる。この方
法で作成した膜はピンホール等の欠陥も非常に少なく、
加えて塗布、焼成を繰り返すことにより一回の工程で微
小な欠陥が発生したとしても、これを補修しあうために
実用上問題となるピンホール等の欠陥を皆無にすること
ができる。また、基板ガラス表面の傷や砂目、あるいは
ITO膜に発生している多数のピンホール等の欠陥、更
にITO電極のエツチング段差等の凹凸部の影響による
素子破壊が従来の薄膜EL素子では生じやすい傾向にあ
った。
By adopting an organometallic thermal decomposition method using precursor solution coating to form the insulator layer, it is possible to adjust the stoichiometric ratio and composition ratio necessary to achieve a high dielectric constant using film forming methods such as sputtering. It is comparatively easy to carry out, and it is possible to obtain a thin film having a dielectric constant of about 10 to 30. The film created using this method has very few defects such as pinholes.
In addition, by repeating coating and firing, even if a minute defect occurs in a single process, it can be repaired, thereby completely eliminating defects such as pinholes, which pose a practical problem. In addition, conventional thin-film EL devices are susceptible to element destruction due to defects such as scratches and grains on the substrate glass surface, numerous pinholes occurring in the ITO film, and unevenness such as etching steps on the ITO electrode. It tended to be easy.

第一絶縁体層を形成するための前駆体溶液は基板の傷や
ピンホール等の穴や段差部により厚く付着するために凹
凸が補修されなだらかな表面を形成する効果があること
もEL素子の絶縁破壊を防止することに有効である。
The precursor solution used to form the first insulator layer thickly adheres to holes such as scratches, pinholes, and steps on the substrate, which has the effect of repairing irregularities and forming a smooth surface. It is effective in preventing dielectric breakdown.

以上のように本発明の製造方法により欠陥のない、高誘
電率の絶縁体層が比較的低コスト大面積に成膜されるた
めに低電圧駆動で高輝度、高信頼の優れた薄膜EL素子
を実現できる。
As described above, the manufacturing method of the present invention allows a defect-free, high-permittivity insulating layer to be formed over a large area at a relatively low cost, resulting in an excellent thin-film EL element that can be driven at low voltage, has high brightness, and is highly reliable. can be realized.

(実施例) 第1図に実施例で作成した薄膜EL素子の断面を示し、
以下に工程を説明する。コーニング7059ガラス基板
11上にITOを約0.2ミクロン成膜し透明電極12
を形成した。テトラブトキシチタン:Ti(OC4H9
)4と酢酸鉛:Pb(CH3COO)2とをTi/Pb
比が1になるように秤量しバラキシレン中において13
0〜140°Cに加熱し反応させ粉末状の反応生成物:
Pb−Ti02(OC4Hc+)2を得た。これをアセ
チルアセトンに溶解しPbTi0a換算濃度1換算量%
のPbTi0a形成前駆体溶液を調整した。この溶液を
ローラーコーターにより前記基板に塗布した。ついで5
50°Cに保持されたトンネル炉により加熱焼成した。
(Example) Fig. 1 shows a cross section of a thin film EL device prepared in an example.
The process will be explained below. A transparent electrode 12 is formed by forming a film of about 0.2 microns of ITO on a Corning 7059 glass substrate 11.
was formed. Tetrabutoxytitanium: Ti (OC4H9
)4 and lead acetate:Pb(CH3COO)2 as Ti/Pb
Weigh it so that the ratio is 1 and put it in xylene.
Powdered reaction product heated to 0-140°C:
Pb-Ti02(OC4Hc+)2 was obtained. Dissolve this in acetylacetone and PbTi0a equivalent concentration 1 equivalent amount %
A PbTi0a formation precursor solution was prepared. This solution was applied to the substrate using a roller coater. Then 5
It was fired by heating in a tunnel furnace maintained at 50°C.

550°C加熱温度の保持時間は約30分間である。こ
の塗布焼成工程を5回繰り返して厚さ0.6ミクロンの
PbTiO3膜13を得た。この膜の1誘電率は約20
0であり薄膜としては大きな誘電率が実現されていた。
The holding time at the heating temperature of 550°C is about 30 minutes. This coating and firing process was repeated five times to obtain a PbTiO3 film 13 with a thickness of 0.6 microns. The dielectric constant of this film is approximately 20
0, and a large dielectric constant was achieved for a thin film.

次にMnを1モル%含んだZnS:Mn薄膜14を真空
蒸着法ににより0.3ミクロンの厚さに成膜した。その
後、Ta205と5i02粉末を混合焼結させたターゲ
ットをもちいてスパッタ法により第二絶縁体層15とし
てTa−8i−0膜を0.2ミクロン厚さに成膜した。
Next, a ZnS:Mn thin film 14 containing 1 mol % of Mn was formed to a thickness of 0.3 microns by vacuum evaporation. Thereafter, a Ta-8i-0 film was formed as the second insulating layer 15 to a thickness of 0.2 microns by sputtering using a target prepared by mixing and sintering Ta205 and 5i02 powders.

最後に蒸着によりAIの上部電極16を形成して本実施
例のEL素子を得た。
Finally, an upper electrode 16 of AI was formed by vapor deposition to obtain the EL element of this example.

この素子に500Hzの交流パルスを印加して発光特性
を調査した。発光開始電圧は60Vであり、90V印加
で700cd/m2の輝度が得られた。また、第二絶縁
体層を形成しない片線縁型の素子とした場合は発光効率
、長期使用による輝度低下において若干劣ったが発光開
始電圧を45V程度に下げることができた。
A 500 Hz alternating current pulse was applied to this device to investigate its light emission characteristics. The emission starting voltage was 60V, and when 90V was applied, a brightness of 700 cd/m2 was obtained. Furthermore, in the case of a single-line edge type element in which the second insulating layer was not formed, the luminous efficiency and luminance reduction due to long-term use were slightly inferior, but the luminescence starting voltage could be lowered to about 45V.

なお、本実施例では発光層成膜に先立って形成される第
一絶縁体層に有機金属熱分解によるTiを含む酸化物薄
膜を採用した。該薄膜を第二絶縁体層として発光層成膜
後に形成しても良いが、この場合は前駆体溶液の加熱焼
成時に発光層との反応があるためか、発光輝度の低下が
あった。この問題は前駆体溶液の原料や加熱工程等の検
討で改善されると期待されるが、現時点では発光層成膜
前に形成される絶縁体層としてのみ採用する方が好まし
かった。
In this example, a Ti-containing oxide thin film produced by organometallic thermal decomposition was used as the first insulator layer formed prior to the formation of the light emitting layer. The thin film may be formed as a second insulating layer after the formation of the light emitting layer, but in this case, the luminance of the light emitted decreased, probably due to reaction with the light emitting layer during heating and baking of the precursor solution. It is expected that this problem will be improved by examining the raw materials of the precursor solution, the heating process, etc., but at present it is preferable to use it only as an insulator layer formed before forming the light emitting layer.

また、有機金属溶液によりPbTi0a膜を形成した場
合について述べたが有機金属原料の選定によりTiO2
,5rTiOa、BaTiO2,PZT、PLZT等や
これらの複合体膜を成膜することが可能であり、本実施
例と同様の効果が得られる。
In addition, although we have described the case where a PbTi0a film is formed using an organometallic solution, the TiO2
, 5rTiOa, BaTiO2, PZT, PLZT, etc., or composite films thereof can be formed, and the same effects as in this example can be obtained.

(発明の効果) 本発明により駆動電圧の低い薄膜EL素子が実現される
。また、本発明により得られる素子は絶縁破壊が生じに
くく信頼性も良好であった。溶液塗布による製造方法は
大面積基板での成膜にも適しており、通常のスパッタ法
の方法に比較してコスト的なメリットも大きく、本発明
は工業的価値の大なるものである。
(Effects of the Invention) According to the present invention, a thin film EL element with low driving voltage can be realized. In addition, the device obtained according to the present invention was less prone to dielectric breakdown and had good reliability. The manufacturing method using solution coating is also suitable for film formation on a large-area substrate, and has a large cost advantage compared to the usual sputtering method, so the present invention has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例を説明するための薄膜EL
素子の断面構造である。第2図は従来の薄膜EL素子の
断面構造である。 11.21・・・ガラス基板、  12.22・・・透
明電極、13・・・有機金属熱分解PbTi0a膜、2
3・・・第一絶縁体層、   14.24・・・発光層
、15.25・・・第二絶縁体層、 16.26・・・
背面電極第1図
FIG. 1 is a thin film EL for explaining an embodiment according to the present invention.
This is a cross-sectional structure of the element. FIG. 2 shows a cross-sectional structure of a conventional thin film EL device. 11.21...Glass substrate, 12.22...Transparent electrode, 13...Organometallic pyrolysis PbTi0a film, 2
3... First insulator layer, 14.24... Light emitting layer, 15.25... Second insulator layer, 16.26...
Back electrode Figure 1

Claims (1)

【特許請求の範囲】[Claims]  少なくとも一方が透光性を有している2枚の電極間に
ZnS:Mn薄膜等の発光層と該発光層の片側あるいは
両側に薄膜の絶縁体層とが形成されてなる薄膜EL素子
の製造方法において、少なくとも一方の前記絶縁体層を
形成するため少なくともTiを含む有機金属が溶媒中に
溶解されてなる前駆体溶液を塗布し、加熱焼成してTi
を含む酸化物を形成する処理を複数回繰り返す工程を含
むことを特徴とする薄膜EL素子の製造方法。
Manufacture of a thin film EL device in which a light emitting layer such as a ZnS:Mn thin film is formed between two electrodes, at least one of which is translucent, and a thin insulator layer is formed on one or both sides of the light emitting layer. In the method, in order to form at least one of the insulating layers, a precursor solution in which an organic metal containing at least Ti is dissolved in a solvent is applied, and heated and baked to form a Ti
1. A method of manufacturing a thin film EL device, comprising the step of repeating a process of forming an oxide containing oxide a plurality of times.
JP60184744A 1985-08-21 1985-08-21 Manufacture of thin film el element Pending JPS6244986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60184744A JPS6244986A (en) 1985-08-21 1985-08-21 Manufacture of thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184744A JPS6244986A (en) 1985-08-21 1985-08-21 Manufacture of thin film el element

Publications (1)

Publication Number Publication Date
JPS6244986A true JPS6244986A (en) 1987-02-26

Family

ID=16158584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184744A Pending JPS6244986A (en) 1985-08-21 1985-08-21 Manufacture of thin film el element

Country Status (1)

Country Link
JP (1) JPS6244986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226895A (en) * 1987-03-17 1988-09-21 アルプス電気株式会社 Manufacture of electroluminescence device
JP2002158094A (en) * 2000-11-17 2002-05-31 Tdk Corp Thin film el element and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226895A (en) * 1987-03-17 1988-09-21 アルプス電気株式会社 Manufacture of electroluminescence device
JP2002158094A (en) * 2000-11-17 2002-05-31 Tdk Corp Thin film el element and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2770299B2 (en) Thin-film EL element, method of manufacturing the same, and sputtering target used therefor
US7915803B2 (en) Laminated thick film dielectric structure for thick film dielectric electroluminescent displays
JPS60182692A (en) Thin film el element and method of producing same
JP2004520691A (en) Insertion layer for thick electroluminescent display
KR20050111335A (en) El function film and el device
JPS6244989A (en) Thin film el element
JPS6244986A (en) Manufacture of thin film el element
JPH0744072B2 (en) EL device and manufacturing method thereof
JPH07272853A (en) Manufacture of multilayer electric field light emitting element
JP3895141B2 (en) Thin film EL device and manufacturing method thereof
JPH08162273A (en) Thin film el element
JPS6244988A (en) Thin film el element
JPS6359519B2 (en)
JPS63190294A (en) Electroluminescence device
JPS6147096A (en) Method of producing thin film el element
JPH01241793A (en) Thin film el element
JPH01200593A (en) Manufacture of electroluminescence display element
JPH0824071B2 (en) Thin film electroluminescent device
JPH09260060A (en) Electro-luminescence element and manufacture thereof
JPS60257098A (en) Thin film electroluminescent element and method of producingsame
JP2003249374A (en) Thin film el element
JPS6320000B2 (en)
JPS6366895A (en) Method of aging thin film el device
JPH01146290A (en) Thin film el element
JPS63232296A (en) Thin film electroluminescence device